PNAS www.pnas.org

3	
4	Supplementary Information for
5	
6	KAT5 acetylates cGAS to promote innate immune response to DNA virus
7	
8	Ze-Min Song, Heng Lin, Xue-Mei Yi, Wei Guo, Ming-Ming Hu, Hong-Bing Shu ^{1,*}
9	
10	Hong-Bing Shu
11	Email: shuh@whu.edu.cn
12	
13	This PDF file includes:
14	
15	SI Materials and Methods
16	Figures S1 to S5
17	Table S1
18	
19	
20	

20	Supplementary Information Text
21	
22	SI Materials and Methods
23	
24	Mice
25	The Kat5 ^{SA/SA} mice were kindly provided by Dr. Sheng-Cai Lin (Xiamen University)
26	(1). Genotyping by PCR was performed using the following primers. F1,
27	5'-GCCCCAGCCTCGGTTTTCCC-3'; R1, 5'-ACTGCCCTACGGGCTGACCC-3';
28	M1, 5'-TCAAGCTGATCCCCCGCGCT-3'.
29	The mice were bred in specific pathogen-free facilities at Medical Research
30	Institute of Wuhan University. Six to eight week-old mice were used in the
31	experiments and age- and sex-matched mice were used as controls. Experiments were
32	conducted without blinding. All animal experiments were performed in accordance
33	with the Institutional Animal Care and Use Committee guidelines.
34	
35	Reagents, antibodies, cells and viruses
36	2',3'-cGAMP and Lipofectamine 2000 (InvivoGen); polybrene (Millipore); SYBR
37	Green supermix (Bio-Rad); Dual-Specific Luciferase Assay Kit (Promega);
38	puromycin (Thermo); streptavidin agarose (Thermo); MG149 (Selleck); HDACs
39	inhibitor (TSA) and SIRTs inhibitor (NAM) (MCE); 3xFLAG peptide, Ac-CoA and
40	Digitonin (Sigma); and ELISA kits for murine IFN-β (PBL), IL-6 (BioLegend),
41	CXCL10 (BOSTER), and cGAMP (Cayman) were purchased for the indicated

42 manufacturers.

43	Mouse monoclonal antibodies against HA (901515) (BioLegend); FLAG (F3165)
44	and β -actin (A2228) (Sigma); cGAS (31659S, 15102), phospho-MITA S366 (40818)
45	and phospho-IRF3 S396 (4947S) (Cell Signaling Technology); phospho-TBK1 S172
46	(ab109272), phospho-KAT5 S86 (ab73207), Ac-K (ab21623) and TBK1 (ab40676)
47	(Abcam); KAT5 (sc-166363) and IRF3 (sc-33641) (Santa Cruz Biotechnology) were
48	purchased from the indicated manufacturers.
49	The antibody that specifically recognizes acetylated 4K (K47/K56/K62/K83) of
50	cGAS was raised by immunizing rabbits with a synthetic peptide:
51	ALP(K-AC)AGKFGPAR(K-AC)SGSRQ(K-AC)KSAPDTQERPPVRATGARAK(K-
52	AC)APQR. The antibodies that specifically recognize acetylated cGAS(K384/K394)
53	and cGAS(K414) were gifts from Dr. Tao Li (National Center of Biomedical Analysis
54	of China) (2).
55	HEK293 and THP-1 cells were obtained from ATCC. HFFs were provided by Dr.
56	Min-Hua Luo (Wuhan Institute of Virology, CAS). HSV-1 and MCMV were
57	previously described (3).
58	
59	Establishment of stable KAT5-expressing or knockdown cells
60	To establish KAT5-overexpressing cell lines, the 293 cells were transfected with two
61	packaging plasmids (pGAG-Pol and pVSV-G) together with pMSCV-FLAG-KAT5
62	retroviral plasmid or empty vector by calcium phosphate precipitation. To establish
63	stable KAT5-knockdown cell lines, the 293 cells were transfected with two packaging

