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Supplementary Text 

Experimental Methods 
Strain construction 

All strains used are a variant of the strain JKM139 (1). Strain JKM139 has the genotype MATa 

hmlΔ::ADE1 hmrΔ::ADE1 ade1-100 leu2-3,112 lys5 trp1::hisG' ura3-52 ade3::GAL::HO.   

nej1Δ::HPH mutants were constructed by amplifying pAG32 (HPH) using primers Nej1-MXp1 

and Nej1-MXp2 and yku80Δ::HPH mutants were constructed by PCR-amplifying pJH1515 using 

primers ku80MX18 and ku80MX19 to create a fragment containing hygromycin-resistance with 

homology to NEJ1 and YKU80, respectively. Linear DNA was introduced to the appropriate strain 

using lithium acetate transformation. hta1-S129A mutants were generated by transforming strains 

with pBL13, which contains Cas9 and a gRNA targeting HTA1, and the repair template BL327. 

Similarly, hta2-S129A mutants were generated by transforming strains with pBL14, which 

contains Cas9 and a gRNA targeting HTA2, and the repair template BL331. The exact primer 

sequences of the repair oligos are shown in Table S3. S129A mutations were confirmed through 

sequencing by GENEWIZ.  

Ddc2 was overexpressed in strain yKL019 by integrating PML105.45 (obtained from Maria Pia 

Longhese) which carries a copy of GAL1-Ddc2. PML105.45 was cut overnight with ClaI and 

integrated at leu2-3,112 by transformation. 

Growth conditions and DSB induction  

Cells from a single colony were grown overnight in 5 ml of YEPD, washed three times with YEP 

+ 3% lactic acid (YEP-Lac) and then grown in 350 ml of YEP-Lac until log phase growth with a 

cell concentration between 5×106 cells/ml and 8×106 cells/ml. a-factor (United Biochemical) was 

added to the culture to a concentration of ~5 µM and maintained in the cell culture for at least for 

two doubling times before cell collection. G1 arrest was confirmed microscopically. After G1 

arrest, 20% galactose was added to the YEP-Lac culture to a final concentration of 2% to 

induce GAL::HO expression, resulting in cutting at the MATa locus. 

Chromatin immunoprecipitation 
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45 ml of culture were fixed and crosslinked with 1% formaldehyde for 10 min, after which 2.5 ml 

of 2.5 M glycine was added for 5 min to quench the reaction. Cells were pelleted and washed 3 

times with 4°C TBS. Yeast cell walls were disrupted by beating the cells with 425-600 µm glass 

beads for 1 h in lysis buffer at 4°C. The lysate was sonicated for 2 min to obtain chromatin 

fragments of ~500 bp in length. Debris was then pelleted and discarded, and equal volume of lysate 

was immunoprecipitated using γ-H2AX antibody (abcam ab15083) for 1 h at 4°C, followed by 

addition of Protein-A agarose beads (Sigma-Aldrich #1719408001) for 1 h at 4°C. The 

immunoprecipitate was then washed twice in 140 mM NaCl lysis buffer, once with 0.5 M NaCl 

lysis buffer, once with 0.25 M LiCl wash buffer and once with TE. Crosslinking was reversed at 

65°C overnight followed by proteinase-K and glycogen addition for 2 h. Protein and nucleic acids 

were separated by phenol extraction. LiCl was added to a final concentration of 400 mM LiCl. 

DNA was precipitated using 99.5% EtOH. A second precipitation step was carried out using 75% 

EtOH and the DNA resuspended in TE.  

Model Derivations  
All models are derived below and plotted in Figures S5-S16. 

 

DSB Formation 

All models begin with the formation of the DSB. We experimentally measure the cumulative 

probability distribution of the DSB formation time (Figure S1), and in all models we use this 

distribution by approximating it as a 12 minute lag time followed by the formation of the DSB at 

a rate of . 

 

Directed Sliding Model Derivation 

Derivation Assuming a Kinase is at the Break Site at Time 0 

We first derive a very simple model (in the next section we go on to a more detailed model, which 

is the one we compare to the experimental data). We model the chromosome as a 1D lattice of 

H2As: the H2As are at positions 1, 2, 3… and the break site is at position 0. The kinase is at 

position 0 at time 0 and then stochastically steps from one position to the next at a rate kslide. At 

time t, the probability that the kinase is at position i is  . This is simply the 

Poisson distribution. 

0.08 minuteDSBk =

!(( )) /slidek ti
slidek et i-
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Next we include the process of the kinase falling off the chromosome at a rate koff, regardless of 

where on the chromosome the kinase is located. is the probability that the kinase is still on 

the chromosome at time t. , the joint probability that the kinase is still on the 

chromosome AND is at the i-th H2A at time t, is therefore given by the product of the Poisson 

distribution and :   

   (1) 

 

, the probability that the H2A at position i has been phosphorylated by time t, is given 

by 

    (2) 

This formula follows from the assumption that the kinase phosphorylates every H2A that it comes 

to. Hence, if at time t the kinase is currently on an H2A at any position j > i, then we know that the 

kinase has already been to the i-th H2A and has already phosphorylated it. The first term in 

equation (2) is the probability that at time t the kinase is currently at any location beyond position 

i. (The summation goes to infinity for mathematical simplicity. Because  is small at 

large j, there would be little change if we used a summation limit equal to the actual number of 

H2As in the chromosome). Similarly, if the kinase has fallen off the chromosome from any 

position j > i at any time before t, then we know that the i-th H2A has already been phosphorylated. 

The second term in equation (2) is the probability that the kinase has fallen off the chromosome 

from anywhere beyond position i at any time before time t.  

 

Next we simplify the summation term in equation (2): 

 

=  

offk te-

( , )kinaseP i t

offk te-

( )( , )
!

slide
offs

t
l ti

e

k
de

kinas

i
kk tP e ei t

i

-
-=

( , )phosP i t

0
1 1

( , ) ( , ) ( , )
t

phos kinase off kinase
j i j i

P i t P j t k P j z dz
¥ ¥

= + = +

= +å åò

( , )kinaseP j t

1
( , )kinase

j i
P j t

¥

= +
å

1

)
!

( slide
off

k t
slide

j

j
k

i

t ee
j

k t¥

= +

-
- æ ö

ç ÷
è ø

å



Li, Bronk, Kondev and Haber 6 
 

=  

 =   (3) 

where is the complete gamma function, and  is the lower incomplete gamma function. 

Plugging expression (3) into equation (2), we obtain 

                         (4) 

 

After evaluating the integral and simplifying, we obtain 

  (5) 

where  and . 

 

Derivation that Incorporates the Variability in the Timing of DSB Formation and Arrival of 

the Kinase to the Break Site 

 

Until this point, we have said that at t = 0 the kinase is at the break site and begins sliding along 

the chromosome. However, in different cells in the yeast population, the kinase starts sliding at 

different times (this will be detailed below). For an individual yeast cell, let τ be the time when the 

kinase begins the sliding process – i.e. the kinase does exactly what we described and derived so 

far, but beginning at time τ rather than time 0. Thus, we write , which is the probability 

that the H2A at position i has been phosphorylated by time t, given that the kinase began the sliding 

process at time τ: 

 (6) 
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The sliding start time is stochastic and is described by the probability density function PDF(τ), 

which is derived in the following manner: The chromosome begins intact, which we call state I. 

