The American Journal of Human Genetics, Volume 107

Supplemental Data

High Levels of Genetic Diversity

within Nilo-Saharan Populations:

Implications for Human Adaptation

Julius Mulindwa, Harry Noyes, Hamidou Ilboudo, Luca Pagani, Oscar Nyangiri, Magambo Phillip Kimuda, Bernardin Ahouty, Olivier Fataki Asina, Elvis Ofon, Kelita Kamoto, Justin Windingoudi Kabore, Mathurin Koffi, Dieudonne Mumba Ngoyi, Gustave Simo, John Chisi, Issa Sidibe, John Enyaru, Martin Simuunza, Pius Alibu, Vincent Jamonneau, Mamadou Camara, Andy Tait, Neil Hall, Bruno Bucheton, Annette MacLeod, Christiane Hertz-Fowler, Enock Matovu, and the TrypanoGEN Research Group of the H3Africa Consortium

Supplemental Data

Sequence Quality

Samples from five populations (CIV, GAS, UNL, UBB, DRC) were sequenced to 10X coverage and the remaining two populations (CAM and ZAM) were sequenced to 30X coverage.

There are two strategies within GATK for calling SNP from sequence data. 1) Combine the data from all samples and call SNP jointly and output just variant loci into a vcf file; 2) Call SNP on individual samples, output all loci into a gvcf file and combine the gvcf files later. The first strategy has the advantage of having more data to work with to assess quality metrics and cut-offs for SNP calling, however it is difficult to combine data that has been sequenced to different depths as different criteria need to be applied to each sample depending on depth of coverage. The second strategy is not affected by differences in sequence coverage and has the added advantage of making it easy to add data from additional samples as they become available without having to repeat the complete joint SNP calling on all samples. The second strategy was used in this project.

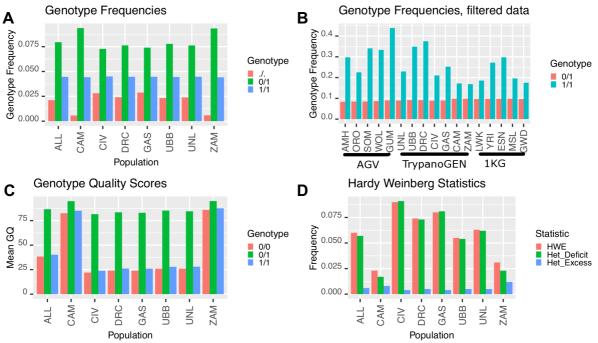


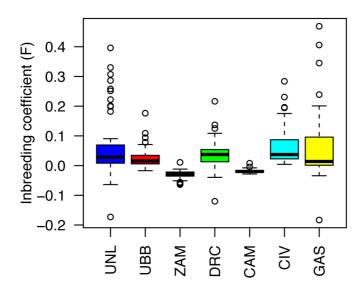
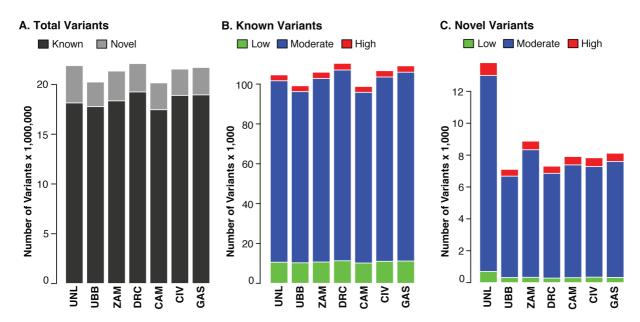
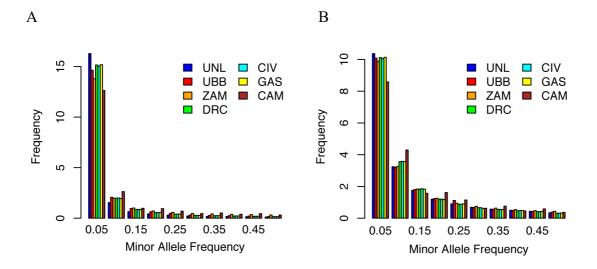
Figure S1. Sequence Quality Metrics by Sample Population. (A) Genotype frequencies before **filtering**, null genotypes are shown as (./.), heterozygotes (0/1) and homozygote alternate allele genotype (1/1). Homozygous reference genotypes (0/0) were the largest class (>80%) and are not shown for clarity. The small numbers of genotypes at multiallelic loci are also not shown. Note the lower frequency of null genotypes and higher frequency of heterozygotes in the Cameroon and Zambian (CAM and ZAM) populations, which were sequenced at 30X coverage whilst the other populations were sequenced at 10X. (B) Genotype frequencies after filtering and merging, heterozygotes (0/1) and homozygote minor (not alternate) genotypes (1/1), homozygous major genotypes (0/0) are not shown. Note that the frequency of heterozygotes is now very consistent across all populations irrespective of sequence depth, however the frequency of homozygous minor alleles is very variable across all data sources (C) Mean Genotype Quality scores before filtering and phasing. In the Cameroon and Zambian populations the Genotype quality scores were similar irrespective of genotype whilst in the populations sequenced at lower coverage the homozygote quality scores were substantially lower than the heterozygote scores. (D) Hardy Weinberg Statistics before filtering and phasing. The frequencies of loci with p < 0.05 are shown for three statistics: HWE, the Hardy Weinberg P value; Het Deficit, H_0 the number of heterozygotes is not less than expected; Het Excess, H₀ the number of heterozygotes is not greater than expected. The Cameroon