64	plasmids (pGAG-Pol and pVSV-G) together with control or KAT5-RNAi retroviral
65	plasmid by calcium phosphate precipitation. Twenty-four hours after transfection,
66	cells were incubated with new medium without antibiotics for another twenty-four
67	hours. The recombinant virus-containing medium was collected and filtered with 0.4
68	μm filter (Millex) and then added into cultured THP-1 or HFF cells in the presence of
69	polybrene (4 μ g/mL). The infected cells were selected with puromycin (1 μ g/mL) for
70	48 hours before additional experiments were performed.
71	
72	Constructs
73	Expression plasmids for HA- or FLAG-tagged KAT5 and its truncation mutants, HA-
74	or FLAG-tagged cGAS and its truncation mutants, FLAG-tagged KAT5 (QG/EE),
75	cGAS(K/R) and cGAS(K/Q) mutants were constructed by standard molecular biology
76	techniques. The ISRE reporter plasmid and expression plasmids for MITA and TBK1
77	were previously described (4, 5).
78	
79	Preparation of primary mouse cells
80	The preparation of BMDMs and BMDCs was previously described (6). Briefly, for
81	preparation of BMDMs, mouse bone marrow-derived monocytes $(5x10^6)$ were
82	cultured in 100 mm dishes in 5 mL 10% M-CSF-containing conditional medium from
83	L929 cells for 3-5 days. For preparation of BMDCs, mouse bone marrow-derived
84	monocytes $(5x10^6)$ were cultured in medium containing murine GM-CSF (50 ng/mL)
85	for 6-8 days.

87 Synthetic dsDNA

- 88 The sequences of synthetic dsDNA ISD45, HSV60, HSV120 and VAVC70 are as
- 89 following.
- 90 ISD45: 5'-TACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCT
- 91 ACA-3';
- 92 HSV60: 5'-TAAGACACGATGCGATAAAATCTGTTTGTAAAATTTATTAAGGGT
- 93 ACAAATTGCCCTAGC-3';
- 94 VACV70: 5'-CCATCAGAAAGAGGTTTAATATTTTTGTGAGACCATGGAAGA
- 95 GAGAAAGAGATAAAACTTTTTTACGACT-3';
- 96 DNA90: 5'-TACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTAC
- 97 ATACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA-3';
- 98 HSV120: 5'-AGACGGTATATTTTTGCGTTATCACTGTCCCGGATTGGACACGG
- 99 TCTTGTGGGATAGGCATGCCCAGAAGGCATATTGGGTTAACCCCTTTTTATT
- 100 TGTGGCGGGTTTTTTGGAGGACTT-3'.
- 101

102 Transfection and reporter assays

- 103 Transfection and reporter assays were performed as previously described (7).
- 104 HEK293 cells were transfected by standard calcium phosphate precipitation method.
- 105 To ensure that each transfection receives the same amount of total DNA, an empty
- 106 control plasmid was added to each transfection. To normalize for transfection
- 107 efficiency, pRL-TK (*Renilla* luciferase) reporter plasmid (0.01 µg) was added to each

108	transfection.	Luciferase assar	vs were	performed	using a	Dual-S	pecific	Luciferase

109 Assay Kit. Firefly luciferase activities were normalized with *Renilla* luciferase

110 activities.

- 111
- 112 **RNAi**
- 113 Double-strand oligonucleotides corresponding to the target sequences were cloned
- 114 into the pSuper.retro RNAi plasmid (Oligoengine). The target sequences are as
- 115 following.
- 116 Human KAT5: #1, 5'-GGAGAAAGAATCAACGGAA-3'; #2,
- 117 5'-GGCTGGACCTAAAGAAGAT-3'.
- 118
- 119 **qPCR**
- 120 Total RNAs were isolated and the reverse transcribed products were obtained for
- 121 qPCR analysis to measure mRNA abundance of the indicated genes. Data shown is
- 122 the relative abundance of the indicated mRNA normalized to that of GAPDH.
- 123 Gene-specific primer sequences were as following. Human *IFNB1*,
- 124 5'-TTGTTGAGAACCTCCTGGCT-3' and 5'-TGACTATGGTCCAGGCACAG-3';
- 125 human ISG56, 5'-TCATCAGGTCAAGGATAGTC-3' and
- 126 5'-CCACACTGTATTTGGTGTCTA-3'; human *CXCL10*,
- 127 5'-GGTGAGAAGAGATGTCTGAATCC-3' and
- 128 5'-GTCCATCCTTGGAAGCACTGCA-3'; human *IL6*,
- 129 5'-AGACAGCCACTCACCTCTTCAG-3' and

