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Supplementary Information Text 

 
African Samples, conflict survivors 

  PTSD risk and symptomatology were assessed in two independent African 

samples of conflict zone survivors. For the African sample 1 we included 463 survivors of 

the rebel war in Northern Uganda. Data collection took place in the former internally 

displaced people (IDP) camps of Anaka, Pabbo (Amuru District) and Koch Goma (Nwoya 

District), and in resettled communities and villages of Gulu District, Northern Uganda 

(mean age 29 y, 18-55 y; 44.1 % females; 68.6 % with PTSD lifetime diagnosis; 17.4 % 

subjects with current PTSD). For the African sample 2 we included N = 350 survivors from 

the 1994 Rwandan genocide who lived as refugees in the Nakivale settlement in Uganda 

(mean age 34.8 y, 18-68 y; 49.1 % females; 78.8 % with PTSD lifetime diagnosis; 40.3 % 

subjects with current PTSD). This is a substantially enlarged sample of the African sample 

of our previously published findings on the relation of the epigenetic modification of the 

glucocorticoid receptor gene with traumatic memory and PTSD risk (1-4).  

All subjects had experienced traumatic situations and were examined according to 

DSM-IV criteria. The Post-Traumatic Diagnostic Scale (PDS; (5-8)) was administered as 

a structured interview by expert psychologists from the Universities of Konstanz and Ulm, 

Germany, as well as by trained local interviewers. The PDS was used to assess current and 

lifetime symptoms of intrusions, avoidance, and hyperarousal (Table S1) as well as the 

current and lifetime diagnosis of PTSD according to DSM-IV. Since spontaneous 

remission might have occurred during the time between the traumatic experiences and the 

interview (5,	 8,	 9), the lifetime variables were chosen as the main outcomes for the 

statistical analyses. In order to determine lifetime symptoms, participants were asked to 
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report if they experienced the respective symptom or not, according to the worst period of 

4 weeks since the traumatic event. Traumatic load was assessed with the number of 

traumatic event types experienced, which has been previously shown to be a reliable and 

efficient way of assessment (7,	8). Accordingly, the resulting lifetime scores represent the 

number of experienced symptoms, but not symptom severity. This approach has been 

validated and used in several previous studies (1-4,	7-9,	11). 

Sum of lifetime traumatic events (both war-related and war-unrelated) was assessed 

with a 36-item checklist in African Sample 2 (Rwanda) (1-4). For African Sample 1 

(Uganda), we used a 62-item checklist that included additional questions regarding 

atrocities specific to the LRA - Lord’s Resistance Army (e.g., forced to eat human flesh) 

(5-8). The resulting difference in the mean traumatic load score between the two African 

samples (25.7 and 11.9, for African Sample 1 and 2, respectively), can be understood as a 

consequence of the different event lists used (5,	8,	9).  The Traumatic event check lists did 

not differentiate between trauma in childhood and trauma in adulthood. Depressive 

symptoms were ascertained with the depression section of the Hopkins Symptom Checklist 

(HSCL-D) (7,	8,	10). 

Traumatic load was estimated by assessing the number of different traumatic event 

types experienced or witnessed, which is a reliable measurement of traumatic event 

exposure and showed the strongest relationship with lifetime PTSD (1-4,	7-9,	11). To avoid 

known ceiling effects of trauma load on PTSD risk, subjects were selected to have 

experienced up to 59 or 19 traumatic event types, for the African Sample 1 and African 

Sample 2, respectively. For a  trauma load higher than these cut-offs, the probability of 

lifetime PTSD approaches 100% (9). To exclude genetic relatives in the samples, only one 
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person per household was interviewed. Additionally, given the genetic data was also 

available, a fairly conservative IBD (identity by descent) threshold > 0.08 was applied (12). 

Individuals with current alcohol abuse, acute psychotic symptoms and individuals who 

were under psychiatric medication were excluded. Saliva samples were collected at the 

time-point of the main investigation for the DNA isolation. For details see (1,	5).   

  

Swiss Sample, healthy young adults 

 Memory was assessed in a sample of healthy, young adults in the city of Basel, 

Switzerland who participated in a behavioral and imaging genetics study (Swiss Sample: 

N = 568; mean age 23.8 y, 18.3-36.8 y; 59% females). Participants were healthy, free of 

any neurological or psychiatric illness, and did not take any medication at the time of the 

experiment (except hormonal contraceptives).  

Subjects performed different consecutive tasks as described in detail previously (13). 

As in our previous study (1), we also focused in the present study on a picture recognition 

memory task (N = 537). Incidental encoding of the pictures was achieved through an event-

related design. It consisted of 100 trials, including two primacy and two recency trials 

depicting neutral information, 24 scrambled pictures, and 24 pictures per valence category 

(positive, negative, neutral). The pictures were presented for 2.5 s in a quasi-randomized 

order so that a maximum of four pictures of the same category were shown consecutively. 

A fixation-cross appeared on the screen for 500 ms before each picture presentation. Trials 

were separated by a variable intertrial period (period between appearance of a picture and 

the next fixation cross) of 9–12 s (jitter). During the intertrial period, participants 

subjectively rated the meaningful pictures according to valence (positive, neutral, negative) 
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and arousal (high, medium, low) on a three-point scale (Self Assessment Manikin). For 

scrambled pictures, participants rated form (vertical, symmetric, horizontal) and size 

(small, medium, large) of the geometrical object in the foreground.  

After encoding, participants performed a free recall task of the pictures in a separate 

room (no time limit was set for this task). Approximately 80 min. after the presentation of 

the last picture in the encoding task, participants performed a recognition task for 20 min. 