The DSB forms at a rate kDSB: the chromosome is said to be in state II when there is a DSB but the 

kinase is not yet sliding. We make the assumption that once a yeast cell has a DSB, there is a single 

rate-limiting step described by the rate kinit that determines how soon the kinase initiates the sliding 

process (i.e. how soon the kinase arrives to the break site and then leaves the break site to slide 

along the chromosome). As soon as the kinase begins the sliding process, the chromosome is said 

to be in state III. Thus, kDSB is the transition rate from state I to state II, and kinit is the transition 

rate from state II to III; this is captured by the coupled differential equations and initial conditions 

(7). (To simplify the derivation of the sliding model, in each yeast cell we say that only one copy 

of the kinase arrives at the break site; additional copies would have little effect on the predicted γ-

H2AX profile because this derivation assumes that the kinase phosphorylates every H2A that it 

comes to).  Let the functions I(t), II(t), and III(t) represent the probabilities of being in states I, II, 

and III, respectively. We have 

   (7) 

PDF(τ) is the probability per unit time that a cell will enter the state in which the kinase is sliding 

(i.e. state III). Therefore, . Solving equations (7) we obtain 

   (8) 

 

We calculate , the probability that the H2A at position i has been phosphorylated by 

time t, where the time when the kinase begins the sliding process is distributed according to 

equation (8).  is given by the integral of the product of equations (5) and (8): 

   (9) 

( ) ( ) (0) 1

( ) ( ) ( ) (0) 0

( ) ( ) (0) 0

DSB

DSB init

init

d I t k I t I
dt
d II t k I t k II t II
dt

d III t k II t III
dt

= - =

= - =

= =

)( d IIIPDF
dt

t =

( )( ) DSB initk kinit DSB

init DSB

k kPDF e e
k k

t tt - -= -
-

( , )phosP i t

( , )phosP i t

0
( , ) ( , | ) ( )

t
phos phosP i t P i t PDF dt t t= ò



Li, Bronk, Kondev and Haber 8 
 

Evaluating this integral gives 

 

 (10)  

 

Looping Model Derivation 

 

We model the chromosome as an unconfined worm-like chain at thermodynamic equilibrium. 

Similar polymer models have also accurately predicted contact frequencies as well as the 3D 

positioning of genes in the yeast nucleus (24, 37, 57). It is not necessary to include confinement 

by the nuclear envelope because we are only interested in the loci where phosphorylation occurs, 

which are 50 kb or less from the DSB. At thermodynamic equilibrium, there is a roughly 0.4 μm 

RMSD between two loci separated by 50 kb of chromatin (we estimated this based on the 

persistence length and compaction of the chromosome from Arbona et al. (3) and used the formula 

for  in the Supplementary Information, 3D Diffusion Model Derivation). The nucleus has a 

diameter of 2 μm, which is much larger than the 0.4 μm RMSD, so loci at 50 kb from the DSB are 

not confined by the nuclear envelope to stay in closer proximity to the DSB.  
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obtained by inspecting the mean squared displacement (MSD) vs. time plot in Hajjoul et al. (5). 

Counterintuitively,  is equivalent to the time it takes for the two loci to come in contact. This is 

because chromatin undergoes subdiffusion, and any object moving subdiffusively thoroughly 

explores its space (6) – i.e. in the time , the locus thoroughly explores a sphere of radius . 

Therefore, loci within a distance  of each other will come in contact during the time . 

 

Now we introduce the formula for the worm-like chain looping probability. Let l be the Kuhn 

length of the worm-like chain and x be the contour length between two particular locations on the 

chain. is therefore the number of Kuhn lengths between the two locations.  is the 

fraction of chain conformations that have these two locations in physical contact. To be considered 

in physical contact, we say that the 3D distance between the two locations must be less than g, 

where g is a small fraction of a Kuhn length (g is unitless because it is a fraction). is given by 

  (11) 
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kinase must also be in the necessary orientation. Let  be the fraction of orientations that can result 

in phosphorylation, given that the H2A and kinase are in contact. Let kcat be the rate at which the 

kinase phosphorylates the H2A, given that the kinase is in contact with the H2A and is in the 

necessary orientation. Therefore, the rate of phosphorylation of the H2A is  

   (12) 

where the “LM” subscript stands for the looping model.  Substitute equation (11) into equation 

(12), and replace n with , and we obtain 

   (13) 

where . Note that for x and l we use units of kilobase pairs because in our 

experiments we know the number of kilobase pairs between the DSB and our measured loci.  

We construct the model to be consistent with ChIP measurements of Tel1 and Mec1 at the break 

site, which show their levels increase linearly with time (6, 7). These measurements could indicate 

two different dynamics. First, they could imply that there is an increasing number of kinases at the 

break site, and higher numbers of kinases could result in proportionally higher rates of H2A 

phosphorylation (this model was not considered in the main text). The phosphorylation rate is 

therefore the product of  and the number of kinase copies on the DSB. We will refer 

to this as the “linearly increasing phosphorylation rate.”  
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the row to have their active sites accessible to H2As).  Thus, in each cell, once a kinase has arrived 

to the DSB, there is simply a constant rate of H2A phosphorylation given by  (this 
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dynamics; intermediate dynamics could occur – i.e. phosphorylation rates that increase in a sub-

linear manner. We only examine the two extremes because they yield the greatest difference in 

predicted γ-H2AX profiles. We will begin with a derivation that involves the constant 

phosphorylation rate. 

 

Looping Model with a Constant Phosphorylation Rate    

This is the model discussed in the main text.  

When a kinase is present on the break site, it phosphorylates H2As at a rate , so we 

have 

    (14) 

where  is the probability that the H2A at x kilobase pairs from the break site has been 

phosphorylated by time t, given that the kinase arrived to the break site at time τ. (The bottom 

equation of equations (14) states that no phosphorylation takes place until the kinase arrives to the 

break site). Solving equations (14) gives 

   (15) 
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the same derivation that is in the directed sliding model’s section entitled “Derivation that 
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where is given by equation (15) and  is given by equation (8). Note that 

when using equation (8) for the looping model, kinit indicates the rate at which the kinase arrives 

to the break site (note that this differs from the definition of kinit used in the sliding model because 

in the sliding model kinit involves kinase arrival to the break site AND the process of leaving the 

break site to begin sliding). Upon carrying out the integration in equation (16), we obtain   

  

 (17) 

 

Looping Model with a Linearly Increasing Phosphorylation Rate 

This model is not included in the main text because the Bayes factor calculations demonstrate that 
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      (18) 
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     (19) 

 

Next we take into account that  varies across yeast cells in the population. Because the DSB 

forms at a constant rate , there is an exponential distribution of waiting times for DSB 

formation, given by the following probability density function for :   

     (20) 

, the probability that the H2A at x kilobase pairs from the break site has been 

phosphorylated by time t, is given by 

     (21) 

We plug equations (19) and (20) into equation (21) and evaluate the integral numerically.  
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main text, while the latter mechanism is not since our Bayes factor calculation demonstrates that 

the former is more likely to be correct. We will now describe how these mechanisms give rise to 

linearly increasing kinase levels at the break site and will discuss how these mechanisms are 

implemented in our simulations.  

 

We begin by describing the mechanism with a constant rate of diffusion initiation. Let karriveDSB be 

the rate at which a kinase arrives to the break site and kleaveDSB be the rate at which a kinase leaves 

the break site to start diffusing along the chromosome. In the mechanism with a constant rate of 

diffusion initiation, only one kinase copy can leave the break site at a time. (This could happen if 

the copies of the kinase line up in a row close to the break site, such that the one copy furthest 

from the DSB is physically blocking the other copies from being able to slide away from the break 

site). In this scenario, if , then copies of the kinase will build up at the break 

site linearly with time: we will have , where is the time 

when the DSB forms, and is the average number of kinases on the break site minutes 

after the formation of the DSB.  

 

We perform this simulation by having a single rate-limiting step described by the rate kinit, where 

kinit is the rate at which a kinase copy arrives to the break site and then departs the break site to 

diffuse along the chromosome. (Note that it is only necessary to use this single rate rather than the 

two rates and : using the single rate becomes equivalent to using two rates if 

is fast. If is slow, then the situation becomes equivalent to the mechanism in 

which the rate of diffusion initiation increases linearly with time, which is discussed in the next 

paragraph.) Throughout the entire duration of the simulation, kinase copies continue to start at rate 

. Therefore, in our simulations there can be many kinase copies diffusing concurrently on the 

chromosome.  