- 130 5'-TTCTGCCAGTGCCTCTTTGCTG-3'; human *GAPDH*,
- 131 5'-GTCTCCTCTGACTTCAACAGCG-3' and
- 132 5'-ACCACCCTGTTGCTGTAGCCAA-3'; human KAT5,
- 133 5'-GGAACTCACCACATTGCCTGTC-3' and
- 134 5'-CTCATTGCCTGGAGGATGTCGT-3'; murine *Ifnb1*,
- 135 5'-TCCTGCTGTGCTTCTCCACCACA-3' and
- 136 5'-AAGTCCGCCCTGTAGGTGAGGTT-3'; murine *Cxcl10*,
- 137 5'-ATCATCCCTGCGAGCCTATCCT-3' and
- 138 5'-GACCTTTTTTGGCTAAACGCTTTC-3'; murine *Isg56*,
- 139 5'-TACAGGCTGGAGTGTGCTGAGA-3' and
- 140 5'-CTCCACTTTCAGAGCCTTCGCA-3'; murine *Il6*,
- 141 5'-TCTGCAAGAGACTTCCATCCAGTTGC-3' and
- 142 5'-AGCCTCCGACTTGTGAAGTGGT-3'; murine *Gapdh*,
- 143 5'-ACGGCCGCATCTTCTTGTGCA-3' and
- 144 5'-ACGGCCAAATCCGTTCACACC-3';
- 145

146 Viral plaque assays

- 147 Viral plaque assays were previously described (8). Eight week-old mice were infected
- 148 with HSV-1 for 5 days. The brains of mice were weighed and homogenized for 5
- seconds in PBS. After homogenization, the brain suspensions were centrifuged at
- 150 1,620 g for 30 minutes, and the supernatants were used for plaque assays. Vero cells
- 151 were seeded in 24-well plates, and the cells were infected by incubation for 2 hours at

152	37°C with serial dilutions of the brain suspensions. After infection for 2 hours, 2%
153	methylcellulose was overlaid, and the plates were incubated for 36-48 hours. The
154	overlay was removed, and cells were fixed with 4% paraformaldehyde for 20 minutes
155	and stained with 1% crystal violet for 20 minutes before plaque counting.
156	
157	ELISA
158	BMDMs were infected with viruses or transfected with the synthetic DNAs for 18
159	hours. The culture media were collected for measurement of IFN- β , CXCL10 and
160	IL-6. Eight week-old wild-type and Kat5 ^{SA/SA} mice were infected intraperitoneally
161	with HSV-1 and MCMV for 6 hours, and then the sera of mice were collected for
162	measurement of IFN-β, CXCL10 and IL-6 by ELISA.
163	
164	Co-immunoprecipitation and immunoblotting analysis
165	Cells were lysed in NP-40 lysis buffer (20 mM Tris-HCl pH7.4, 150 mM NaCl, 1 mM
166	EDTA, 1% NP-40, 10 μ g/mL aprotinin, 10 μ g/mL leupeptin, and 1 mM
167	phenylmethylsulfonyl fluoride). Co-immunoprecipitation and immunoblotting
168	analysis were performed as previously described (9). To detect acetylated proteins,
169	cells were treated with deacetylase inhibitors TSA and NAM for 8 hours before lysis.
170	For immunoblots, the blocking buffer contains 50 mM Tris (pH 7.5), 10% (V/V)
171	Tween-20 and 1% peptone, and incubation of the antibodies was carried out in 50 mM
172	
	Tris (pH7.5) and 0.1% peptone.