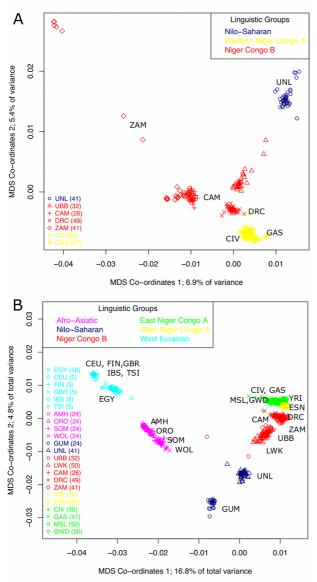
and Zambian populations had about a third of the number of loci that were not in hardy Weinberg Equilibrium as the other populations. In these two populations a higher proportion of loci that were not in Hardy Weinberg Equilibrium had an excess of heterozygotes and a lower proportion had a deficit of heterozygotes.

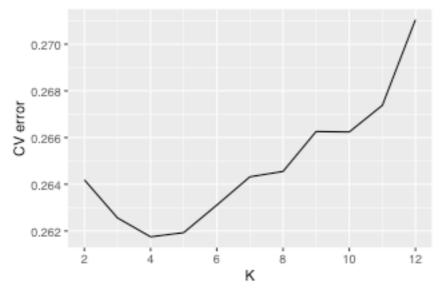
Figure S1 shows some descriptive statistics for sequence quality for each population and shows that there are clear differences between the samples sequenced at 30X (CAM and ZAM) and those sequenced at 10X before filtering and phasing however after filtering there were no differences that correlated with data source. Fig S1A shows that the frequency of null calls was much higher in the 10X-sequenced samples with a call rate of 97.4% in the 10X samples and 99.4% in the 30X samples. The 30X-sequenced samples also had higher proportions of heterozygotes (9.3%) compared with the 10X sequenced samples (7.5%). Therefore about 1.8% of homozygous calls are likely to be false and should have been called as heterozygotes. This is a known problem with low coverage data and is reflected in the Gentotype Quality (GQ) Scores for the different genotypes (Fig S1C). All samples had high GQ scores for heterozygote loci (Mean 10X = 84; Mean 30X=95), but the homozygotes had much lower scores in the 10X data (Mean 10X = 25; Mean 30X=85) reflecting the lower confidence that a heterozygote has not been missed with 10X data. After filtering and phasing (including imputation of missing data) (Fig S1B) all populations had very similar heterozygote frequencies irrespective of data source. Although the homozygous minor genotype frequency was very variable, it did not correlate with batch suggesting that this was genuine population variation rather than batch effect.

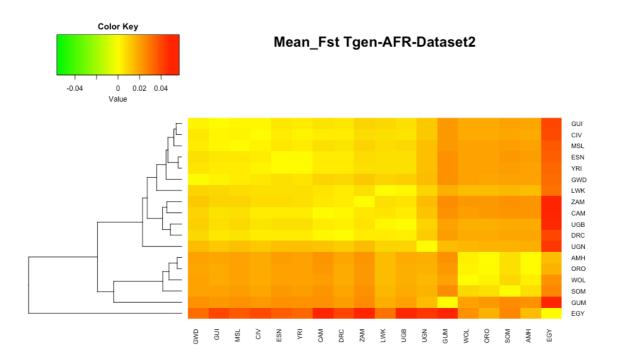
The higher frequency of missing heterozygotes in the 10X data before filtering and phasing is also reflected in the Hardy Weinberg statistics (Fig S1D); 2.7% of loci had p<0.05 for Hardy Weinberg equilibrium in the 30X data and 7.3% in the 10X data. Almost all of these loci in all datasets had a deficiency of heterozygotes (Fig S1C). Whilst it is expected that some loci will not be in Hardy-Weinberg equilibrium due to random sampling and also due to selection at some loci for particular alleles, the much higher frequency of loci with low Hardy-Weinberg P values in the 10X data reflects the rate of missing heterozygotes in the unfiltered data.

Despite the evidence that the 10X data quality was generally worse than the 30X quality there was very little evidence of this having a impact on the conclusions. The unfiltered data was only used for describing novel variants and their potential impacts. The filtering and phasing strategy generated a dataset with very similar heterozygote frequencies. The population analyses showed that geographically close populations from the same major linguistic group clustered tightly together irrespective of data source, demonstrating the success of the filtering strategy. In the multidimensional scaling analyses our West African samples (GAS, CIV) with 10X coverage clustered tightly with 1000 Genomes samples from West Africa (MSL, GWD) as expected and our UBB population from Uganda clustered tightly with the 1000 Genomes LWK samples from neighbouring Kenya. Furthermore in the Admixture analysis the number and size of ancestral components were very similar from adjacent 1000 Genomes and our data.


Figure S2. Heterozygosity analysis of the inbreeding coefficient within populations.


