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Figure S1. Simulation studies to evaluate the power of PAIRADISE with different RNA-seq read
counts and different numbers of replicates. (A-C) The area under curve (AUC) of PAIRADISE
with numbers of replicates equal to 3, 5, 10, 20, and 50; numbers of reads equal to 10, 20, 50, 100,
and 1000. We used three different variance settings corresponding to low, medium, and high
variability, with variance terms sampled from the Ist, 2nd, and 3rd quartiles of the empirical
variance estimated from the Geuvadis CEU dataset. (D-F) The true positive rate (TPR) at 5% false

positive rate (FPR) for various simulation settings.
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Figure S2. Simulation studies to compare the performance of PAIRADISE to Fisher’s exact test
using reads pooled from all replicates of the two alleles (“Fisher’s pooled”), in the absence or

presence of an outlier. (A—C) The area under curve (AUC) of both methods in simulation settings
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with numbers of replicates equal to 3, 5, 10, 20, and 50, and three settings of variability (low,

medium, and high) sampled from the first, second, and third quartiles of the empirical variance

estimated from the Geuvadis CEU dataset. (D-F) The true positive rate (TPR) at 5% false positive

rate (FPR) of both methods in various simulation settings. Solid lines and dashed lines denote

simulation settings without or with outlier, respectively.
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Figure S3. The minor allele frequency (MAF) of YRI ASAS SNPs in African and European
populations. The boxplots show the MAFs of the YRI ASAS SNPs in each of the five populations,
with the orange and blue boxplots representing ASAS SNPs of YRI ASAS events detected also in
European populations (“Shared”) or detected only in YRI (“YRI only”) respectively. The middle
line of the boxplot represents the median value. The low and high ends of the box represent the
25% and 75% quantile respectively. The two whiskers extend to the minimum and maximum value
respectively. The text above each boxplot shows the number of YRI ASAS SNPs with MAF=0 in

each population.
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Figure S4. Enrichment of ASAS SNPs for GWAS signals. In each dataset, the red vertical line
indicates the observed number of ASAS SNPs in high LD with GWAS SNPs. The density plot
shows the distribution of the expected number of control non-ASAP SNPs in high LD with GWAS
SNPs, based on 10,000 times of random sampling of control non-ASAP SNPs. Results from the

five Geuvadis populations (A-E) and GM 12878 (F) are shown.
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1 Supplementary Methods

1.1 PAIRADISE statistical model

Let I;;; be the number of RNA-seq reads corresponding to the exon inclusion isoform for
exon i,i = 1,...,n, replicate k,k = 1, ..., M and allele/group j,7 = 1,2. Similarly, define
Sijk to be the number of RNA-seq reads corresponding to the exon skipping isoform for
replicate k and allele j. PATRADISE uses a binomial distribution to model the estimation

uncertainty in individual replicates, i.e.

. gilwilk
I; ik ~ B itk = 1 Sik, Ditk = L
1| Vitk in (n 1k e + Sitk, Ditk Cortmn + G (1 — thuar) (1)
. gilwiZk’
Liok|Yior ~ B iok = 1 Siok, Diok = ’
i~ Bin (e = o+ S = s

l;; and {;5 are the effective lengths (the number of unique isoform-specific read positions)
of the inclusion isoform and skipping isoform respectively. 1);j; is the exon inclusion level

for replicate k in group j. To model the variability among replicates, let
logit (vi1x) = aur + €tk logit (vior) = aur + 0s + €on, (2)
where the subject effect for exon i, ayp, is assumed to follow a normal distribution
iid

ik ~ N(ps,02), k=1,...,M; (3)

in other words, the a;; all follow the same normal distribution with mean u; and variance

o2. In expression (2), we are assuming that
EilkziglN(OaO—in)’ Eigk%lN(O,O'z-Qz), k= 1,...,M, (4)

and that €;1; and €9, are independent of each other. The variable §; in (2) measures the

expected difference between logit(1r) and logit (1), i.e.

0; = E [logit(¢jor) — logit(viix)|cvir] -

Equations (2), (3), and (4) imply the following conditional distributions:
logit (1) |aik ~ N(air, 07)
logit (Vo) |k, 0 ~ N(cup + 0, 0%).
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The above setup yields the following joint distribution of logit(t;1) and logit(tex):

logit (1) IR I Qi i 0
([ logit (1o ) ] alk,all,amél) N (( Qg + 05 ) , ( 0 oh >> . ®)

1.2 Derivation of the likelihood function

PAIRADISE aims to test whether there is a significant difference in the means of the
distributions of logit(1;1x) and logit(¢;ox). Adopting the notation of hypothesis testing,
PAIRADISE tests the null hypothesis Hy : §; = 0 (no difference) against the alterna-
tive hypothesis H, : §; # 0 (there is a difference) using a likelihood ratio test. In the
PAIRADISE framework, I;1;, and I;5; are the observed data and ;1x, ¥k, and a; are all
regarded as latent, unobserved variables. In order to make inference about the parameter
0;, we must first derive an expression for the observed data likelihood. For a given exon ¢,
the complete data likelihood function (the likelihood of the observed and latent variables)
is given by

