Supporting Information

Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Density *Yuping Li^{1*}, Xi Chen¹, Alex Fok¹, Jose Carlos Rodriguez-Cabello², Conrado Aparicio^{1*}*

¹ Minnesota Dental Research Center for Biomaterials and Biomechanics, University of

Minnesota, Minneapolis, MN, USA;

²GIR Bioforge, University of Valladolid, Valladolid, Spain

*Corresponding Authors:

Conrado Aparicio and Yuping Li

Email: apari003@umn.edu and lixx1191@umn.edu

Figure S1. DSC analysis of a 50mg/ml solution of HSS₃.

Figure S2. SEM image of the cross-linked HSS₃ hydrogel showing a microporous structure.

Figure S3. SEM images of the fractured HSS₃ hydrogel after 14 days of mineralization (A) and bovine cortical bone (B).

Figure S4. SEM images of 50 mg/ml HSS₃ that was self-assembled at 37 °C.