We used an event-related design consisting of 144 trials. Pictures from two different sets 

were presented. Each set contained 72 pictures (24 pictures for each stimulus category), 

one of the sets of stimuli was new (i.e., not presented before), the other old (i.e., presented 

during the encoding task). The pictures were presented for 1 s in a quasi-randomized order 

so that at most four pictures of the same category (i.e., negative new, negative old, neutral 

new, neutral old, positive new, positive old) were shown consecutively. A fixation-cross 

appeared on the screen for 500 ms before each picture presentation. Trials were separated 

by a variable intertrial period of 6–12 s (jitter) that was equally distributed for each stimulus 

category. During the intertrial period, participants subjectively rated the picture as 

remembered, familiar or new on a three-point scale by pressing a button with the fingers 

of their dominant or nondominant hand. Correct recognition performance was measured as 

the number of old pictures correctly remembered minus the number of old ones incorrectly 

identified as new or familiar. 

For DNA isolation, saliva samples were collected at the time-point of the main 

investigation. Additionally, subjects were re-invited for an additional saliva and blood 

sampling, which took place on average 360 days (median 341 days) after the main 

investigation. Samples were collected between midday and evening (mean time 2:30 p.m., 
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range 1:00 p.m. - 8:00 p.m.). Hematological analysis, including blood cell counts, was 

performed with Sysmex pocH-100iTM Automated Hematology Analyzer (Sysmex Co, 

Kobe, Japan). 

MRI data acquisition 

Measurements were performed on a Siemens Magnetom Verio 3 T whole-body MR 

unit equipped with a twelve-channel head coil. During the course of the study there were 

2 changes in gradient coils and one change in MR software. All group-level analyses 

included those factors as covariates. 

A high-resolution T1-weighted anatomical image was acquired using a 

magnetization prepared gradient echo sequence (MPRAGE) with the following 

parameters: TR = 2000 ms; TE = 3.37 ms; TI = 1000 ms; flip angle = 8°; 176 slices; FOV 

= 256 mm; voxel size = 1 x 1 x 1 mm3. 

During the encoding and recognition tasks blood oxygen level-dependent fMRI was 

acquired, using a single-shot echo-planar sequence (EPI) using parallel imaging 

(GRAPPA). The following acquisition parameters were used: TE (echo time) = 35 ms, 

FOV (field of view) = 22 cm, acquisition matrix = 80 × 80 (interpolated to 128 × 128, 

voxel size: 2.75 × 2.75 × 4 mm3), GRAPPA acceleration factor R = 2.0. Using a midsagittal 

scout image, 32 contiguous axial slices placed along the anterior–posterior commissure 

(AC–PC) plane covering the entire brain with a TR = 3000 ms (α = 82°) were acquired 

using an ascending interleaved sequence. 

From the N=537 subjects with methylation data, N=498 were included in the fMRI 

data analysis. N=39 subjects were excluded because of missing fMRI data, technical issues 

with MR acquisition, or data quality issues (T1 quality or extreme movement, see below). 
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fMRI QC steps and filters 

T1 data were visually checked for movement artefacts by 3 raters. Additionally, 

Qoala v1.1 was used on freesurfer v6.0 measures (https://qoala-t.shinyapps.io/qoala-

t_app/): subjects labelled “exclude without manual QC” were excluded, while subjects 

labelled “exclude with manual QC” and “include with manual QC” underwent a second 

visual QC. A matlab-based plot of standard deviation of signal outside of the brain 

(SPM12-based brain mask; in-house code) was used to detect potential noise in the 

acquisition, due to technical artefacts. Subjects with more than 1 noisy slice were excluded. 

SPM12 brain segmentations were visually checked. Subjects for which it failed were 

excluded from further fMRI analyses. Because of the need of a good quality T1 image for 

EPI normalization, subjects who had an excluded T1 image were excluded from all 

subsequent fMRI analyses. 

The framewise displacement was computed for every subject’s functional scan (14). 

Subjects where more than 5% of the volumes had a >1mm framewise displacement were 

excluded. The “Power plot” was also visually inspected to detect scanner-related artifacts. 

EPI-to-T1 coregistration as well as EPI-to-MNI normalization were visually checked for 

every subject. 

fMRI pre-processing 

fMRI data were preprocessed using SPM12 (Statistical Parametric Mapping, 

Wellcome Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm) implemented 

in MATLAB R2016b (MathWorks). 

Volumes were slice-time corrected to the first slice, realigned using the ‘register to 

mean’ option, and coregistred to the anatomical image by applying a normalized mutual 
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information 3-D rigid-body transformation. Subject-to-template normalization was done 

using DARTEL (15), which allows registration to both cortical and subcortical regions and 

has been shown to perform well in volume-based alignment (16). Normalization 

incorporated the following steps: 1) Structural images of each subject were segmented 

using the “Segment” procedure in SPM12; 2) The resulting gray and white matter images 

were used to normalize the subject’s image to the template space; 3) Subject-to-template 

and template-to-MNI transformations were combined to map the functional images to MNI 

space. The functional images were smoothed with an isotropic 8mm full-width at half-

maximum (FWHM) Gaussian filter. 

Normalized functional images were masked using information from their respective 

T1 anatomical file as follows. At first, the three-tissue classification probability maps of 

the “Segment” procedure (grey matter, white matter, and CSF) were summed to define a 

brain mask. The mask was binarized, dilated and eroded with a 3 × 3 × 3 voxels kernel 

using fslmaths (FSL) to fill in potential small holes. The previously computed DARTEL 

flowfield was used to normalize the brain mask to MNI space, at the spatial resolution of 

the functional images. The resulting non-binary mask was thresholded at 50% and applied 

to the normalized functional images. Consequently, the implicit intensity-based masking 

threshold usually employed to compute a brain mask from the functional data during the 

first level specification (spm_get_defaults(‘mask.thresh’), by default fixed at 0.8) was not 

needed any longer and set to a lower value of 0.05. 