174 **Recombinant protein purification**

The cDNAs of cGAS and its mutants were cloned into the pGEX-6p-1-GST. The 175 cDNA of KAT5 was cloned into the pET-30C. The plasmids were transformed into 176 the BL21 E. Coli strain. Expression of the recombinant proteins was induced with 0.1 177 mM IPTG at 16°C for 24 hours. The recombinant GST-fusion proteins were purified 178 179 with GST resins and eluted with elution buffer (PBS, 100 mM Tris-HCl pH 8.8, 40 mM reduced glutathione). Ni²⁺-NTA-agarose was used for purification of His-tagged 180 KAT5 protein. To prepare FLAG-KAT5 protein, a mammal expression plasmid for 181 FLAG-KAT5 was transfected into HEK293 cells. The cells were lysed 18 hours after 182 transfection. FLAG antibody-conjugated beads were then used for 183 immunoprecipitation for 4 hours at 4°C. The beads were washed three times with lysis 184 185 buffer. The FLAG-tagged KAT5 was eluted with 3xFLAG peptide in 250 mM Tris-HCl, pH 8.0. The FLAG-tagged KAT5 was used for acetylation assays in vitro. 186 187 188 In vitro acetylation

- 189 The recombinant GST-cGAS and FLAG-KAT5 were purified, and mixed in HAT
- buffer (250 mM Tris-HCl, pH 8.0, 50% (vol/vol) glycerol, 0.5 mM EDTA, and 5 mM
- 191 DTT) with or without 1 mM Ac-CoA at 30°C for 1.5 hours. The reaction was
- 192 terminated by SDS/PAGE sample buffer and the protein samples were subjected to

193 immunoblotting analysis with anti-Ac-K mAb.

194

195 In vitro pull-down assays

In vitro pun-down assays were previously described (10). Brieny, HER293 cens
transfected with the indicated plasmids or THP-1 cells were lysed in NP-40 lysis
buffer. Lysates were incubated with biotinylated-HSV120 for 1 hour at 4°C, and then
incubated with streptavidin beads for another 3 hours at 4°C. The beads were washed
three times with lysis buffer and analyzed by immunoblots with the indicated
antibodies.
Mass spectrometry

204 HEK293 cells were transfected with FLAG-cGAS and HA-KAT5 plasmids for 20

205 hours. The cells were then treated with the deacetylase inhibitors TSA and NAM for 8

206 hours before lysis. The lysates were subjected to immunoprecipitation with

207 anti-FLAG agarose beads at 4°C for 3 hours. The bound proteins were analyzed by

208 MS, which was performed by SpecAlly (Wuhan) Life Science and Technology

209 Company.

210

211 Immunofluorescent microscopy

HeLa or HT1080 cells were seeded on coverslips in 24-well plates. After transfection

with HT-DNA for 5 hours or with the indicated plasmids for 20 hours, the cells were

- fixed with 4% paraformaldehyde for 15 minutes, permeabilized with 0.1% Triton
- 215 X-100 for 10 minutes and blocked in 1% BSA for 1 hour. Cells were then incubated
- with a primary antibody for 2 hours, washed three times with washing buffer, and
- then incubated with Alexa Fluor 488-conjugated secondary antibody for 1 hour before

218 images were acquired using a ZEISS LSM confocal microscope.