 

In the mechanism in which the rate of diffusion initiation increases linearly with time, the kinases 

do not block each other, but rather all kinases on the break site are capable of sliding away from 

the break site. In this case, the number of kinases that leave the break site per unit time is 

. If , then copies of the kinase will build up at the break 
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site linearly with time: we will have . The number of kinases that leave 

the break site per unit time will therefore be . In other words, unlike in 

the first mechanism where there is a constant rate of kinase copies starting to diffuse along the 

chromosome, in this mechanism the rate of kinase copies starting to diffuse grows linearly with 

time. We implement this mechanism’s simulation by having each kinase copy arrive to the break 

site at a rate  and leave the break site at a rate . Note, however, that these rates 

are not separate parameters because the dynamics are governed by the product , 

so when we vary parameter sets, we only vary , and we simply set 

 (we chose this value since it is slow enough for there to be linear 

growth in the number of kinases at the break site over several hours). When we report parameter 

values, we report , where . Kinase copies begin diffusing throughout the 

entire duration of the simulation, so there can be many kinase copies diffusing concurrently on the 

chromosome. For simplicity, in all 1D diffusion simulations we assume the kinases do not interact 

with each other (i.e. no traffic jams); to avoid the regime where traffic jams would become likely, 

we limit how large and can be in order to limit the total number of kinases along the 

chromosome. 

 

3D Diffusion Model Derivation 

 

We treat the kinase as a randomly diffusing particle and each H2A histone as a spherical target of 

radius . Given infinite time, a particle diffusing without constraints can either hit the target or 

diffuse infinitely far away without ever hitting the target – the probability that the particle hits the 

target is  (11), where  is the 3D distance between the target and particle at the 

beginning of the particle’s trajectory (Figure S18). The infinite time assumption approximates our 

situation because the hour time scale of phosphorylation is much longer than the seconds time 

scale presumably required for proteins to diffuse across the nucleus (see ref. (12) for diffusion in 

the nucleus of human cells). The assumption of no constraints can be applied to our system despite 

the presence of the nuclear envelope. Confinement by the nuclear membrane keeps the kinases in 

the nucleus, so the kinases will traverse the nucleus many times, presumably continuing to 
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phosphorylate H2As, which results in a background γ-H2AX signal that is approximately the same 

for all H2As.  It is a reasonable assumption that the kinase’s catalytic rate is slow enough that over 

the time scale of the experiment, the kinases would only have time to phosphorylate a small 

fraction of the H2As throughout the nucleus. The background signal would therefore be minimal 

and can be ignored, allowing us to simply have . (Alternatively, it is also possible 

that the background signal is not negligible, but having a significant background signal would 

make the 3D diffusion model not match the experimental γ-H2AX profiles, so we do not consider 

this scenario). In summary, the H2As near the break site are likely to be contacted by the kinases 

as the kinases diffuse outward from the break site, so H2As near the break are likely to be 

phosphorylated; H2As far from the break only have a very small probability of phosphorylation 

because only a small fraction of all the H2As in the nucleus will be phosphorylated as a result of 

the slow catalytic rate.  

 

The kinase starts its trajectory at the break site, and the target is an H2A located  kb from the 

DSB. The distance  is taken to be the root mean squared distance from the H2A to the DSB, 

given by a worm-like chain treatment of the chromatin at thermodynamic equilibrium: 

, where  is the chromatin’s Kuhn length, and  is the chromatin 

compaction, the number of kilobases of DNA per nanometer of chromatin fiber (13). Therefore, 

. According to , H2As further from the DSB are less 

likely to be contacted by the kinase.  

 

We assume many copies of the kinase come on and off the DSB, where the rate of leaving the 
DSB is . Therefore, an H2A located  kb from the DSB is hit by kinases at a rate 

. If  is the fraction of contacts that results in phosphorylation, the rate at 

which the H2A is phosphorylated is  (the subscript 

“3DDM” stands for the 3D diffusion model). Plugging in the expression for , we have  

                                    (22) 
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 where .  

There are two versions of the 3D diffusion model: one with a constant rate of diffusion initiation 

(which is the model discussed in the main text), and a version with a linearly increasing rate of 

diffusion initiation. The rationale for trying these two model variants is the same as that described 

in the 1D Diffusion Model Simulation section above. The Bayes factor analysis determined that 

the 3D diffusion model with the constant rate is more likely to be correct than the 3D diffusion 

model with the linearly increasing rate.  

 

The 3D diffusion model with a constant rate of diffusion initiation involves kinases leaving the 

break site at a constant rate and therefore phosphorylating H2As at a constant rate. This model is 

derived in exactly the same way as the looping model with a constant phosphorylation rate  

(equation (17) ), except the phosphorylation rate  is replaced by , so 

we obtain  

   (23) 

 

The 3D diffusion model with a linearly increasing rate of diffusion initiation involves kinases 

leaving the break site at an increasing rate. This model is derived in exactly the same way as the 

looping model with a linearly increasing phosphorylation rate (equations (19)-(21)), except the 

phosphorylation rate  is replaced by , so we have the following 

equations: 

2
leaveDSB

a k
l
u hw =

, ( )phos LMk x , 3 ( )phos DDMk x

( )( )

( )( )

( )( )
, 3

, 3

, 3

, 3

, 3

( )

, 3 , 3

( )
( , ) 1

( )

( )
( )

( ) ( )

init

DSB

phos DDM

k t
DSB phos DDM

phos
DSB init init phos DDM

k t
init phos DDM

init DSB DSB phos DDM

k x t
DSB init

phos DDM DSB init phos DDM

k k x e
P x t

k k k k x

k k x e
k k k k x

k k e
k x k k k x

-

-

-

= +
- -

+
- -

+
- -

, ( )phos LMk x , 3 ( )phos DDMk x



Li, Bronk, Kondev and Haber 18 
 

        (24) 

where the integral is evaluated numerically.  and  always appear multiplied together. 

From equation (22), we see that , so we define the 

parameter . Therefore, this version of the 3D diffusion model has only two parameters: 

, and . 

 

Accounting for γ-H2AX Measurements near the Recombination Enhancer 

When predicting γ-H2AX levels near the Recombination Enhancer (RE), we take into account the 

protein-mediated binding of RE to the break site at the MAT locus (14, 15). With RE bound to the 

DSB, RE-adjacent loci (that are 5 or 10 kb from RE) are now in close spatial proximity to the 

DSB, so the 3D models predict that the kinases can reach the RE-adjacent sites. 1D models predict 

that the kinases cannot reach RE-adjacent sites because RE is located 171 kb away from MAT. 

For 3D models, we include two additional parameters in order to take into account the binding of 

RE to MAT. Initially there is a period when RE is not bound to the DSB at all, but with rate  

( may represent the rate at which proteins at MAT undergo phosphorylation at their threonine 

residues that are necessary to mediate the RE-MAT interaction) the cell transitions to the state in 

which RE and the DSB are bound some fraction of the time (denoted by ), at which point the 

kinase can phosphorylate RE-adjacent sites. The rate of phosphorylation for an H2A that is x kb 

from RE is assumed to equal the phosphorylation rate for an H2A that is x kb from the DSB 

multiplied by . In other words, for the RE-adjacent sites,  in the 3D diffusion 

model and  in the looping model are multiplied by because the kinase only comes 

in contact with the RE-adjacent sites during the fraction of the time when RE and MAT are bound. 
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Some Models Require Kinase Activation at the DSB   

The 3D diffusion, 1D diffusion and directed sliding models require that the kinase becomes 

activated upon arrival to the break site. Without this activation, these models would not predict 

preferential phosphorylation of H2As close to the break site; the kinase becomes activated at the 

DSB and is more likely to encounter closer H2As than farther H2As. To further argue this point, 

consider a model in which the kinase is activated without having to encounter the DSB. At the 

moment when the DSB is formed, the kinase is at some arbitrary location in the nucleus, so it is 

equally likely to diffuse to any genetic locus and then start phosphorylating H2As from that locus 

(this applies for directed sliding, 1D diffusion and 3D diffusion). Simply assuming strong binding 

between the kinase and the break site would not result in increased phosphorylation near the DSB. 