General linear models (GLMs) were specified for each subject to identify voxels 

activated by the recognition task. Regressors modeling the onsets and duration of stimulus 

events were convolved with a canonical hemodynamic response function (HRF). More 
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precisely, the model comprised regressors for button presses modeled as stick/delta 

functions, picture presentations modeled with an epoch/boxcar function (duration: 1s), and 

rating scales modeled with an epoch/boxcar function of variable duration (depending on 

when the subsequent button press occurred). Pictures were modeled separately depending 

on whether they were correctly identified as old (previously seen) or new (never seen). 

Previously seen pictures were further divided into pictures correctly rated as old or familiar. 

Serial correlations were removed using a first-order autoregressive model, and a high-pass 

filter (128s) was applied to remove low-frequency noise. The six movement parameters 

from movement correction were also entered as nuisance covariates. Subject-level 

contrasts were computed to estimate brain activity of [correctly remembered - correctly 

identified as new] pictures.  

ICA was used as an unbiased, data-driven method to reduce the dimensionality of 

the first-level data to a lower number of statistically independent components (ICs) (17,	

18). We applied ICA to a matrix X ([correctly remembered - correctly identified as new] 

contrast), comprised of m observations (participants) and n variables (voxels). ICA 

estimates a matrix of k x n latent sources S that underlie the variables, while holding the 

source estimates (voxel loadings) as independent from each other as possible. Therefore, 

in the ICA decomposition voxel loadings describe statistically independent latent sources 

that underlie the contrast estimates. Additionally, ICA provides a matrix of m x k mixing 

coefficients A (participants scores) for each IC. The mixing coefficients of each component 

represent the component’s activity strength, per participant (19).  

The optimal number of components for the ICA decomposition was chosen through 

a stability analysis of several decompositions. In total 20 decompositions were computed, 
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with N = 3:20, 22, 24 ICs respectively. For each decomposition, we used a resampling 

method with 100 repetitions and 90% of randomly selected participants from the whole 

sample, producing 100 similar, but non-identical subsamples, in order to prevent 

overfitting. For each of the 20 ICA solutions: a) an ICA was performed on each of the 100 

subsamples using the fastICA algorithm (R-package “fastICA”); b) the stability of each IC 

was estimated by computing the absolute value of Pearson’s correlation to its voxel 

loadings across subsamples; c) ICA solution stability was calculated as the mean stability 

across its ICs. The final number of components was chosen from the solution with the 

highest stability (N=13), and the final ICA decomposition was run with ICASSO approach 

(20) implemented in the “clusterFastICARuns” function from the MineICA R-package (21) 

(https://www.bioconductor.org/packages/release/bioc/html/MineICA.html). This 

approach runs the fastICA algorithm 100 times with random initializations. The obtained 

components are clustered and the medoids of these clusters are used as the final estimates. 

This decomposition was performed on a larger cohort of 1576 subjects, comprising the 

subjects from this study.  

fMRI statistical analyses 

Following the ICA decomposition, the IC’s participants scores relationship with 

correct recognition memory performance and NTRK2 methylation were examined by 

means of linear models. Correction for multiple comparisons across the 13 ICs and two 

independent variables was applied using the Bonferroni procedure, with a corrected 

threshold of pBonf=0.0019. Age, sex and two MR-related technical batches were included 

as covariates in all models.  
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DNA isolation 

 Saliva DNA was collected in the African Samples using an Oragene DNA Kit 

(DNA Genotek, Ottawa, ONT) and initially extracted using the precipitation protocol 

recommended by the manufacturer. High-purity DNA was obtained by additional re-

purification. For this purpose, 2µg of DNA isolated via the Oragene procedure was 

incubated overnight at 50°C with proteinase K (lysis buffer: 30 mM Tris-HCl pH 8.0, 10 

mM EDTA, 1% SDS, 150 ng/l proteinase K), agitated by gentle orbital shaking. Next, the 

DNA was purified using a Genomic DNA Clean & Concentrator Kit (Zymo Research, 

Irvine, CA).  

 Blood samples were collected in the Swiss Samples from all subjects using the BD 

Vaccutainer Push Button blood collection set and 10.0 mL BD Vacutainer® Plus plastic 

whole blood tube, BD Hemogard™ closure with spray-coated K2EDTA (Becton 

Dickinson, Franklin Lakes, NJ). Sampling was performed in the period between June 2011 

and May 2013. Immediately after collection, blood samples were processed in a 

hematological lab. Upon plasma removal, the remaining fraction was first stored overnight 

on –20°C, and then moved to –80°C biobank storage.  DNA isolation was then performed 

from the plasma-removed blood fraction on average 2.3 weeks later (range: 1-31 d). 

Isolation was performed with QIAmp Blood Maxi Kit (Qiagen AG, Hilden, Germany), 

using the recommended spin protocol. DNA quality and concentration were assessed using 

spectrophotometry (Nanodrop 2000; ThermoScientific, Waltham, MA) and fluorometry 

(Qubit dsDNA BR Assay Kit, Invitrogen, Carlsbad, CA). DNA was then aliquoted and 

long-term stored in the biobank at –80°C. DNA aliquots not affected by the freeze-thaw 
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cycles were used for the Infinium BeadChip methylation analyses performed in August 

2013.  

 

Infinium 450K and EPIC BeadChip methylation analyses  

DNA isolated from saliva (African samples) or peripheral blood (Swiss Sample) was 

investigated with the 450K (African Sample 2, Swiss Sample) or EPIC (African Sample 1) 

array (Illumina, Inc., San Diego, CA; see Supplementary Material). For the African Sample 

1 (6 plates, N = 463) and African Sample 2 (4 plates, N = 350) all subjects were processed 

in a single batch. The subjects of Swiss sample (N = 568) were processed in two batches 

(2 plates and 4 plates). Within a batch, samples were processed with a randomized plate 

assignment and with a single bisulfite conversion.  