219

220	Microscale thermophoresis technology (MST)
221	MST analysis was performed using a NanoTemper Monolith NT.115 instrument
222	(NanoTemper Technologies GmbH). For detecting affinity, the protein samples were
223	mixed with 20 nM Cy5-labeled HSV60. The samples were loaded into Premium
224	Coated Capillaries and MST measurements were performed using 20% MST power
225	and 40% LED power at 25°C. Laser-on and -off times were 30 and 5 seconds
226	respectively. NanoTemper Analysis 1.2.20 software was used to fit the data and to
227	determine the apparent Kd values.
228	
229	cGAMP quantification
230	BMDMs (1×10^7) were mock-infected or infected with HSV-1 for 2 hours. Cells were
231	then homogenized by dunce homogenizer in hypotonic buffer (10 mM Tris-HCl [pH
232	7.4], 10 mM KCl, and 1.5 mM MgCl ₂). After centrifugation at 13,000 rpm for 20 min,
233	the supernatant was heated at 95°C for 10 min and centrifuged at 13,000 rpm for 10
234	min to remove denatured proteins. cGAMP in the heat-resistant supernatants were
235	measured by ELISA kit.
236	The indicated THP-1 cells (1×10^8) were left un-infected or infected with HSV-1

- 237 (MOI=2) for 3 hours. Cells were then homogenized by dunce homogenizer in
- 238 hypotonic buffer (10 mM Tris-HCl, pH 7.4, 10 mM KCl, 1.5 mM MgCl₂). After
- centrifugation at 13,000 rpm for 20 minutes, the supernatant was heated at 95°C for

240	10 minutes and centrifuged at 13,000 rpm for another 10 minutes to remove denatured
241	proteins. The heat-resistant supernatants containing cGAMP were delivered for
242	cGAMP measurements with an Ultimate 3000 UHPLC Dionex (Sunnyvale, CA)
243	coupled with a TSQ Quantiva (Thermo Fisher, Waltham, MA). The chromatography
244	separation was performed on a Waters C18 column at 40°C. Selective reaction
245	monitoring (SRM) and the appropriate product ions were chosen to quantify cGAMP.
246	The ration is based on the standard.
247	
248	Digitonin permeabilization
249	cGAMP (40 nM) was delivered to THP-1 cells pretreated with digitonin
250	permeabilization solution (50 mM HEPES pH 7.0, 100 mM KCl, 3 mM MgCl ₂ , 0.1
251	mM DTT, 85 mM Sucrose, 0.2% BSA, 1 mM ATP, 0.1 mM GTP and 2 $\mu g/mL$
252	digitonin) at 37°C for 20 minutes (11). Four hours later, the THP-1 cells were
253	collected for qPCR analysis.
254	
255	Statistics
256	Unpaired Student's <i>t</i> test was used for statistical analysis of most experimental results
257	in this study. For the mouse survival study, Kaplan-Meier survival curves were
258	generated and analyzed by Log-Rank test. $P < 0.05$ was considered significant.
259	
260	REFERENCES
261	1. Li TY, <i>et al.</i> (2018) Tip60-mediated lipin 1 acetylation and ER translocation determine

triacylglycerol synthesis rate. *Nature communications* 9(1):1916.