Strong binding to the DSB would merely hold the kinase in place for a while – i.e. kinases that 

happen to come in contact with the DSB would end up wasting their time sitting on the DSB, so 

they would have less time to phosphorylate H2As. As previously noted, a precedent for kinase 

activation was found by an in vivo study of ATM, the mammalian homolog of Tel1: upon binding 

to the MRN complex at the break site, ATM undergoes autophosphorylation and thus becomes 

active (16). 

 

Note that the 1D diffusion and directed sliding models are mathematically equivalent to models in 

which many copies of the kinase bind along the chromatin, each binding to the next adjacent H2A. 

In this case, kinase activation could take place but is not required in the model. This is because the 

strong binding of the kinase to the break site could serve to nucleate the formation of the row of 

kinases. The directed sliding model is also equivalent to a model in which the kinase remains 

bound to the break site while the nearby chromatin slides past it – e.g. this would happen if the 

cohesin complex binds to the DSB and extrudes chromatin through the cohesin ring, causing the 

DSB-bound kinase to slide past the nearby chromatin; such a model does not require kinase 

activation at the break site (recent work in mammalian cells suggests that such an extrusion 

mechanism may be responsible for the formation of a γ-H2AX region around a DSB (17)). 

 

Also note that the looping model does not require activation at the DSB: H2As are preferentially 

phosphorylated in the vicinity of the DSB because the kinase binds the DSB and the looping of 

the chromosome brings the kinase into contact with nearby H2As.  
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A quantitative model of ChIP  

In order to quantitatively compare our phosphorylation propagation models to ChIP data, we must 

have a quantitative understanding of ChIP. It is not sufficient to merely have the qualitative 

understanding that a higher ChIP signal indicates the presence of more γ-H2AXs. Our 

phosphorylation propagation models predict the probability  that an H2A has been 

phosphorylated, where x is the number of kilobase pairs separating the H2A from the break site, 

and t is the elapsed time since the addition of galactose (galactose induces production of HO-

endonuclease, the enzyme that forms the DSB). Measuring the ChIP signal does not directly give 

us the probability of phosphorylation. Rather, the ChIP signal is some function of this probability: 

the function  will represent the ChIP signal. Below, we make a model of the ChIP 

process in order to derive the functional form of . Having obtained the functional form of S, we 

can use it in conjunction with the  predicted by each phosphorylation propagation 

mechanism: We plug in the predicted  as the argument of S to yield the predicted γ-

H2AX ChIP profile  for each mechanism of phosphorylation propagation. We can 

then compare each mechanism’s predicted γ-H2AX ChIP profile to the experimentally-measured 

ChIP profile. 

The experimental ChIP signal that we report is . γ-H2AX signal is the 

qPCR signal for the DNA that has γ-H2AX bound to it; control signal is the qPCR signal from all 

DNA at the same locus (i.e. all DNA regardless of whether it has γ-H2AX on it). The 280 is present 

because the sample for the control was diluted by a factor of 280 relative to the sample for the γ-

H2AX signal. We quantitatively model S by taking into account that only some of the DNA with 

γ-H2AX on it is pulled down by antibodies during ChIP: let  be the probability 

of pulling down DNA at the measured locus, which depends on the  at that locus (discussed 

further below). We also take into account that aside from the pull-down, other steps (e.g. washing 

steps) in ChIP may reduce the recovery of DNA. Let C be 280 multiplied the probability that the 
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DNA will be recovered in all the other steps, given that it was pulled down by the antibodies. 

Therefore, our model for the ChIP signal is . 

Let us now quantitatively model . In the ChIP protocol, sonication results in DNA 

fragments roughly 500 bp in length, containing multiple H2As. The DNA fragment comes to the 

surface or interior of a porous agarose bead, where the DNA fragment’s γ-H2AXs can bind to 

antibodies that are attached to the bead. We make two assumptions: (1) The binding of a single 

antibody to a single γ-H2AX results in the DNA fragment being pulled down. (Even if there are 

multiple γ-H2AXs on a DNA fragment, only one γ-H2AX needs to be bound by an antibody for 

the DNA fragment to be pulled down). Let the parameter f be the probability that a particular γ-

H2AX is bound by an antibody. (2) The second assumption is that the antibodies bind 

independently of each other – i.e. an antibody binding to one γ-H2AX has no effect on whether an 

antibody binds to another γ-H2AX on the same DNA fragment.  

These two assumptions are captured mathematically in the following manner: Let  be the 

average number of phosphorylatable H2A’s on a DNA fragment – e.g.   in cells with 

all wild-type H2As, and we use  in cells with only 1/2 wild-type H2As.  is 

the average number of γ-H2AXs on a DNA fragment. The probability that the DNA fragment is 

pulled down is because this is the probability that at least one γ-

H2AX is successfully bound by an antibody (i.e. it is 1 minus the probability that none of the γ-

H2AXs are bound by antibodies). This expression is not valid for  (i.e. if the 

average number of γ-H2AXs on a DNA fragment is less than 1). If , then we use 

the expression because is the probability of one γ-H2AX 

being present on the DNA fragment, and f is the probability that the DNA fragment is pulled down 

given that there is one γ-H2AX on the fragment. Therefore, our quantitative model of the ChIP 

signal is the following: 
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        (25) 

where NH2A, f and C are parameters of the quantitative ChIP model, and includes both the 

predicted DSB-dependent phosphorylation and the basal phosphorylation that occurs prior to DSB 

formation (see the next section on basal γ-H2AX levels). Equations (25) are applicable to all 

models besides the directed sliding model, which is discussed below in A quantitative model of 

ChIP for the directed sliding model. 

As an example of the predictions from this model of ChIP, suppose it were the case that all the 

phosphorylatable H2As at a locus were phosphorylated – i.e. . We use f = 0.16 and 

NH2A = 6 for the wild type and NH2A = 3 for the mutant strain, which are the best parameter values 

extracted from Bayesian parameter estimation (as shown in Table 3). Then although the mutant 

strain has only 1/2 as many γ-H2AXs as the wild type, the mutant strain will have a ChIP signal 

that is 0.63 times the signal of the wild-type strain.  

In the looping and 3D diffusion models, phosphorylation of one H2A is independent of 

phosphorylation of another H2A, even in the case of H2As on the same DNA fragment. For the 

looping model, this is because phosphorylation occurs according to the thermodynamic 

equilibrium looping probabilities, so the phosphorylation of one H2A has no influence on whether 

a nearby H2A is phosphorylated. For the 3D diffusion model, a single copy of a kinase is unlikely 

to contact more than one H2A on a given DNA fragment since the probability of the kinase 

contacting an H2A is at most 0.1 (this is estimated by plugging in reasonable values for the 

coefficients in the formula for  in the Supplementary Information, 3D Diffusion Model 

Derivation); therefore, the phosphorylation of H2As is effectively uncorrelated. The independence 

of H2A phosphorylation means that the number of γ-H2AXs on a DNA fragment is binomially 

distributed with a peak at . In the looping and 3D diffusion models, for simplicity we 

ignore the spread of the binomial distribution and just use as the number of γ-H2AXs 

on a DNA fragment. This simplifying assumption is what we included in equations (25).  