Figure S3. Classification of the genetic variation in the sequenced populations. A. The total number of both the Known (with dbSNP rsID) and Unknown/Novel (without dbSNP rsID) variants; The degree of impact on genome function, predicted by SnpEff, is shown for the Known (**B**) and Unknown/Novel (**C**) variants (see Table S6 for definitions of impacts). SNPs that were classified as "modifier" were mainly in intergenic regions and are excluded from the plot. Variants with multiple impact annotations were assigned to the highest impact annotation. (See Table S4 for the underlying data)


Figure S4. **A**. Minor allele frequency (MAF) distribution of Novel variants, **B**. MAF distribution of known variants.

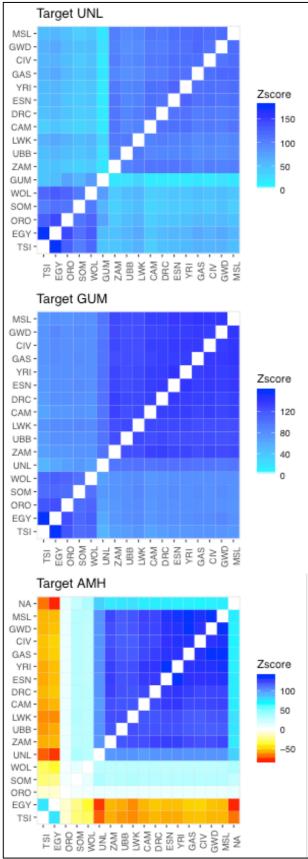

Figure S5. Multidimensional scaling analysis on (**A**) TrypanoGEN populations (**B**) African and European populations. Both plots include the 7 Zambian outlier samples that were excluded from Fig2A (but not Fig2B). In (A) the 7 outliers are widely dispersed but in (B) in the much larger context they cluster tightly with the remaining Zambian samples. The numbers in brackets beside each population indicate the number of individuals whose genomes were analysed.

Figure S6. Admixture analysis cross validation (CV) errors. Plot of the admixture cross validation error verses the number of clusters (K) for the TrypanoGEN, 1000 Genomes and AGVP dataset.

Figure S7. Heatmap of mean Fst between TrypanoGEN and 1000 genome African populations.

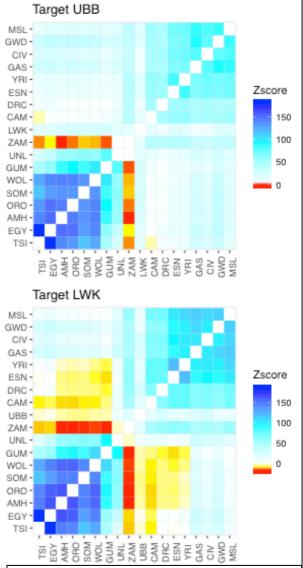
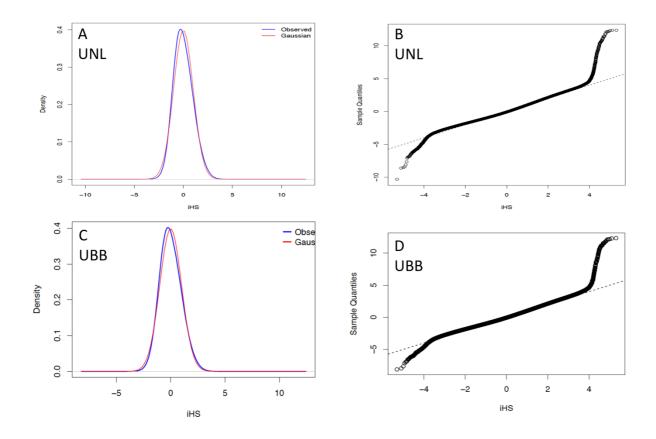
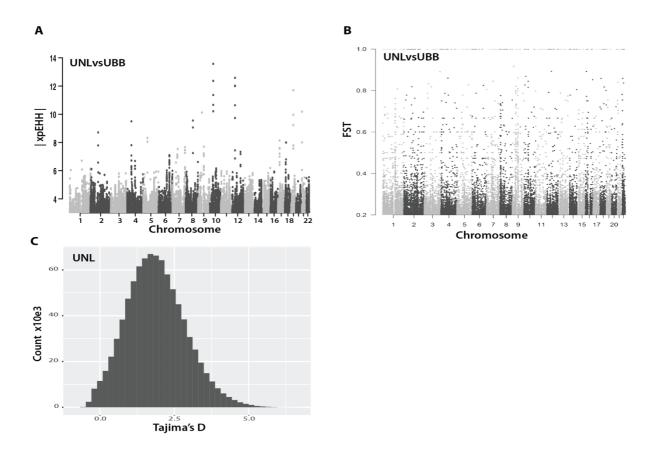




Figure S8. F3 tests to detect ancestral populations of the Lugbara (UNL), Basoga (UBB), Gumuz (GUN), Luhya (LWK) and Amhara (AMH) populations. Colour represents intensity of Z score for probability that a population contributes ancestral components to the target. Negative Z scores (yellow to red scale) are associated with increasingly strong evidence of a contribution and positive scores (cyan to blue) are associated with absence of evidence for a contribution.