263	2.	Dai J, et al. (2019) Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced
264		Autoimmunity. Cell 176(6):1447-1460 e1414.
265	3.	Liu TT, et al. (2016) LSm14A Plays a Critical Role in Antiviral Immune Responses by
266		Regulating MITA Level in a Cell-Specific Manner. Journal of immunology
267		196(12):5101-5111.
268	4.	Xu LG, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta
269		signaling. Mol Cell 19(6):727-740.
270	5.	Zhong B, et al. (2008) The adaptor protein MITA links virus-sensing receptors to IRF3
271		transcription factor activation. Immunity 29(4):538-550.
272	6.	Luo WW, et al. (2016) iRhom2 is essential for innate immunity to DNA viruses by mediating
273		trafficking and stability of the adaptor STING. Nature immunology 17(9):1057-1066.
274	7.	Fu YZ, et al. (2017) Human Cytomegalovirus Tegument Protein UL82 Inhibits
275		STING-Mediated Signaling to Evade Antiviral Immunity. Cell host & microbe 21(2):231-243.
276	8.	Hu MM, Liao CY, Yang Q, Xie XQ, & Shu HB (2017) Innate immunity to RNA virus is
277		regulated by temporal and reversible sumoylation of RIG-I and MDA5. The Journal of
278		experimental medicine 214(4):973-989.
279	9.	Zhong B, et al. (2010) The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor
280		for ubiquitination and degradation. Journal of immunology 184(11):6249-6255.
281	10.	Lian H, et al. (2018) ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate
282		immune response. Nature communications 9(1):3349.
283	11.	Hu MM, et al. (2016) Sumoylation Promotes the Stability of the DNA Sensor cGAS and the
284		Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity 45(3):555-569.
285		
285 286		
285 286 287		
285 286 287 288		
285 286 287 288 289		
285 286 287 288 289 290		
285 286 287 288 289 290 291		
285 286 287 288 289 290 291 292		
285 286 287 288 289 290 291 292 293		
285 286 287 288 289 290 291 292 293 294		
285 286 287 288 289 290 291 292 293 294 295		
285 286 287 288 289 290 291 292 293 294 295 296		
285 286 287 288 289 290 291 292 293 294 295 296 297		
285 286 287 288 289 290 291 292 293 294 295 296 297 298		
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299		
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300		
285 286 287 288 289 290 291 292 293 294 295 294 295 296 297 298 299 300 301		
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302		
285 286 287 288 289 290 291 292 293 294 295 294 295 296 297 298 299 300 301 302 303		
285 286 287 288 289 290 291 292 293 294 295 294 295 296 297 298 299 300 301 302 303 304		
285 286 287 288 289 290 291 292 293 294 295 294 295 296 297 298 299 300 301 302 303 304 305		

309 Table S1 MS analysis of acetylation sites at the N-terminus of cGAS

Protein Accession	Peptide	Acetylation site	m/z	PTM
Q8N884 CGAS	R.Q(-17.03)K(+42.01)KSA	(2	587.9	Pyro-glu (Q);
_HUMAN	PDTQERPPVR.A	62	814	Acetylation (K)
O8N884 CGAS	R.AK(+42.01)KAPQRAQ		1053	
HUMAN	DTQPSDATSAPGAEGLE	82	523	Acetylation (K)
	PPAAR.E		020	
Q8N884 CGAS	A.PEAALPKAGK(+42.01)	50	776.4	Acetulation (K)
_HUMAN	FGPAR.K	50	293	receivation (IX)
Q8N884 CGAS	E.SPAAPEAALPKAGK(+	50	939.5	Λ cetulation (K)
_HUMAN	42.01)FGPAR.K	50	099	Acceptation (K)
Q8N884 CGAS	R.GAP(+31.99)MDPTESP	47	641.9	Dihydroxy (P);
_HUMAN	AAPEAALPK(+42.01).A	47	72	Acetylation (K)
Q8N884 CGAS	R.G(+43.01)APMDPTESP	47	967.9	Carbamylation (G);
_HUMAN	AAPEAALPK(+42.01).A	47	744	Acetylation (K)
Q8N884 CGAS	R.ASEAGATAPK(+42.01)	21	665.3	A anti-lation (V)
_HUMAN	ASAR.N	21	377	Acetylation (K)
Q8N884 CGAS	R.ASEAGATAPK(+42.01)	21	672.3	Acetylation (K);
_HUMAN	ASAR(+14.02).N	21	414	Methylation(KR)
Q8N884 CGAS	R.Q(-17.03)KK(+42.01)SA	62	587.9	Pyro-glu (Q);
_HUMAN	PDTQERPPVR.A	03	794	Acetylation (K)
Q8N884 CGAS	K.K(+43.01)(+42.01)SAP	(2)	783.3	Carbamylation (K);
_HUMAN	DTQERPPVR.A	03	968	Acetylation (K)
	K.K(+42.01)(+14.02)APQ(83	002.1	Acetylation (K);
	+.98)RAQDTQPSDATSA		992.1	Methylation(KR);
	PGAEGLEPPAAR.E		501	Deamidation (NQ)

Figure S1

Figure S1. KAT5 positively regulates HSV-1-induced transcription of downstream genes.