In the 1D diffusion model, however, phosphorylation of one H2A is not independent of another 
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H2A on the same DNA fragment, and so it is possible that there would be a wide range in the 

number of γ-H2AXs on a DNA fragment, and so using just the mean number may not be accurate. 

Therefore, in every run of the 1D diffusion simulation, we record the number of γ-H2AXs on each 

DNA fragment. We apply the ChIP model to every DNA fragment and then take the average over 

the fragments from all runs in order to get the net ChIP signal.  

Basal γ-H2AX levels are incorporated into the predicted ChIP signals 

Experimentally we measure a basal level of γ-H2AX on the chromosome that exists at time 0 

(which is before the DSB forms) – this is the ChIP signal measured at time 0 in Figures 1, 2, 4, 5, 

6 and S3. We use the mean values of the basal γ-H2AX profile to serve as the initial ChIP signal 

in every model of γ-H2AX spreading (rather than starting from a ChIP signal of 0). Because basal 

phosphorylation and DSB-dependent phosphorylation are presumably independent of each other, 

the probability of phosphorylation as a result of either basal or DSB-dependent phosphorylation is 

     (26) 

where  is the DSB-dependent phosphorylation derived for the model of γ-H2AX 

spreading. To obtain , we note that the basal ChIP signals are small, so  must 

be small. Therefore, we can use the bottom equation (25), and rearrange to get 

, where  is the experimentally measured basal ChIP 

signal. To obtain the predicted ChIP signals,  is what we actually use in equations 

(25) in place of .  

 

A quantitative model of ChIP for the directed sliding model 

For the directed sliding model, we modify equations (25). In the directed sliding model we assume 

that whenever a kinase slides to a locus, it phosphorylates all H2As there. However, the kinase 

does not make it all the way to every locus. In the directed sliding model,  is equivalent 

to the probability that the kinase arrives to location x. If the kinase does not arrive to the location 
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x, then the ChIP signal is the basal ChIP signal , but if the kinase does arrive to the 

location, then the ChIP signal is . Therefore, the ChIP signal for the directed 

sliding model is given by  

    (27) 

 

Bayes factor calculation 
The Bayes factor is given by the ratio of marginal likelihoods for two models, Models A and B: 

        (28) 

where  is the likelihood of the experimental data  given Model A and the 

model parameters , and  is the prior probability of (likewise for Model B). These 

are discussed below. In the tables displaying the Bayes factors (Table 1, 2 and S1), Model B is 

always the model with the highest marginal likelihood compared to the other models in the table.  

We use previous studies to estimate the range of possible parameter values – the integral in 

equation (28) is over this range. The previous studies measured the chromatin Kuhn length (95% 

CI is 8.4-15 kb) and linear density of chromatin DNA (95% CI is 56-68 bp/nm) (3)(48–50), and 

density of the nucleosomes along the chromatin (about 170 bp/nucleosome) (18) and provided data 

on the kinetics of in vivo H2A phosphorylation that allow us to constrain kinetic parameter ranges 

(19). Ref. (14) was used to constrain RE parameters. In some cases, there is some arbitrariness in 

the choice of the range, but choosing a different range (that is still reasonable given the previous 

studies) only changes the Bayes factors by an order of magnitude. The ChIP parameter ranges are 

as follows: f is allowed to vary between 0 and 1, N is allowed to be 2, 4 or 6 H2As, and C is allowed 

to vary between 8.3 and 280, which is based on our measurements of DNA recovery from ChIP 

compared to samples in which PCR was performed without ChIP.  

The functional form of the prior probability distribution  for each parameter  is as follows: 

For the parameters whose values we know within an order of magnitude (i.e. the Kuhn length  
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and ChIP parameter ), we use the uniform prior  For parameters that are 

less certain, we use Jeffreys priors. However, it is difficult to obtain exact Jeffreys priors given the 

complexity of our models’ functional forms, so we use Jeffreys priors from similar but simpler 

scenarios. For parameters that represent the probability of a binary event (i.e. the ChIP parameter 

, the directed sliding model’s parameter , and the RE-MAT binding fraction ), 

. All other parameters are assigned prior distributions of , which 

is the Jeffreys prior for the rate parameter of an exponential distribution (17). All prior distributions 

are normalized and constrained to be within the estimated range of possible values (i.e. 

if  is outside the range of possible values). For simplicity, we assume that  for the parameter 

set  is the product of the priors  for the individual parameters . 

Because our priors are not precisely Jeffreys priors, let us estimate the extent to which this lack of 

precision could affect the Bayes factor. To do so, one can calculate the Bayes factor using a 

different prior. For example, consider using a uniform prior for all model parameters for both the 

directed sliding model and the 1D diffusion model. For most of the parameters, a uniform prior is 

quite different from the Jeffreys prior; the uniform prior will serve as an extreme example, so the 

Bayes factor will presumably be changed by more than it would be if we were able to use the exact 

Jeffreys prior. As shown in Table 2 of the main text, the Bayes factor is 10-6 when Mec1 is 

undergoing 3D diffusion and Tel1 is undergoing 1D diffusion (this Bayes factor is in comparison 

to Mec1 3D diffusion with Tel1 directed sliding). Using all uniform priors, this Bayes factor 

becomes 10-7. Therefore, using a prior with a very different functional form can change the Bayes 

factor by an order of magnitude but does not change our conclusions. 

Finally, we discuss the likelihood function. Consider a particular theory, e.g. Model A. For a 

particular parameter set and for the ith measurement condition (each measurement condition is 

composed of the yeast strain, the time point and the location on the chromosome), Model A 

predicts a single g-H2AX ChIP signal . However, because there is measurement error in the 

experiments, our theory should predict that the experimental data will have some spread about the 
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mean predicted ChIP signal. Therefore, we incorporate an error model into the theory, which we 

assume to be Gaussian error – i.e. model A predicts that the mean ChIP signal is and predicts a 

Gaussian spread about the mean with standard deviation . Hence the likelihood function is  

           (29) 

The experimentally measured ChIP signal has the subscript i for the measurement condition 

and the subscript j because there are multiple data collected for the same measurement condition.  

Analysis of all of our ChIP data revealed that for each measurement condition, the standard 

deviation of the ChIP data is approximately equal to the mean ChIP signal multiplied by 0.35. 

Therefore, our error model can use . Including this into equation (29) yields   

        (30) 

Finally, the integral in equation (28) is carried out by evaluating the integrand at points on a grid 

in parameter space and then using a Riemann sum.  

As previously discussed, most theories have two variants: (1) a model in which there is an 

increasing phosphorylation rate or increasing rate of diffusion initiation, and (2) a model in which 

there is a constant phosphorylation rate or constant rate of diffusion initiation. For each theory, we 

use the best variant when reporting the Bayes factors. (We found that the constant phosphorylation 

rate/constant diffusion initiation rate models always fit the data better than the models with the 

increasing rates). 