Figure S9. Analysis for signatures of selection in the Uganda Lugbara and Basoga populations. The UNL population **A.** genome wide density distribution histogram of the observed iHS values with respect to the Gaussian model and **B.** Q-Q plot of the genome wide iHS distribution for which the top iHS>3.0 were considered for selection analysis. **C** and **D** are the genome wide distribution and Q-Q plots respectively for the UBB population.

Figure S10. Genome wide signatures of selection that are differentiated between the UNL and UBB populations. **A.** The cross population extended haplotype analysis showing the xpEHH > 3.0. **B.** Genome wide distribution of FST>0.2 between the UNL and UBB populations. **C.** Normal distribution of the Tajima's D scores within the UNL population.

Supplemental tables

Country	Code	Ethnicity	Language Family and Major Branch	Ethnologue code	No. of Samples	Sample Source
Uganda	UNL	Lugbara	Nilo-Saharan, Central Sudanic	lgg	50	Tgen
	UBB	Basoga	Atlantic-Congo, Benue-Congo	xog	33	Tgen
Zambia	ZAM	Soli/Chikunda	Atlantic-Congo, Benue-Congo	sby; kdn	25	Tgen
		Tumbuka	Atlantic-Congo, Benue-Congo	tum	13	Tgen
		Bemba	Atlantic-Congo, Benue-Congo	bem	3	Tgen
Congo	DRC	Kimbala	Atlantic-Congo, Benue-Congo	mdp	20	Tgen
		Kingongo	Atlantic-Congo, Benue-Congo	noq	30	Tgen
Cameroon	CAM	Bamilike	Atlantic-Congo, Benue-Congo	fmp	6	Tgen
		Mundani	Atlantic-Congo, Benue-Congo	mnf	8	Tgen
		Ngoumba	Atlantic-Congo, Benue-Congo	nmg	12	Tgen
Ivory Coast	CIV	Baoule	Atlantic-Congo, Kwa	bci	11	Tgen
		Gouro	Mande	goa	21	Tgen
		More	Mande	Moa	12	Tgen
		Senoufo	Atlantic-Congo, Senufo	sef	4	Tgen
		Malinke	Mande	loi	1	Tgen
		Koyaka	Mande	kga	1	Tgen
Guinea	GAS	Soussou	Mande	sus	50	Tgen
Ethiopia	GUM	Gumuz	Nilo-Saharan, Kumuz	guk	24	AGVP
	AMH	Amharic	Afro-Asiatic, Semitic	amh	24	AGVP
	ORO	Oromo	Afro-Asiatic, Cushitic	hae	24	AGVP
	WOL	Wolaytta	Afro-Asiatic, Omotic	wal	24	AGVP
	SOM	Somali	Afro-Asiatic, Cushitic	som	24	AGVP
Egypt	EGY	Arabic	Afro-Asiatic, Semitic	arz	50	AGVP
Gambia	GWD	Mandika	Mande	mnk	50	1000G
Sierra Leone	MSL	Mende	Mande	men	50	1000G
Nigeria	ESN	Esan	Atlantic-Congo, Volta-Niger	ish	50	1000G
	YRI	Yoruba	Atlantic-Congo, Volta-Niger	yor	50	1000G
Kenya	LWK	Luhya	Atlantic-Congo, Benue-Congo	luy	50	1000G

Table S1. Ethno-linguistic classification of samples used for analysis. The Code is the abbreviation used for the group in the text and legends. Codes were assigned as follows: 1) name in original publication if previously published, 2) TrypanoGEN samples from a single country that clustered together on the MDS plot were designated as a population and assigned an abbreviation. Where there was a single linguistic group in a cluster from a country we referred to the samples from that cluster by a three letter code that consisted of, 1. Country/ geographical localisation, 2. Major Ethnic group and 3. Linguistic group. Eg GAS for Guinea, Niger-Congo-A, Soussou. For other clusters from a country where there were samples from multiple linguistic groups we referred to those samples by a three letter code for the country.