M

Hf(filk, Loy, logit (i), logit (viar ), ik |6;), (6)

k=1

where we have set 0; = (0;, 0;1, 042, 04, 1;) for notational simplicity. To derive an expression
for the observed data likelihood, we can integrate the latent variables out of the complete
data likelihood in (6) to obtain

M
1 ik, Lokl 03)
k=1

M
= H / f(Link, Liok, logit(vinx ), logit (iar ), cvir|0;)d logit (vinx) - dlogit(vigk) - dovig. — (7)
k=1

Since there is no closed-form expression for the integral in (7), we proceed by using Laplace’s
method to obtain an approximation of this integral. Let f; = log(f), and let ag, logit(@),
and logit(@) be the MLE’s of ay, logit(1;1x), and logit(¢ex). Then for k =1, ..., M,

/f([uk, Liok, logit (V) logit (ior ), cir|0;)d 1ogit(1i1x) - dlogit(wiar) - dovy
= /eXp(ﬁ(Iuk,]iQk,10git(¢i1k)710git(¢i2k),Oéisz'))dlogitwuk) - dlogit(vior) - devig
= / exp{ f1(Lik, Lok, logit (Viry), logit (Viar ), Gk 6)
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logit (1) — logit(@) / logit(¢1x) — logit(@)
-+ 5 10g1t(¢,2k) — 10g1t(¢z2k) Eik loglt(lﬁzgk) — loglt(@/)l%)
ik, — Qg i, — Qg
+ ol (logit (thi1x) — logit (Pi11))?) + o (logit(iax) — logit(tar))?)
+ o((a — aa)®)}  dlogit(ig) - dlogit(viok) - deviy

~ (2m)%2(—|Sa)) 2 exp{ fi Tk, Liow, logit (dynr), Logit ($rar), @ |6:) (8)
where
[ 82f1(2ik) azfl(zik) a2f1(zz‘k>
0logit” (k) 0logit(¢y)0logit(viar)  0logit(Yiik) ik
82f1(Zik) azfl(zz‘k) 32f1(2ik)
Yik = - . 0 ; , (9
0logit (¢11,)0 logit (o) 0 logit*(viar) 0 logit (o) Oy
82f1(2ik) a2f1(2ik) 32f1(2z'k)
(‘90%8 10g1t(¢11k) (90%8 IOglt(lngk) 8afk n

and where we have used the shorthand f;(zy) := fl(logit(qm), 1ogit(@), @il Lk, Liok, 0;)-
Note that the determinant of the above Hessian matrix is always negative (shown at the
end of the appendix). Combining (7) and (8) yields an expression for the observed data
likelihood:

M

Hf ik, Tk 0:) ~ C H —[ik) "2 Tk, Tiow, logit(ting), logit (Viag), @ 0)

or

Zlogf zlka 12k|6170-11a0-127ﬂ'170-1> ~

M=

1
{fl ilks z2k>10g1t(wzlk) loglt(%%) am|5u0117012,m,01) - 5108;(—\21'1@’)} +Cy (10)
k=1

for some constants C and Cs.

1.3 Optimization

Next, we outline an iterative procedure that will produce estimates ((’):1, Oi1, 032, Jli, ;) based
on the observed data log likelihood in (10). The optimization procedure consists of the

following steps:



1.3.1 Initializing the latent variables

For k =1, ..., M, initialize logit(1;1) and logit(¢);a;) from the individual binomial distribu-

tion of each replicate:

- . Liinlis . Lionlis
logit (%) = logit logit logit .
ogit(vuy) = logi (Imf&'s + Sirlir )’ o8t (wl%) o8t Lioklis + Siolir

—

Since logit (1) = iy + €;1x, One can set azk( ) — loglt(ibfl,l)

1.3.2 Estimating the parameters

Next, let t <~ 1 and proceed to the following step.

Step 1: Estimate the MLEs of the observed data likelihood based on the estimated values
of logit(wggl)) loglt(wz(% )), and a;,""Y. That is, maximize expression (10):

~

((5 Uzl ® O'AZ(t)ﬁzi(t)aUAi(t)) =

M
=) D)\~ (i 1
argmax Z <f1 ilks z2k,10glt(¢z1k ) IOglt(wz(zk )) & 1)\51701‘1,012,/%,%) 210g(—12t 1)‘))-

0i,041,042, 11,0 k=1

22&;1) is the Hessian matrix given in (9) where the partial derivatives are evaluated using

the estimates " loglt(qﬁz(lk )) and logit(wggl)).

