

Supplementary Information for:

Agonist-induced formation of unproductive receptor-G12 complexes

Najeah Okashah, Shane C. Wright, Kouki Kawakami, Signe Mathiasen, Joris Zhou, Sumin Lu, Jonathan A. Javitch, Asuka Inoue, Michel Bouvier and Nevin A. Lambert

Correspondence to: Nevin A. Lambert Email: <u>nelambert@augusta.edu</u>

This PDF file includes:

Figures S1 to S12 Table S1

Figure S1. V₂R forms GDP-sensitive agonist-induced complexes with G_i and G_q heterotrimers. BRET between V₂R-Rluc8 and G $\alpha\beta\gamma$ -Venus in the presence or absence of arginine vasopressin (AVP; 1 μ M), and the presence or absence of GDP. When GDP was absent apyrase (apy) was added to remove residual nucleotides. These results are consistent with activation of G_i and G_q heterotrimers by V₂R that may or may not lead to signaling, as cooperativity between agonist and nucleotide binding is only one requirement for efficient G protein activation; physiological activation of G_i heterotrimers by V₂R will require confirmation. In each panel the broken gray line represents net BRET when agonist and GDP are both present, and solid lines represent the mean of the superimposed data points; ***P*<0.005, **P*<0.05; one-way ANOVA (Sidak's test) compared to GDP + AVP; *n*=6.

Figure S2. ET_A and TP receptors form GDP-sensitive agonist-induced complexes with G_q and G₁₂ heterotrimers. BRET between ET_A-Rluc8 (*top*) and TP-Rluc8 (*bottom*) and G $\alpha\beta\gamma$ -Venus in the presence or absence of the agonists endothelin-1 (ET1; 100 nM) and U-46619 (U46; 10 μ M), in the presence and absence of GDP. For both of these receptors agonist-induced BRET to G_q (*left*) and G₁₂ (*right*) heterotrimers was enhanced when GDP was absent. In each panel the broken gray line represents net BRET when agonist and GDP are both present, and solid lines represent the mean of the superimposed data points; **P*<0.005, ***P*<0.0005; one-way ANOVA (Sidak's test) compared to GDP + agonist; *n*=3-6.

Figure S3. V₂R, ET_A and TP receptors form GDP-sensitive agonist-induced complexes with G₁₃ heterotrimers. BRET between V₂R-Rluc8, ET_A-Rluc8 and TP-Rluc8 and G $\alpha\beta\gamma$ -Venus in the presence or absence of the agonists arginine vasopressin (AVP; 1 μ M), endothelin-1 (ET1; 100 nM) and U-46619 (U46; 10 μ M), in the presence and absence of GDP. When GDP was absent apyrase (apy) was added to remove residual nucleotides. In each panel the broken gray line represents net BRET when agonist and GDP are both present, and solid lines represent the mean of the superimposed data points; ***P*<0.005, *****P*<0.0001; one-way ANOVA (Sidak's test) compared to GDP + agonist; *n*=4.

Figure S4. V₂R and ET_A receptors compete for a common pool of G₁₂ heterotrimers in intact cells. (*A*) Agonist-induced (AVP; 1 μ M) BRET between V₂R-Rluc8 and G $\alpha_{12}\beta\gamma$ -Venus is significantly inhibited when unlabeled ET_A receptors are coexpressed and activated (ET1; 100 nM); n.s., not significant (*P*=0.92); ***P*<0.05; one-way ANOVA (Sidak's test); *n*=5. (*B*) Agonist-induced (ET1; 100 nM) BRET between ET_A-Rluc8 and G $\alpha_{12}\beta\gamma$ -Venus is significantly inhibited when unlabeled V₂R receptors are coexpressed and activated (AVP; 1 μ M); n.s., not significant (*P*=0.71); ***P*<0.005; one-way ANOVA (Sidak's test); *n*=5. Data points represent the change in BRET (Δ BRET) in response to agonist.