When calculating the Bayes factor for Tel1 and Mec1 models simultaneously, we exclude the Tel1 

3D models because they were proven to be very unlikely from the Bayes factor analysis of Tel1 

individually. This exclusion is justified because the analysis in Table 1 indicates that the 1D models 

are extremely favored for Tel1, and by inspecting the best ChIP parameter values for the various 

Tel1 models, we see that the 1D models would still be the best models for Tel1 even when 

constrained to have the same ChIP parameter values as Mec1.  
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Supplemental Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Kinetics of DSB induction 

The amount of cleavage at the MAT locus by HO endonuclease after galactose induction was 
monitored in strains deleted for YKU80  and carrying either Mec1 (blue) or Tel1 (red). qPCR was 
performed with primers flanking the cut site to quantify the levels of cleavage over 35 mins. In the 
presence of a DSB, qPCR fails to amplify the DNA. Approximately, 80% cutting was achieved by 
30 mins. The black line is an exponential fit to both strains, using a lag time of 12 minutes 
(reflecting transcription and translation of the HO endonuclease) and a DNA cleavage rate of kDSB 
= 0.08/minute. The lag time and kDSB are used in calculating our models of g-H2AX spreading. 
Error bars represent the standard error of the mean from n≥3 measurements.  
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Figure S2: Mean modification distance and total g-H2AX accumulation 

A) The mean modification distance (MMD), the distance from the break that encompasses half the 
g-H2AX profile, is displayed for all strains at 75 min except for Mec1, Ddc2 O/E which was 
measured at 60 min. Error bars represent the standard error of the mean. B) Total γ-H2AX levels 
were calculated by summing up γ-H2AX levels across all measured distances at 75 min. Error bars 
represent the standard error of the mean.  
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Figure S3: γ-H2AX measurements around RE 

γ-H2AX levels measured around the recombination enhancer (RE), a locus on ChrIII known to 
interact with the MAT locus by forming a chromatin loop. A) γ-H2AX formation around RE by 
Mec1. Error bars represent standard error of the mean from n≥3 measurements. B) γ-H2AX 
formation around RE by Tel1. Error bars represent standard error of the mean from n≥3 
measurements. C) Comparison of theoretical predictions from 3D diffusion (blue) with 
experimentally measured γ-H2AX profile around RE by Mec1. The experimental data at 0 min 
and 75 mins are shown in grey and black, respectively.  Experimental error bars are the standard 
error of the mean from n≥3 measurements. Theoretical predictions from 3D diffusion were 
generated using the parameters listed in Table 3 with the exception of kinit = 0.025/minute, to 
account for an initial delay is RE binding and RE-DSB interaction which occurs 19% of the time 
(2). The data point at RE was excluded from the plot since theoretical model does not make 
predictions at this point. The experimentally measured background was also used as the 
background for the theoretical curves.  
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Figure S4: Chromatin fragment recovery 

Sonication during ChIP yields chromatin of ~500bp. The parameter NH2A describes the average 
number of H2As (grey) present on the DNA fragment. In this depiction, NH2A=6.  γ-H2AX 
(yellow) is bound by antibodies (red) with probability f. Antibody binding to one γ-H2AX is 
independent of the other H2A sites on the same chromatin fragment. The binding of one antibody 
is sufficient for the pull down of the entire fragment (purple arrow). The recovery of the fragment 
is multiplied by the parameter C to account for the loss of DNA during the wash steps in ChIP.  
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Figure S5: Comparison of experimental data by Mec1 to a looping model with a linearly 
increasing phosphorylation rate. This model fits the data much worse than the best model, which 
is shown in Figure 4. Experimental error bars are the standard error of the mean from n≥3 
measurements. Bayesian parameter estimation was used to simultaneously fit the model to the data 
shown here and to the RE-adjacent measurements from Figure S3. The optimal parameter values 
from Bayesian parameter estimation were used to plot the model, and are as follows: C = 44, f = 
0.035, NH2A = 6, l = 8.4 kb, and ψ = 0.039/minute2. To cut down on computation time, all plots in 
the Supplementary Information were fit separately for the Mec1 data and Tel1 data – i.e. Mec1 
and Tel1 were not assumed to share the same values of any parameters because it is too 
computationally expensive to perform a simultaneous calculation for all  pairs of Mec1 and Tel1 
models. (In Figure 4 and Table 2, however, we impose the constraint that Mec1 and Tel1 have the 
same values of the ChIP parameters C, f and NH2A).  

The exceptionally poor fit of the looping model to the data stems from the constraint that the Kuhn 
length is at least 8.4 kb, as determined by Arbona et al. (3). With a Kuhn length of at least 8.4 kb, 
the worm-like chain model predicts that the looping probability is very small for sites closer than 
8.4 kb from the break end. However, our data shows that most of the phosphorylation occurs at 
these closer sites. Therefore, to accommodate this discrepancy, the best fit is achieved via a high 
catalytic rate for the kinases. (In the looping model, the catalytic rate is part of the parameter φ). 
The high kcat makes the looping model predict that the loci within 8.4 kb from the break will be 
phosphorylated almost at levels seen in our experiments, but also predicts the more distant loci 
will be phosphorylated at even higher levels such that they become saturated and parts of the curve 
becomes flat. Due to the constraints on the Kuhn length, it is not possible to achieve a good fit to 
both the close and distant loci.  
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Figure S6: Comparison of experimental data by Mec1 to a looping model with a constant 
phosphorylation rate. The best model parameters are C = 120, f = 0.035, NH2A = 2, l = 8.4 kb, φ 
= 11/minute, and kinit = 0.017/minute. The catalytic rate in the looping model (which is part of φ) 
is high, causing the H2As to become saturated. The flat profile increases over time as more of the 
cells in the population have kinases arrive to the break site. For further details and a discussion of 
the poor fit of the theory to the data, refer to the caption of Figure S5. 
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Figure S7: Comparison of experimental data by Mec1 to a 3D diffusion model with a linearly 
increasing rate of diffusion initiation. The best model parameters are C = 13, f = 0.16, NH2A = 6, 
l = 15 kb, and ζ = 3.7×10-4/minute2. For further details, refer to the caption of Figure S5. 
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Figure S8: Comparison of experimental data by Mec1 to a 1D diffusion model with a linearly 
increasing rate of diffusion initiation. The best model parameters are C = 11, f = 0.80, NH2A = 6, 
D = 18 kb2/minute, kcat = 0.039/minute, and z = 84/minute2. For further details, refer to the caption 
of Figure S5. 

 

 

 

 

 

 

 



Li, Bronk, Kondev and Haber 35 
 

 

Figure S9: Comparison of experimental data by Mec1 to a 1D diffusion model with a constant 
rate of diffusion initiation. The best model parameters are C = 32, f = 0.28, NH2A = 6, D = 22 
kb2/minute, kcat = 1.9/minute, and kinit = 0.019/minute. For further details, refer to the caption of 
Figure S5. 
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Figure S10: Comparison of experimental by Mec1 to a directed sliding model. The best model 
parameters are C = 73, f = 0.72, NH2A = 2, kslide = 17 kb/minute, koff = 0.74/minute, and kinit = 
0.0020/minute. For further details, refer to the caption of Figure S5. 
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Figure S11: Comparison of experimental data by Tel1 to a looping model with a linearly 
increasing phosphorylation rate. The best model parameters are C = 120, f = 0.035, NH2A = 2, l 
= 8.4 kb, and ψ = 0.14/minute2. For further details, refer to the caption of Figure S5. 
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Figure S12: Comparison of experimental data by Tel1 to a looping model with a constant 
phosphorylation rate. The best model parameters are C = 120, f = 0.035, NH2A = 2, l = 8.4 kb, φ 
= 200/minute, and kinit = 0.017/minute. The catalytic rate in the looping model (which is part of φ) 
is high, causing the H2As to become saturated. The flat profile increases over time as more of the 
cells in the population have kinases arrive to the break site. For further details and a discussion of 
the poor fit of the theory to the data, refer to the caption of Figure S5. 
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Figure S13: Comparison of experimental by Tel1 to a 3D diffusion model with a linearly 
increasing rate of diffusion initiation. The best model parameters are C = 13, f = 0.16, NH2A = 6, 
l = 15 kb, and ζ = 6.2×10-4/minute2. For further details, refer to the caption of Figure S5. 
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Figure S14: Comparison of experimental data by Tel1 to a 3D diffusion model with a 
constant rate of diffusion initiation. The best model parameters are C = 73, f = 0.55, NH2A = 6, l 
= 15 kb, ω = 0.00030/minute, and kinit = 1.0/minute. For further details, refer to the caption of 
Figure S5. 
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Figure S15: Comparison of experimental data by Tel1 to a 1D diffusion model with a linearly 
increasing rate of diffusion initiation. The best model parameters are C = 9.3, f = 0.50, NH2A = 
4, D = 3.9 kb2/minute, kcat = 0.59/minute, and z = 37/minute2. For further details, refer to the 
caption of Figure S5. 

