A polysaccharide extract from the medicinal plant Maidong inhibits the IKK–NF- κ B pathway and IL-1 β –induced islet inflammation and increases insulin secretion

Dandan Mao¹, Xiao Yu Tian², Di Mao³, Sze Wan Hung³, Chi Chiu Wang³, Clara Bik San Lau⁴, Heung Man Lee¹, Chun Kwok Wong⁵, Elaine Chow^{1,6}, Ming Xing¹, Huanyi Cao¹, Ronald C. Ma^{1,7,8}, Paul K.S. Chan⁹, Alice P.S. Kong^{1,7,8}, Joshua J. X. Li¹⁰, Guy A. Rutter¹¹, Wing Hung Tam^{3*}, Juliana C.N. Chan^{1,7,8*}

¹Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR China, ²School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China, ³Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China, ⁴Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, ⁵Department of Chemical Pathology, ⁶Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, ⁷Hong Kong Institute of Diabetes and Obesity, ⁸Li Ka Shing Institute of Health Science and ⁹Department of Medical Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China, ¹⁰Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong SAR, China, ¹¹Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom and Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore.

*WH Tam and JCNC jointly supervised DM

Supplementary figures

Amino acids	Proportion		
	(mg/100g)		
ARG	197		
GLU	101		
ASP	87.7		
LYS	53.2		
VAL	32.7		
GLY	29.9		
SER	31.0		
ALA	24.4		
PRO	28.6		
LEU	23.3		
THR	19.5		
PHE	11.8		
Total amino	704		
acids			

Figure S1. Amino acids and monosaccharides components were identified in MPE.

Maidong (MD) sample was authenticated by comparing to MD standard (std) by chromatography under UV light (a) or sprayed by Anisaldehyde-sulphuric acid (b). The amino acids composition in Maidong polysaccharide (d&e) were compared to animo acid standards (c) by using the GB/T 14965-1994 method (Standard Method for Determination of Amino Acids in China). Monosaccharide (f) were also identified by using high-performance liquid chromatography (HPLC) analysis.

Figure S2. MPE has no effect on body weight, food intake and insulin tolerance in db/db mice.

Body weight (a) and food intake (b) were monitored weekly. Insulin tolerance test (ITT) (c) and glucose tolerance test (d) was performed after MP treatment for 4 weeks. Insulin secretion was measured (e) at OGTT.

Figure S3. 10-weeks of HFD feeding of C57 mice induce impaired glucose tolerance and insulin resistance, compared to normal chow diet fed mice. MPE has no effect on body weight, food intake and insulin tolerance in HFD-induced obese mice.

In Maidong polysaccharide extract pretreatment, oral glucose tolerance test (a) and insulin tolerance test (ITT) (b) were performed after 10 weeks of HFD feeding. Body weight (c) and food intake (d) were monitored weekly. Insulin tolerance test (ITT) (e) was performed after MP treatment for 4 weeks.

Figure S4. MPE decreases IL-1 β expression in pancreatic islets of *db/db* mice and HFD-induced obese mice.

(a) Immunofluorescence staining of IL-1 β and insulin in the pancreas of *db/db* mice (green: IL-1 β , red: insulin, blue: DAPI, magnification: ×200, white scalebar represent 100 µm). (b) Relative quantification of % of β -cell area stained positive for IL-1 β signal in *db/db* mice (c) Immunofluorescence staining of IL-1 β and insulin in the pancreas of HFD-induced obese mice. (d) Relative quantification of % of β -cell area stained positive for IL-1 β in HFD-induced obese mice by Image J software (n=5).

Figure S5. MPE has no effect on cell proliferation in HFD-induced obese mice.

Immunofluorescence staining of BrdU and DAPI in the pancreas of HFD-induced obese mice (red: BrdU, blue: DAPI, magnification: \times 400, white scalebar represent 100 μ m). White arrow represents positive signal in the islets.