Figure S5. Active V₂R receptors induce a conformational change in a G₁₂ BRET biosensor that does not require activation. (*A*) Unlabeled receptors were coexpressed with G₁₂-Rluc8 and G $\beta\gamma$ -Venus in intact cells, or in cells that were permeabilized in the presence of apyrase and GDP β S (10 μ M) to prevent G₁₂ activation. (*B*) When V₂R receptors were expressed AVP (1 μ M) increased BRET between G₁₂-Rluc8 and G $\beta\gamma$ -Venus in intact cells. Similar responses were observed when G₁₂ activation was prevented in permeabilized cells. (*C*) When ET_A and TP receptors were expressed ET1 (100 nM) and U46 (10 μ M) decreased BRET between G₁₂-Rluc8 and G $\beta\gamma$ -Venus in intact cells. (*C*) When ET_A and G $\beta\gamma$ -Venus in intact cells. These responses were largely blocked when G₁₂ activation was prevented. Data points represent the change in BRET (Δ BRET) in response to agonist, and the broken gray line represents zero; n.s., not significant; **P*<0.005; unpaired t-test compared to intact cells; *n*=5-6. All datasets with the exception of ET_A in the presence of GDP β S were significantly different from zero (*P*<0.005; one-sample t-test), indicating a significant positive or negative response to agonist.

Figure S6. Luciferase complementation reports association of V₂R and G₁₂ heterotrimers in intact cells. (*A*) V₂R was fused to a small fragment (SmBit) of NanoLuc luciferase (Nluc) and G_{γ2} subunits were fused to a large fragment (LgBit) of Nluc. (*B*) Activation of V₂R with AVP (1µM) increases luciferase activity when G α_{12} is cotransfected, but not when G α_s or empty vector (-) is cotransfected. Data points represent luminescence normalized to vehicle-treated controls; *P*<0.0001; n.s., not significant compared to mock-transfected controls (-); one-way ANOVA (Dunnett's test); *n*=8.

Figure S7. Oxytocin-bound V₂R forms unproductive complexes with G₁₂ heterotrimers. (*A*) BRET between V₂R-Rluc8 and G $\alpha\beta\gamma$ -Venus in the presence or absence of oxytocin (oxy; 1 μ M), and the presence or absence of GDP. Oxytocin-induced BRET to G_s (*left*) but not G₁₂ (*right*) heterotrimers was enhanced when GDP was absent. When GDP was absent apyrase (apy) was added to remove residual nucleotides. In each panel the broken gray line represents net BRET when agonist and GDP are both present, and solid lines represent the mean of the superimposed data points; *****P*<0.0001; n.s., not significant (*P*=0.34); one-way ANOVA (Sidak's test) compared to GDP + oxytocin; *n*=5. (*B*) Addition of the V₂R inverse agonist mozavaptan (moz; 1 μ M) inhibits AVP-induced BRET between V₂R-Rluc8 and G_s or G₁₂ heterotrimers in nucleotide-depleted cells (mean ± SEM; *n*=3).

Figure S8. Overexpressing G₁₂ heterotrimers inhibits activation of G_s heterotrimers, but not V₂R-mediated cyclic AMP (cAMP) accumulation. (*A*) Activation of a Nanobit G_s activation sensor is inhibited when G₁₂ is overexpressed; mean \pm SEM; *n*=4. (*B* and *C*) AVP-induced increases in cAMP were monitored using a Glosensor assay (*B*) and an EPAC-based cAMP sensor (*C*); mean \pm SEM; *n*=3-6. Values in *B* and *C* were normalized to responses to forskolin (100 μ M); **P*<0.05; n.s., not significant; paired t-test versus mock-transfected control (-) at 1 μ M AVP.

Figure S9. Overexpressing G₁₂ heterotrimers does not inhibit arrestin recruitment to ET_A, β_2 adrenergic, or angiotensin AT₁ receptors. Recruitment of β -arrestin2-Venus to V₂R-Rluc8 is inhibited when G₁₂ is overexpressed. A smaller inhibition is observed when G_s is overexpressed. In contrast, β -arrestin2-Venus recruitment to β_2 AR-Rluc8, AT₁R-Rluc8, and ET_A-Rluc8 is not inhibited by G₁₂ overexpression. Overexpression of cognate G proteins also did not inhibit arrestin recruitment, with the exception of G_q heterotrimers and AT₁ receptors; *****P*<0.0001; ***P*=0.004; **P*=0.015; n.s., not significant compared to mock-transfected controls (-); one-way ANOVA (Dunnett's test); *n*=3-8. Data points represent the change in BRET (Δ BRET) in response to agonist stimulation. Agonists were AVP (1 µM), isoproterenol (10 µM), angiotensin II (1 µM), and ET1 (100 nM).