Preprocessing of data was done separately for each batch. Data were extracted and 

analysed from the generated idat files using the R package RnBeads version 0.99.9 (22). 

CpG annotation was based on the manufacturer’s annotation file (Human-

Methylation450_15017482_v.1.2). During preprocessing, the background was subtracted 

using the “noob” method in the methylumi package (23), and the signal was further 

normalized using the SWAN algorithm (24). The following probe categories were excluded 

from the final data sets, based on the annotation provided within the RnBeads package: 

non-CpG context probes (due to underrepresentation on the 450 K array, 0.6%, (25); 

functional differences when compared to the CpG context as well as very low abundance 

of non-CpG methylation in somatic tissues (26) ; N = 3091); probes with a SNP mapping 

directly to the target CpG site, as well as probes with three and more SNPs mapping within 

the 50mer probe (see Supplementary Fig. 2; MAF threshold was set to 0.01; N = 18,998 
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CpGs); gonosomal probes (N = 11,473 CpGs); non-specific probes. Using the Greedycut 

algorithm, we iteratively removed the probes and data sets of the highest impurity (rows 

and columns in the detection p-value table that contain the largest fraction of unreliable 

measurements; p < 0.05; for each sample (22)).  

Post-processing was further done for each sample separately, combining the B-values 

of the preprocessed data of all batches per sample. The B-values were further processed 

step-by-step in order to correct for further influential and putative confounding factors: 1) 

using logit- transformation (M-value, (27), done with the R-package car (28)); 2) z-

transformation per plate (correcting for plate and batch effects); 3) regressing out the first 

10 (African Samples) or 8 (Swiss Sample) axes of a principal component analysis (PCA, 

done with the R-package pcaMethods (29)). The PCA was based on CpGs with no missing 

values (>95% of the included CpGs). The PCA-based approach corrected for technical 

biases as well as for part of the variability induced by blood cell composition (European 

descent Samples); 4) regressing out the effects of sex and age; 5) regressing out the effects 

of variants in the 50mer probe sequence, if the total variance explained by these variants 

exceeded 0.1%.  

The accepted missing rate per CpG was set to <1%. We further excluded cross-

hybridizing probes and polymorphic CpG sites (30,	 31) (Nmax = 63,974). Only CpGs 

surviving all filtering steps in all samples were used for the downstream analyses (N = 

394,043 common CpGs across 450K und EPIC arrays). For details and validation of 

Infinium 450K array processing see (32). 

Finally, we used the genome-wide regional segmentation analysis and clustered the 

individual CpGs to regional elements, as previously described (22,	33). In short: 1) Genome 
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(GRCh37/hg19) was segmented in 5 kb sliding-window regional elements; 2) Regional 

methylation was then calculated as mean value of DNA-methylation for CpGs clustered to 

every individual regional element; 3) Instead of performing epigenome wide association 

analysis (EWAS), we further focused on the targeted analysis inside the RGRS gene set 

(GO:2000322; defined based on the mammalian gene ontology repository 

(http://amigo.geneontology.org/amigo)). Such region-of-interest–based DMR analyses 

provide an effective way of increasing the statistical power to detect differential DNA 

methylation, and furthermore it also increases the interpretability of identified DMRs (22); 

4) The RGRS gene set contained 12 genes (CLOCK, PPP5C, BDNF, PHB, PER1, CRY1, 

NCOA2, LMO3, NR3C1, CRY2, ARNTL, NTRK2) and predefined regional methylation 

elements (step 1 & 2) were then annotated to these genes by using the BioMart repository 

((34); GRCh37/hg19, Ensembl Version 75). In order to have 5’ and 3’ regulatory regions 

included, extended gene borders were applied, covering 5 kb upstream and downstream 

from gene beginning and end, respectively. Given the distribution of the CpG sites 

examined by the Infinium (Illumina) arrays, regional methylation elements covering 

5’UTR and TSS were overrepresented compared to intragenic, 3’UTR and intergenic 

regions, increasing the interpretability of identified regions; 5) Finally, the association of 

the epigenetic regulation of the RGRS pathway with PTSD and cognitive phenotypes was 

then performed by targeted analysis of the DNA methylation patterns of the regional 

methylation elements annotated to the RGRS genes only.  Given our sample sizes, in all 

three examined cohorts, we were well powered. For the extensive list of the examined 

regional methylation elements of the RGRS pathway genes please refer to the 
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Supplemental Table S1 (total number of regional methylation elements within RGRS gene 

set shared across 450K and EPIC (Illumina) platforms was 94).  

 

Statistical analyses 

In the African samples, the association between lifetime PTSD risk and symptom 

scores as dependent variables and DNA methylation of predefined regional methylation 

elements was assessed. To account for trauma load as a principal factor in the development 

of PTSD (2) sum of lifetime traumatic event types was used as a covariate in the regression 

models. 

The association of the epigenetic regulation of the RGRS pathway with the PTSD 

was assessed by first modelling PTSD lifetime risk against every regional methylation 

element annotated to the RGRS gene set (Supplemental Table S1), by logistic regression. 

Following, the corrected significance was estimated by applying a Bonferroni threshold for 

the total number (n=175) of analyzed regional methylation elements (the discovery African 

sample 1 had 175 regional methylation elements annotated to RGRS pathway, out of which 

94 were shared across all 3 examined samples – due to differences across 450K and EPIC 

(Illumina) platforms). Finally, for the NTRK2 regional element (chr9:87285001-87290000) 

the relationship of DNA methylation with PDS sum- and sub-scores in both African 

samples was calculated with linear regression using NTRK2 regional element methylation 

as a quantitative predictor. 

In the Swiss sample, recognition performance as dependent variable was modelled 

against the DNA methylation of predefined NTRK2 regional element (chr9:87285001-

87290000) in a linear model. The interaction of NTRK2 DNA methylation with the valence 
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of pictures used in the emotional picture-encoding task was additionally tested in a 

linear mixed model. 