 

 

 

 

 

 

 



Li, Bronk, Kondev and Haber 42 
 

 

Figure S16: Comparison of experimental data by Tel1 to a 1D diffusion model with a 
constant rate of diffusion initiation. The best model parameters are C = 32, f = 0.55, NH2A = 4, 
D = 4.1 kb2/minute, kcat = 0.20/minute, and kinit = 0.098/minute. For further details, refer to the 
caption of Figure S5. 
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Figure S17: Relative looping probabilities for the worm-like chain model, assuming a Kuhn 
length of 8.4 kb. The worm-like chain model at thermodynamic equilibrium predicts the 
probability  that the break site will come into physical contact with a locus x kb from the 

DSB is given by the approximation formula , shown by the black line. 
Shown in green are the results of a simulation of the exact worm-like chain model. The relative 
looping probabilities plotted here are  normalized by . The shape of 

 is inconsistent with the shape of the experimental γ-H2AX profiles, which peak at 2 kb to 6 
kb and then decreases as the distance from the break site increases. Here, we use a Kuhn length of 
l = 8.4 kb, which is the lower bound for the range of possible yeast chromatin Kuhn lengths 
determined by Arbona et al. (3). Note that if we were to use a higher Kuhn length, the predicted 
looping probability would peak at an even larger x and would therefore differ even more from the 
experimental γ-H2AX profile. Also note that  function is an approximation that is inaccurate 

for small contour lengths, so we do not plot for x < 5.5 kb. For more information regarding 

and the worm-like chain simulation, see equation (11) and Supplementary Information, 
Model Derivations, Looping Model Derivation.  
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Figure S18: Schematic of the 3D diffusion model of phosphorylation spreading 

The kinase (orange) responsible for phosphorylating histone H2A (grey) diffuses from the break 
site (red). The histone target is modeled as an absorbing sphere of diameter 2a located at a distance 
R from the break site. Assuming that R is much smaller than the radius of the nucleus, the 
probability of the kinase hitting the target histone before reaching the nuclear periphery (at which 
point we assume that the kinase only contributes to the background level of phosphorylation) is 
a/R.  
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Figure S19: Comparison of all models to the experimental γ-H2AX profiles near the DSB. 
Plots show the best fits for the looping, 3D diffusion, 1D diffusion and directed sliding models on 
the same graph for easy comparison. These are the curves shown in Figures 4, S6, S9, S10, S12, 
S14, and S16. However, all fits to the Mec1 data and Tel1 data were performed separately in the 
Supplementary Information. For fair comparison of how well the models fit the data, we perform 
fits of the Mec1 3D diffusion and Tel1 directed sliding models independently of each other in the 
plots above (unlike in Figure 4 where Mec1 and Tel1 share the same values of the ChIP parameters 
C, f and NH2A). The lines connecting the dots are shown to help visualize the curves and are not 
interpolation between the points. For a discussion of the poor fit for the looping model, refer to the 
captions of Figures S5 and S17. (A) Experimental and theoretical plots for Mec1. (B) Experimental 
and theoretical plots for Tel1. The experimental error bars represent the standard error of the mean 
from n≥3 measurements. 
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Supplemental Tables 

 
Table S1: log10(Bayes Factor) for all mechanisms 
 
The log10(Bayes Factor) is shown for every model variant. (Table 1 and 2 showed the Bayes factors 
for models with a constant rate of diffusion initiation or constant phosphorylation rate). The Bayes 
factor is calculated by dividing the probability of the indicated model by the probability of the best 
model. Bayes factors were computed for Mec1 and Tel1 separately. For Mec1, the best model is 
3D diffusion with a constant rate of diffusion initiation. For Tel1, the best model is directed sliding.  
 

Model Mec1, log10(Bayes Factor) Tel1, log10(Bayes Factor) 

Looping with Linearly 
Increasing Phosphorylation 
Rate 

-545 -449 

Looping with Constant 
Phosphorylation Rate -252 -251 

3D Diffusion with Linearly 
Increasing Rate of Diffusion 
Initiation 

-28 -136 

3D Diffusion with Constant 
Rate of Diffusion Initiation Best Model -61 

Directed Sliding -14 Best Model 

1D Diffusion with Linearly 
Increasing Rate of Diffusion 
Initiation 

-28 -35 

1D Diffusion with Constant 
Rate of Diffusion Initiation -12 -5 
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Table S2: List of yeast strains used in this study 
 

Strain Genotype 

JKM139 MATa hmlΔ::ADE1 hmrΔ::ADE1 ade1-100 leu2-3,112 lys5 trp1::hisG' ura3-52 
ade3::GAL::HO 

yFD508 JKM139 tel1Δ::TRP1 bar1Δ::ADE3 
yFD538 JKM139 mec1Δ::NAT sml1Δ::KAN bar1Δ::ADE3 
yKL002 JKM139 tel1Δ::TRP1 bar1Δ::ADE3 nej1Δ::HPH 
yKL003 JKM139 mec1Δ::NAT sml1Δ::KAN bar1Δ::ADE3 nej1Δ::HPH 
yKL004  JKM139 tel1Δ::TRP1 bar1Δ::ADE3 ku80Δ::HPH 
yKL005 JKM139 mec1Δ::NAT sml1Δ::KAN bar1Δ::ADE3 ku80Δ::HPH 
yKL018  JKM139 bar1Δ::ADE3 ku80Δ::HPH 
yKL019  yKL004 GAL1-Ddc2 (plasmid PML105.45 integrated at leu2-3,112) 
yKL025  yKL004 hta1-S129A 
yKL026  yKL004 hta2-S129A 
yKL040 yKL005 hta2-S129A 
yKL041 yKL005 hta1-S129A 
yKL046 yKL004 rad9Δ::LEU2 
yKL047 yKL005 rad9Δ::LEU2 
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Table S3: Primers used during strain construction  
 

Primer Sequence 
BL325 CTTCTCAAGAATTATAAGATGTTTT 
BL326 ATCTTATAATTCTTGAGAAGGATCA 

BL327 GAAGTCTGCCAAGGCTACCAAGGCTGCCCAAGAATTATAAGATC
GGTTCTGGTATTTTAAAGAAGGCGGAAGGAACTAAA 

BL329 TTACAGTTCTTGAGAAGCTTGTTTT 
BL330 AAGCTTCTCAAGAACTGTAAGATCA 

BL331 CAAAACTTGTTGCCAAAGAAGTCTGCCAAGACTGCCAAAGCTGCC
CAAGAACTGTAAGAACTGAGTTGAAAAGAAACAAA 

HPHorf+751 CAGAGCTTGGTTGACGGC 
KL020 CAGCCAGTGGATCGTAAATA 
KL021 ACAGTGCCCAATGAACCTAA 
KL022 TCCGGTGGTAAAGGTGGTAA 
KL023 ATTAACCTGGGGGCCATAAA 
KL024 CAAAAGAAAGAGAGCCTAGCTG 
ku80ORFL CTCTTGAGTGTCTTTACCGC 
KU80T2 CTAGTTCAGCAACCGAAATCC 

ku80MX18 TAACGAGAGTGCAGGACATATGCACAAATAATATATCTCACACCA
TAATAGCATAGGCCACTAGTGGATCTG 

ku80MX19 CTCTTTAACTGTGGTGACGAAAACATAACTCAAAGGATGTTAGAC
CTTTTCAGCTGAAGCTTCGTACGC 

nej1-225 TCCAAAGACCTTTGGTCC 

Nej1-MXp1 AGAATAACCATAACAACGGCCAGATAGGAGGTTAATCTTACACA
TGTGTGGATATCAAGCTTGCCTCGTCCCCGC 

Nej1-MXp2 GAACTATTTGAAAGGTCCAACCTTAATTTTTGACGTTTAATTGACT
TGCCGTCGACACTGGATGGCGGCGTTAGTATC 

nej1+267 TTTACAGTGATGGCGAGC 
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Table S4: Plasmids used during strain construction 
 