Figure S10. Overexpressing G₁₂ heterotrimers inhibits GRK2 recruitment to V₂R. (*A*) Overexpressing G₁₂ but not G_s heterotrimers inhibits AVP-induced changes in bystander BRET between GRK2-RlucII D110A and the plasma membrane marker rGFP-CAAX (mean ± SEM; *n*=3-6). (*B*) Overexpressing G₁₂ but not G_s, G_q or G_s Δ 10 heterotrimers inhibits AVP-induced BRET between V₂R-Rluc8 and GRK2-Venus-Kras R587Q, which was tethered to the plasma membrane with a CAAX motif and incorporated a mutation (R587Q) to prevent binding to G $\beta\gamma$ dimers; ****P*<0.0005; **P*<0.05; n.s., compared to mock-transfected controls (-); one-way ANOVA (Dunnett's test); *n*=6. G_s Δ 10 heterotrimers lacked ten amino acids at the C terminus of G α_s , and therefore could not be activated by V₂R.

Figure S11. V₂R internalization is enhanced in cells lacking G₁₂. Loss of cell surface luminescence due to internalization of HiBit-V₂R was measured 30 minutes after addition of AVP. Cells were parental HEK 293 cells, 293 cells lacking both G α_{12} and G α_{13} subunits (Δ G_{12/13}), or 293 cells lacking both β -arrestin1 and β -arrestin2 (Δ ARRB_{1/2}); ***P*<0.005; **P*<0.05, compared to parental cells; one-way ANOVA (Dunnett's test); *n*=6.

Figure S12. Active FPR2 receptors bind but do not activate G12 heterotrimers. (A) Time course of BRET between FPR2-Rluc8 and G $\alpha\beta\gamma$ -Venus in response to injection of 500 nM WKYMVm (WKY), followed by injection of 100 μ M GTP in permeabilized cells treated with apyrase (mean ± SEM: n=3). (B) Stimulation of unlabeled FPR2 receptors with WKY (500 nM) increased BRET between G₁₂-Rluc8 and Gβγ-Venus in intact cells, and this response persisted in cells that were permeabilized in the presence of apyrase and GDP β S (10 μ M) to prevent G₁₂ activation. Data points represent the change in BRET (Δ BRET) in response to WKY, and the broken gray line represents zero; n.s., not significant; unpaired t-test compared to intact cells; n=3-5. Both datasets were significantly different from zero (P<0.05; one-sample t-test), indicating a significant response to agonist. (C) Activation of FPR2 receptors with WKY (500 nM) has no effect on bystander BRET between p115RhoGEF-Rluc8 and the plasma membrane marker Venus-Kras when G₁₂ is expressed, whereas activation of ET_A with ET1 (100 nM) increases this signal. Data points represent the change in bystander BRET (Δ BRET) in response to agonist, and the broken gray line represents zero. (D) Activation of FPR2 fails to activate the serum response element (SRE) when G_{12} is expressed, whereas activation of ET_A increases SRE-driven gene expression. Data points represent luminescence normalized to vehicle-treated controls, and the broken gray line represents one (no change); *P<0.05; n.s., not significant; paired t-test compared to mock-transfected control (-); n=3-5.

Receptor-gene	Gs Rgdp	Gi Rgdp	$\mathbf{G}_{q} \mathbf{R}_{\text{GDP}}$	G12 RGDP	ligand	concentration
β2AR-ADRB2	0.060				norepinephrine	100 μM
V ₂ R-AVPR2	-0.005			1.019	AVP	1 μM
H ₂ R-HRH2	0.208				amthamine	100 μM
D₁R <i>-DRD1</i>	0.231				dopamine	100 μM
α ₂ AR-ADRA2A		0.218			norepinephrine	100 μM
M ₄ R-CHRM4		0.089			acetylcholine	500 μM
A ₁ R-ADORA1		0.486			adenosine	100 μM
D ₂ R-DRD2		0.115			dopamine	100 μM
MOR-OPRM1		0.159			DAMGO	10 μM
FPR2-FPR2/ALX		0.294		0.918	WKYMVm	500 nM
FPR1		0.256		0.964	WKYMVm	500 nM
smoothened-Smo		0.186		1.012	cyclopamine	10 μM
AT₁R <i>-AGTR1</i>			0.168		angiotensin II	1 μM
M₃R-CHRM3			0.086		acetylcholine	500 μM
H₁R <i>-HRH1</i>			0.107		histamine	100 μM
ET _A R-EDNRA		0.232	0.290	0.700	endothelin-1	100 nM
ET _B R <i>-EDNRB</i>		0.250	0.206	0.791	endothelin-1	100 nM
TP-TBXA2R			0.121	0.542	U46619	10 μM
P2RY10-P2RY10		0.141		0.099	lyso PS 18:1	10 μM
GPR35-GPR35				0.308	zaprinast	10 μM

Table S1. Receptors and agonists used and GDP resistance (R_{GDP}) observed in Figure 6. All receptors were human.