A comparison of methylation levels of NTRK2 regional element between the Swiss and the 

African population was done by Kruskal–Wallis one-way ANOVA. Furthermore, we 

assessed the equality of distributions and variability between the populations with 

Kolmogorov–Smirnov two-sample and Siegel–Tukey tests, respectively. Effect sizes were 

calculated by Cohen’s f2 (35) for NTRK2 regional DNA methylation within multiple 

regression models, by using the effectsizes R package (36). These indices represent an 

estimate of how much variance in the response variables is accounted for by the specific 

explanatory variable (NTRK2 regional DNA methylation). All laboratory procedures were 

conducted in a blinded, randomized order, including DNA isolations, bisulfite conversion 

and DNA methylation analysis. Only after performing all procedures and excluding 

samples with low quality controls and outliers, further analysis with phenotypic data was 

performed. 
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Fig. S1. Brain co-activation networks.  

Independent Component Analysis (ICA) was applied to decompose brain activation into co-

activation networks across participants during the recognition memory task. Thirteen 

components were identified. Red areas represent positive loadings and blue areas negative 

loadings. Only loadings below the 10th percentile and above the 90th percentile per 

component are represented. 
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Table S1. The examined regional DNA methylation elements annotated to the RGRS pathway 

genes. Genome was segmented in 5 kb sliding-window regional elements. Regional 

methylation was calculated as mean value of DNA-methylation for CpGs annotated to every 

individual element, as previously described (22,	 33).  Regional elements with DNA 

methylation signatures nominally associated with PTSD lifetime risk are marked in bold red 

font. 

 

Chromosome	 Start	 End	 Gene	
4	 56295001	 56300000	 CLOCK	
4	 56300001	 56305000	 CLOCK	
4	 56310001	 56315000	 CLOCK	
4	 56315001	 56320000	 CLOCK	
4	 56325001	 56330000	 CLOCK	
4	 56330001	 56335000	 CLOCK	
4	 56340001	 56345000	 CLOCK	
4	 56365001	 56370000	 CLOCK	
4	 56375001	 56380000	 CLOCK	
4	 56380001	 56385000	 CLOCK	
4	 56385001	 56390000	 CLOCK	
4	 56390001	 56395000	 CLOCK	
4	 56405001	 56410000	 CLOCK	
4	 56410001	 56415000	 CLOCK	
5	 142655001	 142660000	 NR3C1	
5	 142675001	 142680000	 NR3C1	
5	 142685001	 142690000	 NR3C1	
5	 142690001	 142695000	 NR3C1	
5	 142695001	 142700000	 NR3C1	
5	 142700001	 142705000	 NR3C1	
5	 142715001	 142720000	 NR3C1	
5	 142720001	 142725000	 NR3C1	
5	 142725001	 142730000	 NR3C1	
5	 142730001	 142735000	 NR3C1	
5	 142735001	 142740000	 NR3C1	
5	 142740001	 142745000	 NR3C1	
5	 142755001	 142760000	 NR3C1	
5	 142760001	 142765000	 NR3C1	
5	 142765001	 142770000	 NR3C1	



 
 

 
 