Cameroon (CAM)			Ivory Coast (CIV)			Republic of Congo (DRC)			Uganda, Basoga (UBB)			Uganda Lu	gbara (UNI	L)		Zambia (ZAM)	Guinea (GAS)			
Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex	Seq_ID	Ethnicity	Sex
CB12	Ngoumba	Μ	CIV_1	Gouro	F	DRC_1	Kingongo	М	UGB013C	Basoga	F	UGN005T	Lugbara	F	ZC08	Tumbuka	М	GUI_1	Soussou	F
CB14	Ngoumba	F	CIV_10	BaoulÈ	М	DRC_10	Kingongo	F	UGB015C	Basoga	М	UGN006C	Lugbara	F	ZC09	Tumbuka	М	GUI_10	Soussou	М
CB15	Ngoumba	Μ	CIV_11	MorÈ	М	DRC_11	Kingongo	F	UGB020C	Basoga	М	UGN044T	Lugbara	М	ZC10	Tumbuka	М	GUI_11	Soussou	F
CB16	Ngoumba	М	CIV_12	MorÈ	F	DRC_12	Kingongo	F	UGB022C	Basoga	F	UGN045C	Lugbara	М	ZC11	Tumbuka	F	GUI_12	Soussou	F
CB17	Ngoumba	М	CIV_13	MorÈ	М	DRC_13	Kingongo	F	UGB029C	Basoga	F	UGN046T	Lugbara	М	ZC13	Tumbuka	М	GUI_13	Soussou	F
CB24	Ngoumba	М	CIV_14	MorÈ	F	DRC_14	Kimbala	F	UGB038C	Basoga	F	UGN048T	Lugbara	М	ZC14	Tumbuka	М	GUI_14	Soussou	М
CB29	Ngoumba	М	CIV_15	Gouro	М	DRC_15	Kingongo	F	UGB039C	Basoga	F	UGN063T	Lugbara	F	ZC22	Tumbuka	F	GUI_15	Soussou	F
CB31	Ngoumba	М	CIV_16	Gouro	М	DRC_16	Kingongo	М	UGB040C	Basoga	F	UGN064C	Lugbara	F	ZC23	Tumbuka	М	GUI_16	Soussou	F
CB32	Ngoumba	F	CIV_17	Gouro	М	DRC_17	Kingongo	М	UGB044C	Basoga	М	UGN065C	Lugbara	F	ZC24	Tumbuka	М	GUI_18	Soussou	F
CB33	Ngoumba	F	CIV_18	Gouro	М	DRC_18	Kingongo	F	UGB046C	Basoga	F	UGN068C	Lugbara	М	ZC25	Tumbuka	М	GUI_2	Soussou	М
CB7	Ngoumba	F	CIV_19	MorÈ	F	DRC_19	Kingongo	М	UGB047C	Basoga	F	UGN069T	Lugbara	М	ZC26	Tumbuka	М	GUI_20	Soussou	М
CF24	Mundani	Μ	CIV_2	BaoulÈ	М	DRC_2	Kimbala	F	UGB049C	Basoga	F	UGN070C	Lugbara	М	ZC27	Tumbuka	F	GUI_21	Soussou	F
CF25	Mundani	Μ	CIV_20	BaoulÈ	F	DRC_20	Kingongo	F	UGB050C	Basoga	F	UGN071T	Lugbara	М	ZC28	Tumbuka	F	GUI_23	Soussou	М
CF26	Mundani	F	CIV_21	MorÈ	F	DRC_21	Kingongo	М	UGB051C	Basoga	F	UGN072C	Lugbara	М	ZM18	Bemba	М	GUI_24	Soussou	М
CF27	Mundani	Μ	CIV_22	Gouro	F	DRC_22	Kingongo	F	UGB056C	Basoga	F	UGN073C	Lugbara	М	ZM20	Bemba	М	GUI_25	Soussou	F
CF30	Mundani	М	CIV_23	Gouro	М	DRC_23	Kingongo	М	UGB059C	Basoga	F	UGN074T	Lugbara	F	ZM21	Bemba	F	GUI_26	Soussou	М
CF37	Mundani	М	CIV_24	Gouro	F	DRC_24	Kingongo	М	UGB062C	Basoga	М	UGN075C	Lugbara	F	ZR01	Soli/Chikunda	М	GUI_29	Soussou	М
CF46	Mundani	F	CIV_25	Gouro	М	DRC_25	Kingongo	М	UGB066C	Basoga	М	UGN076T	Lugbara	F	ZR02	Soli/Chikunda	М	GUI_3	Soussou	М
CF49	Mundani	F	CIV_26	Gouro	М	DRC_26	Kingongo	F	UGB067C	Basoga	М	UGN077C	Lugbara	F	ZR04	Soli/Chikunda	М	GUI_30	Soussou	М
CP17	Bamilike	F	CIV_27	Gouro	М	DRC_27	Kimbala	М	UGB068C	Basoga	F	UGN079C	Lugbara	F	ZR05	Soli/Chikunda	М	GUI_31	Soussou	М
CP28	Ngoumba	М	CIV_28	Gouro	М	DRC_28	Kingongo	F	UGB071C	Basoga	М	UGN080C	Lugbara	F	ZR06	Soli/Chikunda	М	GUI_32	Soussou	F
CP36	Bamilike	F	CIV_29	Gouro	М	DRC_29	Kingongo	М	UGB072C	Basoga	F	UGN082C	Lugbara	М	ZR07	Soli/Chikunda	М	GUI_33	Soussou	F
CP38	Bamilike	Μ	CIV_3	BaoulÈ	М	DRC_3	Kimbala	F	UGB073C	Basoga	F	UGN088C	Lugbara	М	ZR29	Soli/Chikunda	F	GUI_34	Soussou	М
CP40	Bamilike	F	CIV_30	MorÈ	М	DRC_30	Kimbala	F	UGB074C	Basoga	F	UGN090C	Lugbara	М	ZR30	Soli/Chikunda	F	GUI_35	Soussou	F
CP48	Bamilike	F	CIV_35	BaoulÈ	F	DRC_31	Kimbala	F	UGB077C	Basoga	F	UGN091C	Lugbara	М	ZR31	Soli/Chikunda	F	GUI_36	Soussou	F
CP9	Bamilike	Μ	CIV_36	Koyaka	F	DRC_32	Kimbala	F	UGB079C	Basoga	F	UGN092C	Lugbara	М	ZR32	Soli/Chikunda	М	GUI_37	Soussou	М

