

## Supplementary Information for

## **Circadian Regulation of c-MYC in Mice**

Zhenxing Liu<sup>a</sup>, Christopher P. Selby<sup>a</sup>, Yanyan Yang<sup>a</sup>, Laura A. Lindsey-Boltz<sup>a</sup>, Xuemei Cao<sup>a</sup>, Khagani Eynullazada<sup>a</sup> and Aziz Sancar<sup>a,1</sup>

<sup>a</sup>Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260

<sup>1</sup>To whom correspondence may be addressed. Email: Aziz\_Sancar@med.unc.edu.

This PDF file includes:

Supplementary Information Figures S1 to S4

## **Supplementary Information**

## Mice

All mice were synchronized to a standard light:dark 12 h:12 h schedule at a constant temperature of 21 °C to 23 °C, with food and water ad libitum, both males and females were used interchangeably in this study. Traditionally, ZT0 (zeitgeber time) is the time of lights-on and ZT12 is the time of lights-off. Mice were handled according to the guidelines of the NIH and the University of North Carolina School of Medicine (Institutional Animal Care and Use Committee).



**Fig. S1. PER2 is rhythmically expressed in WT spleen.** (**A**). Endogenous PER2 was detected by Western Blotting in spleen of wild-type (WT) mice using ACTIN as a loading control. Samples were collected at the indicated time points (*Z*T= Zeitgeber Time). (**B**). Quantification of PER2 levels in wild-type (WT) mouse spleens at the indicated time points. For each genotype and time point, three mice were used for quantification. White and black bars indicate lights-on and lights-off, respectively. Error bars correspond to SEM (standard error of the mean). Data were normalized to a value of 1 for WT at ZT8.



Fig. S2. Active form of GSK-3 $\beta$  and total GSK-3 $\beta$  levels are similar in wild-type (WT) and three *Cry* mutants. (A). Active form of GSK-3 $\beta$  (Tyr216 p-GSK) and total GSK-3 $\beta$  levels were detected by Western Blotting in spleens of wild-type (WT) and three *Cry* mutants using GAPDH and Ponceau S as loading controls. Samples were collected at the indicated time points (*Z*T= Zeitgeber Time). (B-D). Quantification of active form of GSK-3 $\beta$  and total GSK-3 $\beta$  levels in the indicated mouse genotypes. For each genotype and timepoint, four mice were used for quantification. White and black bars indicate lights-on and lights-off, respectively. Error bars correspond to SEM. For active form of GSK-3 $\beta$ : Data were normalized to a value of 1 for WT at ZT20, for total GSK-3 $\beta$ : Data were normalized to a value of 1 for WT at ZT20. N.S, not significant, as determined by *t* test.



**Fig. S3. Expression of phosphorylated and non-phosphorylated BMAL1 in wild-type (WT) and** *Cry1/2* **KO mice. (A)**. Endogenous BMAL1 was probed by Western Blotting of spleen from WT, *Cry1/2 KO* and *Bmal1 KO* mice using GAPDH as a loading control. Samples were collected at the indicated time points (ZT= Zeitgeber Time).



**Fig. S4.** *Cry1* and *Cry2* single deletions do not affect *c-Myc* transcription or *c-*MYC target gene mRNA levels. (A and C). *c-Myc* mRNA levels in the spleen samples of WT, *Cry1 KO* and *Cry2 KO* mice detected by reverse transcription-qPCR. Three biological repeats were used for quantification. White and black bars indicate lights-on and lights-off, respectively. Error bars correspond to SEM. Data were normalized to a value of 1 for WT at ZT0. (**B and D**). mRNA levels of c-MYC target genes in the spleens of WT, *Cry1* KO and *Cry2* KO. For each genotype and time point, at least three mice were used for quantification. Error bars correspond to SEM. Data were normalized to a value of 1 for WT at ZT0.