—_ /\

Step 2: For k = 1,..., M, update the estimates azk() loglt(wl(lk) and loglt(w ) based on
the complete data likelihood (6) and the latest MLEs of 5 oy @ 55O JTAQNGACR

—

(logit (%), logit (1)), a3 ) =

{ ~ (logit (k) — ir)? _ (logit(¢iar) — cvir, — 5,12

argmax
20;,12(0 20;,22(1‘/)

logit (111 ),logit(Yiar) ik

Cirin Cis(1 —big) )
i log (ﬁmﬁﬂk + 4s(1 — ¢i1k)) ok 08 <£z’ﬂ/}i1k + lis(1 — k)

Ciriok ) ( lis(1 — jox) )
+ Il lo + Sz lo
208 <£il¢i2k + Cis(1 — jox) 2108 Cirthiog + Lis(1 — jor)
1

5 (it — ﬂi(t))2}-

QO'Z'




Step 3: Let t + t+ 1 and go to step 1. Iterate between steps 1 and 2 until the dif-
ference in log likelihoods between 2 consecutive iterations is smaller than some threshold
¢, say € = 1072, Use an optimization algorithm (e.g. L-BFGS-B or BOBYQA) to opti-
mize the likelihood function with the parameters o;1, 02, 0; constrained within (0, c0), and

ik, iy 07y logit (Yix ), logit(1hser ) unconstrained.

The above optimization procedure is performed for two cases: the unconstrained model,
and the model constrained under the null hypothesis (i.e. the model with §; = 0). The
likelihood-ratio test statistic then asymptotically (in M) follows a x? distribution with 1
degree of freedom:

—2(log Ls,—o — log L) ~ X,

where Ls,—o is the likelihood function under the null hypothesis and L is the likelihood

function under the alternative hypothesis.

1.4 Computing the Hessian >

The expressions for the partial derivatives in the Hessian matrix ¥;;, given in (9), evaluated

at @,logit(@m), logit(@), are given by

Pfilziw)  lirlisu(hiar = D) (Tng + San) 1 (11)

0logit® (Yirx) [Eiﬂ»&ilk: + lis(1 — @;ilk)]Q oh
Pfilzm) Cirlistion(Pioe — 1) (Tiak + Sio) 1 (12)
dlogit? (viar) Cirthion + Lis(1 — iox)]? ol
82](.1(21']{) . 1 1 1
it =gt )
Pfilzw)  _ Phl) 1
80%8 logit (¢11k) 8 logit (zﬁzlk)aalk 0'1'21
O f1(zin) _ 0 f1(zin) _ i
8aik8 logit (¢z2k> 8 logit (%gk)aa,k 0i22
82f1(zz‘k> anl(Zik)

8 lOgit (wllk)ﬁlogw (2/122]4) - 810g1t (2/122k)8 IOgit (wzlk) -

The determinant of |ZZ(Z)| is therefore given by the following expression:



)E@ _ 1 (i_gilfw@/;g;g(%% 1) (Ziar + Smk)) (i  LulisY G (5, — D (T + Sie)
RPNk [l + lis(1— )2 O [+ lis(1— )P
s (8 — D(lop + i) 1\ (1 1 1 1
' 0] —a\t et T e
4 u%gk + Lis(1 — i) Oi2 0ip  Ox» 0 (o)

1.5 Proof that the determinant of >;, is negative

To ease notation, rewrite the Hessian in (9) as

_ . 17
T —
2
i1
1
Eik = 0 T2 5
)
1 1
2 2
| 0i1 O3 J

where x1, x5 and x3 are defined as in (11), (12) and (13) (we ignore the indices i and k for

additional clarity). Next, let

gi[&S&ilk(&ilk — 1) (i + Si1x)
irviak + Lis(1 — ag))?

a); =

and R R
_ Cirlisiok (Vi — 1) (Liok, + Siok)
[Cirtiok + Lis(1 — o))
so that
1
T1=a] — —
1 1 0_7;21
and
1
To = A9 — —.
? ’ Uz‘22
It follows that
1= ‘7_% '211‘7‘22
det(Zlk) = (.933 — 1)1’11’2 + det
1 1
0'2 0'2 332 - OT
71742 72



T X2
= L1X2X3 — |~ T 1
2 031
1 1 1 1 1
= |5+ + | [ - ) e - =
‘ lor; o lor; p
7 71 2 21 2
. a1a9 aq i a9 1 a1Qa9
— T 2 T o2 o " a4 T a4 2 T2
01 01052 0351 0105 i2
a1Qa9 ay i a9 1 aq
2 2 2 2 2 2 92 2 4
0; 0;0; 0;0;1 0;0;105 T2
1 1 1 1
= —aiay —2—|——2—|——2 +a| 35—
i i1 O 11932

which follows since a1, as < 0.

aq 1 (05} 1
)|~ U_§L2 - 01'210142 0_141 - 01'220241
a9 1
o ‘71‘2101'22 N 02‘210142
a9 1 1
U_ﬁ N ‘7?1‘7142 - 0?2‘7;11
1 1 1 0
77) "Gt ) ~ <
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