CIV_37	BaoulÈ	F	DRC_33	Kimbala	М	UGB105C	Basoga	F	UGN093C	Lugbara	М	ZR33	Soli/Chikunda	F	GUI_38	Soussou	F	l
CIV_38	BaoulÈ	М	DRC_34	Kingongo	М	UGB350C	Basoga	F	UGN098C	Lugbara	М	ZR34	Soli/Chikunda	М	GUI_39	Soussou	F	l
CIV_39	SÈnoufo	М	DRC_35	Kingongo	М	UGB351C	Basoga	Μ	UGN099C	Lugbara	F	ZR35	Soli/Chikunda	F	GUI_4	Soussou	М	I
CIV_4	Gouro	М	DRC_36	Kingongo	F	UGB369C	Basoga	Μ	UGN100C	Lugbara	F	ZR36	Soli/Chikunda	М	GUI_40	Soussou	М	l
CIV_40	Gouro	F	DRC_37	Kingongo	F	UGB371C	Basoga	F	UGN105C	Lugbara	М	ZR37	Soli/Chikunda	М	GUI_41	Soussou	F	l
CIV_41	More	F	DRC_38	Kingongo	М	UGB383C	Basoga	Μ	UGN106C	Lugbara	М	ZR38	Soli/Chikunda	М	GUI_42	Soussou	F	l
CIV_42	BaoulÈ	М	DRC_39	Kimbala	М	UGB386C	Basoga	М	UGN107C	Lugbara	М	ZR39	Soli/Chikunda	F	GUI_43	Soussou	М	
CIV_43	MorÈ	М	DRC_4	Kimbala	F				UGN109C	Lugbara	М	ZR40	Soli/Chikunda	F	GUI_44	Soussou	F	l
CIV_44	BaoulÈ	F	DRC_40	Kimbala	М				UGN113T	Lugbara	F	ZR41	Soli/Chikunda	М	GUI_45	Soussou	М	l
CIV_45	Gouro	М	DRC_41	Kimbala	F				UGN114C	Lugbara	F	ZR42	Soli/Chikunda	М	GUI_46	Soussou	F	l
CIV_48	BaoulÈ	М	DRC_42	Kimbala	М				UGN115C	Lugbara	F	ZR43	Soli/Chikunda	F	GUI_47	Soussou	М	
CIV_49	SÈnoufo	F	DRC_43	Kimbala	F				UGN124T	Lugbara	М	ZR44	Soli/Chikunda	F	GUI_48	Soussou	М	
CIV_5	Gouro	М	DRC_44	Kimbala	М				UGN125T	Lugbara	М	ZR46	Soli/Chikunda	М	GUI_49	Soussou	F	
CIV_50	Gouro	М	DRC_45	Kingongo	М				UGN127C	Lugbara	F	ZR47	Soli/Chikunda	F	GUI_5	Soussou	М	
CIV_51	Gouro	F	DRC_46	Kimbala	F				UGN134T	Lugbara	М	ZR49	Soli/Chikunda	М	GUI_50	Soussou	F	
CIV_52	ND	М	DRC_47	Kimbala	М				UGN136T	Lugbara	F				GUI_51	Soussou	F	
CIV_53	Gouro	М	DRC_48	Kingongo	F				UGN137C	Lugbara	F				GUI_52	Soussou	F	
CIV_54	SÈnoufo	М	DRC_49	Kingongo	М				UGN140T	Lugbara	F				GUI_53	Soussou	F	
CIV_55	Gouro	М	DRC_5	Kimbala	М				UGN142T	Lugbara	F				GUI_54	Soussou	F	
CIV_56	MorÈ	М	DRC_50	Kingongo	F				UGN144T	Lugbara	М				GUI_55	Soussou	М	
CIV_6	Gouro	М	DRC_6	Kimbala	F				UGN148T	Lugbara	F				GUI_6	Soussou	М	
CIV_7	MalinkÈ	М	DRC_7	Kingongo	F				UGN153T	Lugbara	М				GUI_7	Soussou	F	
CIV_8	MorÈ	F	DRC_8	Kingongo	F				UGN157T	Lugbara	F				GUI_8	Soussou	F	
CIV_9	BaoulÈ	F	DRC_9	Kimbala	F				UGN185C	Lugbara	М				GUI_9	Soussou	М	1

Table S2. Sample sequence identifier, ethnicity and sex of each participant whose DNA was sequenced

Filter	Count Loci
Total Loci Discovered	38,963,563
Minor allele count < 3	16,840,310
MAF < 0.01	4,764,259
pHWE < 0.001	1,106,883
Missing genotype data > 0.1	306,271
Total loci passing QC	15,945,840

Table S3 Number of loci discovered and number removed by each filter. Note that the number of loci removed by a given filter will depend on the order in which filters are applied. We have listed filters in order of effect size.