18 

Chromosome	 Start	 End	 Gene	 (continued)	
5	 142770001	 142775000	 NR3C1	
5	 142775001	 142780000	 NR3C1	
5	 142780001	 142785000	 NR3C1	
5	 142785001	 142790000	 NR3C1	
5	 142790001	 142795000	 NR3C1	
5	 142795001	 142800000	 NR3C1	
5	 142800001	 142805000	 NR3C1	
5	 142805001	 142810000	 NR3C1	
5	 142810001	 142815000	 NR3C1	
5	 142815001	 142820000	 NR3C1	
8	 71025001	 71030000	 NCOA2	
8	 71035001	 71040000	 NCOA2	
8	 71040001	 71045000	 NCOA2	
8	 71045001	 71050000	 NCOA2	
8	 71050001	 71055000	 NCOA2	
8	 71060001	 71065000	 NCOA2	
8	 71065001	 71070000	 NCOA2	
8	 71070001	 71075000	 NCOA2	
8	 71085001	 71090000	 NCOA2	
8	 71090001	 71095000	 NCOA2	
8	 71095001	 71100000	 NCOA2	
8	 71100001	 71105000	 NCOA2	
8	 71105001	 71110000	 NCOA2	
8	 71120001	 71125000	 NCOA2	
8	 71125001	 71130000	 NCOA2	
8	 71130001	 71135000	 NCOA2	
8	 71135001	 71140000	 NCOA2	
8	 71145001	 71150000	 NCOA2	
8	 71150001	 71155000	 NCOA2	
8	 71155001	 71160000	 NCOA2	
8	 71170001	 71175000	 NCOA2	
8	 71180001	 71185000	 NCOA2	
8	 71185001	 71190000	 NCOA2	
8	 71195001	 71200000	 NCOA2	
8	 71225001	 71230000	 NCOA2	
8	 71235001	 71240000	 NCOA2	
8	 71240001	 71245000	 NCOA2	
8	 71245001	 71250000	 NCOA2	
8	 71255001	 71260000	 NCOA2	
8	 71265001	 71270000	 NCOA2	
8	 71275001	 71280000	 NCOA2	
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Chromosome	 Start	 End	 Gene	 (continued)	
8	 71280001	 71285000	 NCOA2	
8	 71285001	 71290000	 NCOA2	
8	 71290001	 71295000	 NCOA2	
8	 71295001	 71300000	 NCOA2	
8	 71300001	 71305000	 NCOA2	
8	 71305001	 71310000	 NCOA2	
8	 71310001	 71315000	 NCOA2	
8	 71315001	 71320000	 NCOA2	
9	 87280001	 87285000	 NTRK2	
9	 87285001	 87290000	 NTRK2	
9	 87305001	 87310000	 NTRK2	
9	 87310001	 87315000	 NTRK2	
9	 87315001	 87320000	 NTRK2	
9	 87320001	 87325000	 NTRK2	
9	 87325001	 87330000	 NTRK2	
9	 87345001	 87350000	 NTRK2	
9	 87355001	 87360000	 NTRK2	
9	 87360001	 87365000	 NTRK2	
9	 87365001	 87370000	 NTRK2	
9	 87370001	 87375000	 NTRK2	
9	 87395001	 87400000	 NTRK2	
9	 87400001	 87405000	 NTRK2	
9	 87430001	 87435000	 NTRK2	
9	 87435001	 87440000	 NTRK2	
9	 87445001	 87450000	 NTRK2	
9	 87465001	 87470000	 NTRK2	
9	 87475001	 87480000	 NTRK2	
9	 87485001	 87490000	 NTRK2	
9	 87560001	 87565000	 NTRK2	
9	 87565001	 87570000	 NTRK2	
9	 87580001	 87585000	 NTRK2	
9	 87585001	 87590000	 NTRK2	
9	 87620001	 87625000	 NTRK2	
9	 87635001	 87640000	 NTRK2	
11	 13295001	 13300000	 ARNTL	
11	 13300001	 13305000	 ARNTL	
11	 13305001	 13310000	 ARNTL	
11	 13310001	 13315000	 ARNTL	
11	 13315001	 13320000	 ARNTL	
11	 13320001	 13325000	 ARNTL	
11	 13325001	 13330000	 ARNTL	
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Chromosome	 Start	 End	 Gene	 (continued)	
11	 13335001	 13340000	 ARNTL	
11	 13340001	 13345000	 ARNTL	
11	 13345001	 13350000	 ARNTL	
11	 13350001	 13355000	 ARNTL	
11	 13355001	 13360000	 ARNTL	
11	 13360001	 13365000	 ARNTL	
11	 13365001	 13370000	 ARNTL	
11	 13370001	 13375000	 ARNTL	
11	 13375001	 13380000	 ARNTL	
11	 13380001	 13385000	 ARNTL	
11	 13385001	 13390000	 ARNTL	
11	 13390001	 13395000	 ARNTL	
11	 13395001	 13400000	 ARNTL	
11	 27675001	 27680000	 BDNF	
11	 27680001	 27685000	 BDNF	
11	 27685001	 27690000	 BDNF	
11	 27690001	 27695000	 BDNF	
11	 27695001	 27700000	 BDNF	
11	 27705001	 27710000	 BDNF	
11	 27715001	 27720000	 BDNF	
11	 27720001	 27725000	 BDNF	
11	 27725001	 27730000	 BDNF	
11	 27730001	 27735000	 BDNF	
11	 27735001	 27740000	 BDNF	
11	 27740001	 27745000	 BDNF	
11	 45865001	 45870000	 CRY2	
11	 45870001	 45875000	 CRY2	
11	 45875001	 45880000	 CRY2	
11	 45880001	 45885000	 CRY2	
11	 45885001	 45890000	 CRY2	
11	 45890001	 45895000	 CRY2	
11	 45895001	 45900000	 CRY2	
11	 45900001	 45905000	 CRY2	
12	 16700001	 16705000	 LMO3	
12	 16715001	 16720000	 LMO3	
12	 16720001	 16725000	 LMO3	
12	 16725001	 16730000	 LMO3	
12	 16755001	 16760000	 LMO3	
12	 16760001	 16765000	 LMO3	
12	 107385001	 107390000	 CRY1	
12	 107390001	 107395000	 CRY1	
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Chromosome	 Start	 End	 Gene	 (continued)	
12	 107395001	 107400000	 CRY1	
12	 107405001	 107410000	 CRY1	
12	 107420001	 107425000	 CRY1	
12	 107440001	 107445000	 CRY1	
12	 107450001	 107455000	 CRY1	
12	 107470001	 107475000	 CRY1	
12	 107480001	 107485000	 CRY1	
12	 107485001	 107490000	 CRY1	
17	 8040001	 8045000	 PER1	
17	 8045001	 8050000	 PER1	
17	 8050001	 8055000	 PER1	
17	 8055001	 8060000	 PER1	
17	 47480001	 47485000	 PHB	
17	 47485001	 47490000	 PHB	
17	 47490001	 47495000	 PHB	
19	 46850001	 46855000	 PPP5C	
19	 46855001	 46860000	 PPP5C	
19	 46870001	 46875000	 PPP5C	
19	 46875001	 46880000	 PPP5C	
19	 46880001	 46885000	 PPP5C	
19	 46885001	 46890000	 PPP5C	
19	 46890001	 46895000	 PPP5C	
19	 46895001	 46900000	 PPP5C	
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Table S2. The associations of the examined regional DNA methylation elements annotated to the NTRK2 gene with lifetime PTSD risk. 

Regional methylation was calculated as mean value of DNA-methylation for CpGs annotated to every individual element at NTRK2 gene. 

Associations of NTRK2 gene regional methylation with lifetime PTSD risk was assessed in African Sample 1 (N = 463) and African Sample 2 (N 

= 350) with logistic regression. Fixed effects analysis t-statistics and nominal p-values are shown. The regional DNA methylation element 

surviving the multiple comparisons correction is marked with bold red font (chr9:87285001-87290000).  Elements present only on the EPIC 

array are marked with blue font. Effect sizes of NTRK2 regional DNA methylation are provided as Cohen’s f2 (90% CI). 