- A. Screens of the acetyltransferase family members for their ability to regulate cGAS-mediated ISRE activation. HEK293 cells stably-expressing MITA were transfected with the indicated plasmids together with ISRE reporter plasmid for 20 hours before luciferase assays.
- B. Effects of KAT5 knockdown on HSV-1-induced transcription of downstream genes in HFFs. The control and KAT5-knockdown HFFs were infected with HSV-1 for the indicated times before qPCR analysis of the indicated genes.
- C. Effects of KAT5 knockdown on dsDNA-induced transcription of downstream genes in HFFs. The control and KAT5-knockdown HFFs were transfected with dsDNA for the indicated times before qPCR analysis of the indicated genes.
- D. Effects of KAT5 knockdown on SeV-induced transcription of *IFNB1* gene. The control and KAT5-knockdown THP-1 cells were infected with SeV for 8 hours before qPCR analysis.
- E. Effects of KAT5 knockdown of on transfected poly(I:C)-induced transcription of *IFNB1* gene. The control and KAT5-knockdown HEK293 cells were transfected with poly(I:C) for 8 hours before qPCR analysis. LMW, low molecular weight; HMV, high molecular weight.

* P < 0.05, ** P < 0.01 (unpaired *t* test). Data shown are mean \pm SD from one representative experiments performed in triplicate.

Figure S2

Figure S2. KAT5 plays a role in innate immune response to DNA virus by targeting cGAS.

- A. cGAS and KAT5 partially colocalized in the cytoplasm. HeLa cells were transfected with the indicated plasmids for 20 hours before immunofluorescent analysis.
- B. Domain mapping of the interaction between KAT5 and cGAS. HEK293 cells were transfected with the indicated plasmids for 20 hours before coimmunoprecipitation and immunoblotting analysis with the indicated antibodies.
- C. Effects of KAT5 and KAT5(QG/EE) on cGAS-mediated ISRE activation. HEK293 cells were transfected with the indicated plasmids for 20 hours before luciferase assays were performed. ns, no significance. *P < 0.05 (unpaired *t* test). Data shown are mean \pm SD from one representative experiments performed in triplicate.
- D. Effects of KAT5 acetyltransferase inhibitor MG149 on HSV-1-induced transcription of downstream genes. THP1 cells were treated with MG149, then were left un-infected or infected with HSV-1 (MOI=1) for the indicated times before qPCR analysis of the indicated genes. ** P < 0.01 (unpaired *t* test). Data shown are mean \pm SD from one representative experiments performed in triplicate.

Figure S3

A

Figure S3. KAT5 catalyzes cGAS acetylation.

- A. Dot blotting analysis of acetylated and non-acetylated 4K peptides with anti-Ac-4K-cGAS antibody without or with the indicated peptide competitors.
- B. HEK293 cells were transfected with the indicated plasmids for 20 hours before coimmunoprecipitation and immunoblotting analysis with the indicated antibodies.
- C. Effects of KAT5 knockdown on HSV-1-induced acetylation of cGAS. The KAT5knockdown and control HT1080-FLAG-cGAS cell lines were infected with HSV-1 (MOI=2) for the indicated times before coimmunoprecipitation and immunoblotting analysis with the indicated antibodies.

Figure S4

Target	Ligand	Kd (nM)	SWT SAO SAR
	1. cGAS(WT)	714.01±17.52	COAT CAT CAT
Cy5-HSV60	2. cGAS(4Q)	118.24 ± 10.47	90-
	3. cGAS(4R)	721.41±46.25	Coomassie

С

cGAS(4Q)

cGAS(4R)

FLAG-cGAS (green), DAPI (blue)

Figure S4. Acetylation of cGAS by KAT5 increases its activity.