Plasmid Genotype 
pAG32 ampr, HPH  
pBL13 ampr, Cas9, URA3, gRNA targeting HTA1 
pBL14 ampr, Cas9, URA3, gRNA targeting HTA2 
pJH2972 ampr, Cas9, URA3 
PML105.45 GAL1-Ddc2, LEU2  
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Table S5: Primers used in quantitative PCR (qPCR) 
 

Primer Sequence 
CTR86p1 CGGTCCTCGATTTTGTTACCTTC 
CTR86p2 GCAAGGATATTCCTGCCTTTTTC 
ERS1p1 ACACCCTGAATGGGGAAAC 
ERS1p2 CTGCATGGGTGCTTGATG 
HOCSp4 TCGTCAACCACTCTACAAAACCA 
IMG1p1 TGGATCATGGACAAGGTCCTAC 
IMG1p2 GGCGAAAACAATGGCACTCT 
KL032 TGATGGTCATGGTGGTAGCG 
KL033 CTTTGCGTCCAGAACAGACATAA 
KL034 AAACAAACGACAGCATGCTGA 
KL035 CTGGCCTCAGATCCTCGAA 
KL036 CTCGCATAAAAAGCTGGAAGTG 
KL037 ATCCAAAACCCTGGGCAAA 
KL038 CCAAAAAGTAGTAAGGGAGAGGAT 
KL039 ATAAACAGGGCCATATCGCATACA 
KL040 TCATGTACTGTCCGGTGTGATT 
KL041 ATCAAACTCCGTTTTTAGCCCC 
Mak31p1 CCAAAGCGTCATGGACATCT 
Mak31p2 AGGCCCATCATTCTACTACTGG 
MAT1 ATTGCGACAAGGCTTCACCC 
MAT2 CACATCACAGGTTTATTGGTTCCC 
MAT3-1 ATGTCCTGACTTCTTTTGACGAGG 
MAT4-1 ACGACCTATTTGTAACCGCACG 
MAT9 GCCTCTATGTCCCCATCTTGTCTC 
MAT10 GTGTTCCCGATTCAGTTTGACG 
MAT13 TCAGGGTCTGGTGGAAGGAATG 
MAT14 CAAAGGTGGCAGTTGTTGAACC 
MAT15 CGTCTTCTCAGCGAACAACAGC 
MAT16 GCAATAACCCACGGAAACACTG 
MAT19 TCGTCGTCGCCATCATTTTC 
MAT20 GCCCAAGTTTGAGAGAGGTTGC 
MATYAp4 GATCTAAATAAATTCGTTTTCAATGATTAAAATAG 
MT101-Pho5orf+50 CGCTTCTTTGGCCAATGC 
MT102-Pho5orf+100 GGGTACCAATCTTGTCGAC 
RAD18p1 TGTCATCGTTGGGACTGTCA 
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RAD18p2 GAAACATAACCATCCATCCTTTCC 
YCR026Cp1 CACGCCTAGTTTCAGCTTGTTT 
YCR026Cp2 CTTCAAGACATAATCAACGACGC 
YCR043Cp1 CCAAGGAACTAATGATCTAAGCACA 
YCR043Cp2 ACCAGCAGTAATAAGTCGTCCTGA 
YCR061Cp1 GGAAAGACTGGCTCATCAAAAC 
YCR061Cp2 ACATTCTCAGAGAGAACCTCCA 
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Supplemental Dataset  

Dataset S1: γ-H2AX levels around MAT and RE 

γ-H2AX levels are shown in the Excel file “Dataset S1.” γ-H2AX levels were measured around 
the MAT locus for strains listed in Table S2. γ-H2AX measurements around RE were measured 
for strains yKL004 and yKL005.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Li, Bronk, Kondev and Haber 53 
 

References for Supplementary Information 

  1.  C. I. White, J. E. Haber, Intermediates of recombination during mating type switching in 
Saccharomyces cerevisiae. EMBO J. 9, 663–673 (1990). 

2.  B. Avşaroğlu, G. Bronk, K. Li, J. E. Haber, J. Kondev, Chromosome-refolding model of 
mating-type switching in yeast. Proc. Natl. Acad. Sci. U. S. A. 113, E6929–E6938 (2016). 

3.  J.-M. Arbona, S. Herbert, E. Fabre, C. Zimmer, Inferring the physical properties of yeast 
chromatin through Bayesian analysis of whole nucleus simulations. Genome Biol. 18 
(2017). 

4.  B. Avşaroğlu, et al., Effect of Chromosome Tethering on Nuclear Organization in Yeast. 
PLoS ONE 9, e102474 (2014). 

5.  H. Hajjoul, et al., High-throughput chromatin motion tracking in living yeast reveals the 
flexibility of the fiber throughout the genome. Genome Res. 23, 1829–1838 (2013). 

6.  Y. Zhang, O. K. Dudko, First-Passage Processes in the Genome. Annu. Rev. Biophys. 45, 
117–134 (2016). 

7.  J. Dekker, Mapping in Vivo Chromatin Interactions in Yeast Suggests an Extended 
Chromatin Fiber with Regional Variation in Compaction. J. Biol. Chem. 283, 34532–34540 
(2008). 

8.  J. Wilhelm, E. Frey, Radial Distribution Function of Semiflexible Polymers. Phys. Rev. 
Lett. 77, 2581–2584 (1996). 

9.  E. Gobbini, et al., Sae2 Function at DNA Double-Strand Breaks Is Bypassed by Dampening 
Tel1 or Rad53 Activity. PLOS Genet. 11, e1005685 (2015). 

10.  M. Clerici, C. Trovesi, A. Galbiati, G. Lucchini, M. P. Longhese, Mec1/ATR regulates the 
generation of single‐stranded DNA that attenuates Tel1/ATM signaling at DNA ends. 
EMBO J. 33, 198–216 (2014). 

11.  H. Berg, Random Walks in Biology, New, expanded (Princeton University Press, 1993). 

12.  A. P. Singh, et al., 3D Protein Dynamics in the Cell Nucleus. Biophys. J. 112, 133–142 
(2017). 

13.  J. Doye, Biophysical Chemistry, Applying polymer theory to biomolecules. vdocuments.site 
(April 13, 2020). 

14.  B. Avşaroğlu, G. Bronk, K. Li, J. E. Haber, J. Kondev, Chromosome-refolding model of 
mating-type switching in yeast. Proc. Natl. Acad. Sci. 113, E6929–E6938 (2016). 

15.  J. Li, et al., Regulation of Budding Yeast Mating-Type Switching Donor Preference by the 
FHA Domain of Fkh1. PLoS Genet. 8 (2012). 



Li, Bronk, Kondev and Haber 54 
 

16.  S. V. Kozlov, et al., Autophosphorylation and ATM Activation ADDITIONAL SITES 
ADD TO THE COMPLEXITY. J. Biol. Chem. 286, 9107–9119 (2011). 

17.  C. Arnould, et al., Loop extrusion as a mechanism for DNA Double-Strand Breaks repair 
foci formation. bioRxiv, 2020.02.12.945311 (2020). 

18.  K. Brogaard, L. Xi, J.-P. Wang, J. Widom, A map of nucleosome positions in yeast at base-
pair resolution. Nature 486, 496–501 (2012). 

19.  J.-A. Kim, M. Kruhlak, F. Dotiwala, A. Nussenzweig, J. E. Haber, Heterochromatin is 
refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 
(2007). 

20.  D. S. Sivia, J. Skilling, Data analysis: a Bayesian tutorial, 2nd ed (Oxford University Press, 
2006). 

 