 

African_Sample_1	 	     

Chromosome	 Start	 End	 Gene	 T.statistic	 P.value	 Effect	Size	f2	

9	 87280001	 87285000	 NTRK2	 -2.582	 1.01E-02	 0.12 (0.04, 0.2)	
9	 87285001	 87290000	 NTRK2	 -3.758	 1.93E-04	 0.17 (0.1, 0.25)	
9	 87305001	 87310000	 NTRK2	 2.403	 1.67E-02	 0.11 (0.03, 0.19)	
9	 87310001	 87315000	 NTRK2	 -0.849	 3.96E-01	 0.03 (0, 0.11)	
9	 87315001	 87320000	 NTRK2	 -0.050	 9.60E-01	 0 (0, 0)	
9	 87320001	 87325000	 NTRK2	 0.245	 8.06E-01	 0.01 (0, 0.02)	
9	 87325001	 87330000	 NTRK2	 -0.259	 7.96E-01	 0.02 (0, 0.09)	
9	 87345001	 87350000	 NTRK2	 -0.051	 9.59E-01	 0 (0, 0.04)	

9	 87355001	 87360000	 NTRK2	 0.786	 4.33E-01	 0.04 (0, 0.11)	

9	 87360001	 87365000	 NTRK2	 -0.547	 5.85E-01	 0.01 (0, 0.07)	
9	 87365001	 87370000	 NTRK2	 0.153	 8.78E-01	 0 (0, 0.04)	
9	 87370001	 87375000	 NTRK2	 0.911	 3.63E-01	 0.04 (0, 0.11)	
9	 87395001	 87400000	 NTRK2	 0.530	 5.96E-01	 0.03 (0, 0.04)	
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African_Sample_1		 (continued)	     

Chromosome	 Start	 End	 Gene	 T.statistic	 P.value	 Effect	Size	f2	

9	 87400001	 87405000	 NTRK2	 -0.385	 7.00E-01	 0 (0, 0)	

9	 87430001	 87435000	 NTRK2	 1.158	 2.48E-01	 0.05 (0, 0.13)	
9	 87435001	 87440000	 NTRK2	 -0.215	 8.30E-01	 0 (0, 0.02)	
9	 87445001	 87450000	 NTRK2	 -1.423	 1.55E-01	 0.06 (0, 0.14)	
9	 87465001	 87470000	 NTRK2	 2.432	 1.54E-02	 0.11 (0.03, 0.19)	
9	 87475001	 87480000	 NTRK2	 0.988	 3.24E-01	 0.05 (0, 0.12)	
9	 87485001	 87490000	 NTRK2	 -0.268	 7.88E-01	 0.02 (0, 0.09)	
9	 87560001	 87565000	 NTRK2	 -0.171	 8.64E-01	 0.01 (0, 0.07)	
9	 87565001	 87570000	 NTRK2	 -0.841	 4.01E-01	 0.05 (0, 0.12)	
9	 87580001	 87585000	 NTRK2	 -0.105	 9.16E-01	 0 (0, 0.03)	
9	 87585001	 87590000	 NTRK2	 -1.141	 2.54E-01	 0.06 (0, 0.13)	
9	 87620001	 87625000	 NTRK2	 -0.416	 6.78E-01	 0.02 (0, 0.09)	
9	 87635001	 87640000	 NTRK2	 0.091	 9.28E-01	 0 (0, 0)	
	       

African_Sample_2	 	     

Chromosome	 Start	 End	 Gene	 T.statistic	 P.value	 Effect	Size	f2	

9	 87280001	 87285000	 NTRK2	 -1.324	 1.86E-01	 0.08 (0, 0.17)	
9	 87285001	 87290000	 NTRK2	 -3.072	 2.32E-03	 0.18 (0.08, 0.27)	
9	 87305001	 87310000	 NTRK2	 -1.103	 2.71E-01	 0.06 (0, 0.15)	
9	 87430001	 87435000	 NTRK2	 -0.758	 4.49E-01	 0.05 (0, 0.08)	
9	 87445001	 87450000	 NTRK2	 -1.724	 8.57E-02	 0.1 (0, 0.2)	
9	 87485001	 87490000	 NTRK2	 -0.974	 3.31E-01	 0.06 (0, 0.16)	
9	 87635001	 87640000	 NTRK2	 -2.505	 1.28E-02	 0.15 (0.06, 0.25)	
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Table S3.  NTRK2 regional DNA methylation element (chr9:87285001-87290000) 

associations with picture arousal and valence ratings, as well as depression and anxiety 

scores in the Swiss Sample.  

Subjects from the healthy Swiss Sample performed several different consecutive tasks as 

described in detail previously, including encoding task during which also emotional 

valence and arousal ratings of presented pictures was determined (3). Questionnaires 

were also used to determine Depression and Anxiety Scores (Montgomery-

Asberg Depression Rating Scale - MADRS & State-Trait Anxiety Inventory - STAI 

Trait; respectively). The association NTRK2 regional DNA methylation element 

(chr9:87285001-87290000) with picture arousal & valence ratings, as well as MADRS 

and STAI was assessed. Fixed effects analysis t-statistics and nominal p-values are 

shown. Effect sizes of NTRK2 regional DNA methylation are provided as Cohen’s f2 

(90% CI). 

 

Swiss	Sample	
(N=568) ‡	

Phenotype	 t-statistic	 p-value	 Effect	Size	f2	

Arousal	Ratings	 Negative	Pictures	 -0.04	 0.997	 0	(0,	0)	
	 Positive	Pictures	 -0.33	 0.741	 0.01	(0,	0.08)	

	 Neutral	Pictures	 -1.67	 0.092		 0.07	(0,	0.14)	
	 	 	 	 	

Valence	Ratings	 Negative	Pictures	 -1.58	 0.114	 0.07	(0,	0.14)	
	 Positive	Pictures	 1.57	 0.117	 0.07	(0,	0.14)	
	 Neutral	Pictures	 -0.94	 0.348		 0.04	(0,	0.11)	
	 	 	 	 	

Depression	 MADRS	Scale	 -0.56	 0.577	 0.02	(0,	0.09)	
	 	 	 	 	

Anxiety	 STAI	Trait	 0.27	 0.789	 0.01	(0,	0.07)	
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Table S4.   Significant associations between ICs’ subject scores and recognition memory 

performance in the Healthy Swiss Sample (N=498). 