- A. Binding of dsDNA by wild-type cGAS, cGAS(4Q) and cGAS(4R). HEK293 cells were transfected with the indicated plasmids for 20 hours. The cell lysates were then incubated with biotinylated-HSV120 and streptavidin-sepharose beads. The bead-bound proteins were analyzed by immunoblots with the indicated antibodies.
- B. Binding affinities of wild-type cGAS, cGAS(4Q) and cGAS(4R) to dsDNA. Recombinant GST-cGAS, GST-cGAS(4Q) and GST-cGAS(4R) were purified *from E. Coli.*, and then mixed with Cy5-labeled HSV60 before MST measurements. The purified recombinant proteins were stained with Coomassie blue (right gel).
- C. Foci formation of wild-type cGAS, cGAS(4Q) and cGAS(4R). The HT1080 cells expressing wild-type cGAS, cGAS(4Q) or cGAS(4R) were transfected with HT-DNA for 5 hours before immunofluorescent staining (left panels). Cells with or without foci in three viewing fields were counted (right histograph). * P < 0.05 (unpaired *t* test).
- D. Effects of cGAS and its mutants on HSV-1-induced transcription of downstream genes in KAT5-RNAi knockdown cells. The HT1080 cells expressing wild-type cGAS, cGAS(4Q) or cGAS(4R) were transduced with KAT5-RNAi retroviruses. The cells were infected with HSV-1 for 9 hours or left un-infected before qPCR analysis. *P < 0.05, **P < 0.01 (unpaired *t* test). Data shown are mean \pm SD from one representative experiment performed in triplicates.

Figure S5

Figure S5. Inhibition of DNA-triggered innate immune response in Kat5^{SA/SA} mice.

- A. Kat5-S86 was not phosphorylated in *Kat5*^{SA/SA} BMDCs. Cell lysates from wild-type or *Kat5*^{SA/SA} BMDCs were immunoprecipitated with anti-KAT5, and the immunoprecipitates and lysates were analyzed by immunoblots with the indicated antibodies.
- B. Inhibition of DNA virus-induced transcription of downstream antiviral genes in *Kat5*^{SA/SA} BMDCs. Wild-type and *Kat5*^{SA/SA} BMDCs were left uninfected or infected with HSV-1 or MCMV for 6 hours before qPCR analysis.
- C. Inhibition of transfected DNA-induced transcription of downstream antiviral genes in *Kat5*^{SA/SA} BMDCs. Wild-type and *Kat5*^{SA/SA} BMDCs were transfected with the indicated dsDNA for 4 hours before qPCR analysis.
- D. RNA virus-induced transcription of downstream antiviral genes was comparable in wild-type and *Kat5*^{SA/SA} BMDMs. Wild-type and *Kat5*^{SA/SA} BMDMs were left uninfected or infected with SeV or VSV for 6 hours before qPCR analysis.
- E. Inhibition of DNA virus-induced production of IFN-β, CXCL10 and IL-6 in *Kat5^{SA/SA}* BMDMs. Wild-type and *Kat5^{SA/SA}* BMDMs were left un-infected or infected with HSV-1 or MCMV for 18 hours before ELISA analysis.
- F. Inhibition of HSV-1-induced cGAMP production in *Kat5*^{SA/SA} BMDMs. Wild-type and *Kat5*^{SA/SA} BMDMs were left un-infected or infected with HSV-1 for 2 hours before ELISA analysis. N.D., not detectable.
- G. cGAMP-induced phosphorylation of Tbk1-S172 and Irf3-S396 were comparable in wild-type and *Kat5*^{SA/SA} BMDMs. BMDMs were left untreated or treated with 2'3'-cGAMP (40 nM) for the indicated times before immunoblotting analysis with the indicated antibodies.
- H. cGAMP-induced transcription of downstream antiviral genes were comparable in Wildtype and *Kat5^{SA/SA}* BMDMs. BMDMs were left untreated or treated with 2'3'-cGAMP (40 nM) for the indicated times before qPCR analysis.

Data shown are mean \pm SD from one representative experiments performed in duplicate (F) or triplicate (B-E, H). ns, no significance. *P < 0.05, **P < 0.01 (unpaired t test).