Variants	ZAM*	UBB	CIV	CAM*	DRC	GAS	UNL
Total variants	21,346,657	20,244,883	21,546,091	20,154,485	22,100,090	21,703,906	21,891,961
Known_variants	18,348,704	17,773,731	18,895,407	17,466,021	19,245,113	18,948,607	18,145,718
Novel_variants	2,997,953	2,471,152	2,650,684	2,688,464	2,854,977	2,755,299	3,746,243
Known_low	10,705	10,316	11,046	10,187	11,337	11,207	10,626
Known_modifier	18,242,755	17,674,567	18,788,695	17,367,207	19,134,729	18,839,449	18,040,733
Known_moderate	92,096	85,916	92,517	85,651	95,710	94,746	91,028
Known_high	3,147	2,931	3,148	2,975	3,336	3,204	2,981
Novel_low	339	323	347	312	285	330	702
Novel_modifier	2,989,075	2,464,046	2,642,851	2,680,549	2,847,670	2,747,181	3,732,449
Novel_moderate	7,996	6,357	6,933	7,073	6,569	7,271	12,290
Novel_high	543	426	553	530	453	517	802

Table S4. The number of variants obtained from the mapping and variant calling pipeline for each population. All samples were sequenced at 10X coverage except those from *Zambia and *Cameroon, which were at 30X coverage. The variants that were annotated with a dbSNP rsID were termed 'Known_variants' whereas those without were termed 'Novel_variants'. The impact of the genomic variant as annotated by SnpEff were classified as 'Low', 'Modifier', 'Moderate' or 'High' based on their effect on transcription and/or translation. The Low impact variant features result in changes/mutations in the start & stop codons, splice site regions; Modifier variants affected mainly intergenic regions; Moderate impact variants features result in codon change, 3' & 5' UTR truncation exon loss, splice site branch region for U12 splicing machinery; High impact variant features occur in and affect chromosome deletion, exon deletion, frame shift, rare amino acid, splice site acceptor and donor, loss or gain of stop & start codons. Details of the classification are in table S6.

	AMH	CAM	CIV	DRC	EGY	ESN	GAS	GUM	GWD	LWK	MSL	ORO	SOM	UBB	UNL	WOL	YRI	ZAM
AMH	0.00000	0.04689	0.04462	0.04450	0.01703	0.04737	0.04450	0.04232	0.04470	0.03643	0.04676	0.00047	0.00981	0.03977	0.03659	0.00471	0.04624	0.04941
CAM	0.04689	0.00000	0.00585	0.00265	0.08740	0.00490	0.00732	0.03969	0.00908	0.00593	0.00680	0.04349	0.04284	0.00521	0.01585	0.03909	0.00454	0.00618
CIV	0.04462	0.00585	0.00000	0.00473	0.08127	0.00508	0.00242	0.04155	0.00604	0.00913	0.00366	0.04173	0.04163	0.00709	0.01734	0.03841	0.00375	0.01023
DRC	0.04450	0.00265	0.00473	0.00000	0.08183	0.00541	0.00644	0.03993	0.00949	0.00582	0.00769	0.04151	0.04112	0.00380	0.01581	0.03783	0.00497	0.00599
EGY	0.01703	0.08740	0.08127	0.08183	0.00000	0.08210	0.08120	0.08816	0.07802	0.07190	0.08220	0.01992	0.03472	0.07931	0.07969	0.03098	0.08066	0.08793
ESN	0.04737	0.00490	0.00508	0.00541	0.08210	0.00000	0.00716	0.04328	0.00710	0.00750	0.00513	0.04448	0.04397	0.00841	0.01980	0.04116	0.00080	0.00903
GAS	0.04450	0.00732	0.00242	0.00644	0.08120	0.00716	0.00000	0.04155	0.00343	0.01024	0.00278	0.04159	0.04154	0.00844	0.01790	0.03816	0.00581	0.01155
GUM	0.04232	0.03969	0.04155	0.03993	0.08816	0.04328	0.04155	0.00000	0.04254	0.03244	0.04236	0.03827	0.04041	0.03446	0.02525	0.03203	0.04235	0.04339
GWD	0.04470	0.00908	0.00604	0.00949	0.07802	0.00710	0.00343	0.04254	0.00000	0.01032	0.00360	0.04191	0.04166	0.01136	0.02030	0.03902	0.00589	0.01293
LWK	0.03643	0.00593	0.00913	0.00582	0.07190	0.00750	0.01024	0.03244	0.01032	0.00000	0.00912	0.03361	0.03336	0.00210	0.01258	0.03016	0.00690	0.00773
MSL	0.04676	0.00680	0.00366	0.00769	0.08220	0.00513	0.00278	0.04236	0.00360	0.00912	0.00000	0.04384	0.04350	0.00990	0.01993	0.04017	0.00395	0.01096
ORO	0.00047	0.04349	0.04173	0.04151	0.01992	0.04448	0.04159	0.03827	0.04191	0.03361	0.04384	0.00000	0.00885	0.03676	0.03335	0.00354	0.04344	0.04621
SOM	0.00981	0.04284	0.04163	0.04112	0.03472	0.04397	0.04154	0.04041	0.04166	0.03336	0.04350	0.00885	0.00000	0.03644	0.03191	0.01122	0.04289	0.04566
UBB	0.03977	0.00521	0.00709	0.00380	0.07931	0.00841	0.00844	0.03446	0.01136	0.00210	0.00990	0.03676	0.03644	0.00000	0.01191	0.03279	0.00778	0.00723
UNL	0.03659	0.01585	0.01734	0.01581	0.07969	0.01980	0.01790	0.02525	0.02030	0.01258	0.01993	0.03335	0.03191	0.01191	0.00000	0.02929	0.01890	0.02013
WOL	0.00471	0.03909	0.03841	0.03783	0.03098	0.04116	0.03816	0.03203	0.03902	0.03016	0.04017	0.00354	0.01122	0.03279	0.02929	0.00000	0.04014	0.04206
YRI	0.04624	0.00454	0.00375	0.00497	0.08066	0.00080	0.00581	0.04235	0.00589	0.00690	0.00395	0.04344	0.04289	0.00778	0.01890	0.04014	0.00000	0.00861
ZAM	0.04941	0.00618	0.01023	0.00599	0.08793	0.00903	0.01155	0.04339	0.01293	0.00773	0.01096	0.04621	0.04566	0.00723	0.02013	0.04206	0.00861	0.00000