Figure S6. The apoptosis-positive signal was not identifiable in HFD-induced obese mice with no change after MPE treatment

TUNEL assay of apoptosis in the pancreas of HFD-induced obese mice (magnification: $\times 400$, white scalebar represents 50 μ m).

Figure S7. MPE has no effect on lipid profile, glucagon like peptide (GLP-1), glucagon production and α glucosidase activity in HFD-induced obese mice and caspase 3 activity in MIN6 cells.

Serum triglyceride (a), high density lipoprotein cholesterol (HDL-C) (b), GLP-1 (c), glucagon (e) and α glucosidase activity (f) were measured after MP treatment for 4 weeks. Caspase 3 activity (d) was measured in the supernantant of MIN6 cells after treatment with MP for 72h.

Figure S8. MPE has no effect on GSIS in MIN6 cells treated with or without palmitate acid in time and dose dependent manner.

MIN6 cells were treated with MPE at concentration of 0, 0.5, 5, 50 and 500 μ g/mL for 24 (a), or 48h (b). After 48h-MPE-treatment, MIN6 cells were also treated with palmitate acid at concentration of 0.4 (c) or 0.8 (d) mg/mL for 24h. In figure e, after 24h-MP-treatment, MIN6 cells were also treated with palmitate acid at 0.8 mg/mL for 48h. GSIS was performed thereafter. BSA control represents vehicle group treated with bovine serum albumin for comparison with palmitate acid, which was dissolved in BSA.

A. Primers are used for RT-qPCR

Gene name	Primers		
il1b	Forward: GAAATGCCACCTTTTGACAGTG		
	Reverse: TGGATGCTCTCATCAGGACAG		
gapdh	Forward: AGGTCGGTGTGAACGGATTTG		
	Reverse: TGTAGACCATGTAGTTGAGGTCA		
csf-2	Forward: GGCCTTGGAAGCATGTAGAGG		
	Reverse: GGAGAACTCGTTAGAGACGACTT		
pik3cd	Forward: GTAAACGACTTCCGCACTAAGA		
	Reverse: GCTGACACGCAATAAGCCG		
pik3ca	Forward: CCACGACCATCTTCGGGTG		
	Reverse: ACGGAGGCATTCTAAAGTCACTA		
nfkb1	Forward: ATGGCAGACGATGATCCCTAC		
	Reverse: TGTTGACAGTGGTATTTCTGGTG		

B. Primary antibody were used for IF or WB.

Primary	Company	Catalogue	Dilution	Application
antibody		No.		
Insulin	DAKO, USA	A056401	1:700	IF
Glucagon	Abcam, UK	92518	518 1:300 IF	
IL-1β	Novus Biologicals,	NBP1-	1:300	IF
	US	19775		
BrdU	Abcam, UK	8152	1:200	IHC
phospho-P65	Abcam, UK	86299	1:500	WB
P65	Abcam, UK	7970-1	1:1000	WB
phospho-IĸB	Abcam, UK	133462	1:500	WB
ΙκΒ	Abcam, UK	32518	1:1000	WB
GAPDH	Cell Signaling Technology, USA	2118	1:5000	WB

C. Second antibody were used for IF or WB

Second antibody	Company	Catalogue	Dilution	Application
		No.		
goat anti-guinea pig 488	Invitrogen, USA	A11073	1:1400	IF
goat anti-rabbit 568	Invitrogen, USA	A-11011	1:400	IF
HRP-linked anti-rabbit	Cell Signaling Technology,	7074S	1:2000/	WB/ IHC
IgG	USA		1:400	
HRP-linked anti-mouse	Cell Signaling Technology,	7076S	1:2000	WB
IgG	USA			
goat anti-mouse 568	Invitrogen, USA	A-11004	1:400	IF

Table S1. Primers are used for RT-qPCR. Sequences are printed in the 5' to3'direction (A). Primary (B) and second antibody (C) were used for IF or WB.