 

IC	 t-statistic p-value	
IC4	 4.47	 9.63E-06	
IC7	 -7.84	 2.89E-14	
IC12	 8.42	 4.07E-16	
IC13	 -9.58	 4.80E-20	
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Table S5.     Anatomical distribution of the highest-loading voxels in IC13. Only clusters of 

more than 20 voxels are represented. The coverage is expressed as a percentage of the total 

number of gray matter voxels. Labels follow FreeSurfer’s Desikan atlas 

(http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/AnatomicalROI/FreeSurferColorLUT). 

 
cluster	 coverage	extreme	negative	loadings	
ctx_rh_supramarginal	 15.46%	
ctx_lh_supramarginal	 9.11%	
ctx_rh_superiorfrontal	 6.49%	
ctx_rh_rostralmiddlefrontal	 6.40%	
ctx_rh_precuneus	 6.09%	
ctx_rh_insula	 6.00%	
ctx_lh_superiortemporal	 5.55%	
ctx_rh_inferiorparietal	 5.33%	
ctx_lh_precuneus	 3.95%	
ctx_rh_middletemporal	 3.29%	
ctx_lh_insula	 3.15%	
ctx_rh_bankssts	 2.93%	
ctx_rh_parsopercularis	 2.93%	
ctx_rh_superiortemporal	 2.89%	
ctx_rh_posteriorcingulate	 2.44%	
ctx_rh_paracentral	 2.09%	
ctx_rh_precentral	 2.00%	
ctx_lh_precentral	 1.69%	
ctx_rh_superiorparietal	 1.42%	
ctx_rh_rostralanteriorcingulate	 1.38%	
ctx_rh_medialorbitofrontal	 1.33%	
ctx_lh_postcentral	 1.07%	
ctx_lh_paracentral	 0.98%	
ctx_lh_middletemporal	 0.93%	
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cluster	 coverage	extreme	positive	loadings	 (continued) 
ctx_lh_superiorfrontal	 19.35%	
ctx_lh_rostralmiddlefrontal	 12.11%	
ctx_lh_caudalmiddlefrontal	 11.92%	
ctx_lh_inferiorparietal	 11.36%	
ctx_lh_parsopercularis	 7.99%	
Right_Cerebellum_Cortex	 7.99%	
ctx_lh_parstriangularis	 7.95%	
ctx_lh_middletemporal	 3.74%	
ctx_lh_parsorbitalis	 3.27%	
ctx_lh_supramarginal	 3.27%	
ctx_lh_superiorparietal	 2.90%	
ctx_lh_precentral	 2.06%	
ctx_rh_superiorfrontal	 2.06%	
ctx_lh_lateralorbitofrontal	 1.82%	
ctx_lh_bankssts	 1.03%	
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Table S6.       Association of NTRK2 5’ regulatory region DNA methylation with the 

expression of the NTRK2 gene in a TCGA dataset.  

NTRK2 5’ regulatory region DNA methylation correlations with the expression of the 

NTRK2 gene across The Cancer Genome Atlas (TCGA) datasets. Correlation coefficients 

and nominal p-values are shown (http://www.unimd.org/dnmivd/, (37)).  

 
DNMIVD:	DNA	Methylation	Interactive	Visualization	Database	-	TCGA	datasets	
Dataset	 GeneSymbol	 Pearson_r	 Pearson_pvalue	 Spearman_r	 Spearman_pvalue	
BLCA	 NTRK2	 -0.195	 5.37E-05	 -0.206	 1.92E-05	
BRCA	 NTRK2	 -0.240	 0.00E+00	 -0.304	 4.81E-20	
CESC	 NTRK2	 -0.255	 5.70E-06	 -0.355	 1.00E-10	
CHOL	 NTRK2	 -0.077	 6.17E-01	 -0.220	 1.46E-01	
COAD	 NTRK2	 -0.290	 1.54E-07	 -0.437	 3.77E-16	
ESCA	 NTRK2	 -0.388	 1.60E-07	 -0.493	 0.00E+00	
GBM	 NTRK2	 -0.435	 3.29E-04	 -0.399	 1.09E-03	
HNSC	 NTRK2	 -0.220	 4.01E-07	 -0.216	 6.19E-07	
KIRC	 NTRK2	 -0.212	 7.76E-05	 -0.249	 3.22E-06	
KIRP	 NTRK2	 -0.022	 7.07E-01	 -0.143	 1.35E-02	
LIHC	 NTRK2	 -0.051	 3.01E-01	 0.104	 3.52E-02	
LUAD	 NTRK2	 -0.196	 1.59E-05	 -0.304	 0.00E+00	
LUSC	 NTRK2	 -0.321	 2.00E-10	 -0.314	 5.00E-10	
PAAD	 NTRK2	 -0.172	 2.02E-02	 -0.032	 6.64E-01	
PCPG	 NTRK2	 0.046	 5.35E-01	 -0.049	 5.04E-01	
PRAD	 NTRK2	 -0.023	 6.01E-01	 0.032	 4.67E-01	
READ	 NTRK2	 -0.252	 1.10E-02	 -0.444	 3.40E-06	
SARC	 NTRK2	 -0.159	 1.00E-02	 -0.226	 2.22E-04	
SKCM	 NTRK2	 -0.123	 7.79E-03	 -0.125	 6.85E-03	
STAD	 NTRK2	 -0.315	 3.50E-09	 -0.391	 0.00E+00	
THCA	 NTRK2	 -0.027	 5.22E-01	 -0.055	 1.96E-01	
THYM	 NTRK2	 -0.103	 2.61E-01	 -0.234	 9.84E-03	
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