Table S5A. Matrix of the weighted F_{ST} statistic values between the TrypanoGEN, 1000 genomes and AGVP data sets

		AFR	AMR	AMR	AMR	AMR	EAS	EAS	EAS	EAS	EAS	EUR	EUR	EUR	EUR	EUR	SAS	SAS	SAS	SAS	SAS						
Super	рор	ACB	ASW	ESN	GWD	LWK	MSL	YRI	CLM	MXL	PEL	PUR	CDX	CHB	CHS	JPT	KHV	CEU	FIN	GBR	IBS	TSI	BEB	GIH	ITU	PJL	STU
AFR	ACB		0.002	0.003	0.006	0.006	0.004	0.002	0.082	0.095	0.127	0.071	0.129	0.130	0.131	0.131	0.127	0.103	0.107	0.103	0.099	0.101	0.094	0.097	0.096	0.093	0.095
AFR	ASW	0.002		0.009	0.010	0.009	0.010	0.008	0.064	0.078	0.110	0.053	0.116	0.116	0.117	0.117	0.113	0.085	0.088	0.085	0.081	0.083	0.077	0.080	0.079	0.076	0.079
AFR	ESN	0.003	0.009		0.007	0.008	0.005	0.001	0.106	0.119	0.149	0.094	0.150	0.151	0.152	0.152	0.148	0.130	0.133	0.130	0.126	0.127	0.116	0.120	0.119	0.117	0.118
AFR	GWD	0.006	0.010	0.007		0.011	0.004	0.006	0.101	0.114	0.143	0.089	0.145	0.146	0.147	0.147	0.143	0.124	0.127	0.124	0.120	0.121	0.112	0.115	0.114	0.112	0.113
AFR	LWK	0.006	0.009	0.008	0.011		0.009	0.007	0.096	0.109	0.139	0.084	0.140	0.141	0.142	0.142	0.138	0.119	0.122	0.119	0.115	0.116	0.106	0.110	0.109	0.106	0.108
AFR	MSL	0.004	0.010	0.005	0.004	0.009		0.004	0.106	0.119	0.149	0.094	0.151	0.152	0.154	0.153	0.149	0.130	0.134	0.130	0.126	0.128	0.117	0.121	0.119	0.117	0.119
AFR	YRI	0.002	0.008	0.001	0.006	0.007	0.004		0.104	0.117	0.146	0.092	0.148	0.149	0.150	0.150	0.146	0.128	0.131	0.128	0.124	0.125	0.115	0.119	0.117	0.115	0.117
AMR	CLM	0.082	0.064	0.106	0.101	0.096	0.106	0.104		0.009	0.035	0.005	0.068	0.064	0.067	0.066	0.064	0.014	0.017	0.014	0.013	0.014	0.026	0.026	0.029	0.022	0.029
AMR	MXL	0.095	0.078	0.119	0.114	0.109	0.119	0.117	0.009		0.016	0.017	0.064	0.058	0.061	0.059	0.060	0.032	0.033	0.033	0.032	0.033	0.033	0.035	0.037	0.031	0.037
AMR	PEL	0.127	0.110	0.149	0.143	0.139	0.149	0.146	0.035	0.016		0.051	0.079	0.072	0.075	0.073	0.075	0.077	0.074	0.077	0.078	0.078	0.063	0.068	0.068	0.065	0.068
AMR	PUR	0.071	0.053	0.094	0.089	0.084	0.094	0.092	0.005	0.017	0.051		0.073	0.070	0.072	0.072	0.069	0.010	0.015	0.010	0.008	0.009	0.026	0.025	0.028	0.021	0.028
EAS	CDX	0.129	0.116	0.150	0.145	0.140	0.151	0.148	0.068	0.064	0.079	0.073		0.008	0.005	0.016	0.002	0.094	0.089	0.094	0.093	0.093	0.050	0.066	0.062	0.063	0.060
EAS	СНВ	0.130	0.116	0.151	0.146	0.141	0.152	0.149	0.064	0.058	0.072	0.070	0.008		0.001	0.007	0.006	0.091	0.085	0.092	0.091	0.091	0.049	0.064	0.060	0.062	0.059
EAS	CHS	0.131	0.117	0.152	0.147	0.142	0.154	0.150	0.067	0.061	0.075	0.072	0.005	0.001		0.008	0.003	0.093	0.088	0.094	0.093	0.093	0.050	0.065	0.062	0.063	0.060
EAS	JPT	0.131	0.117	0.152	0.147	0.142	0.153	0.150	0.066	0.059	0.073	0.072	0.016	0.007	0.008		0.013	0.093	0.087	0.093	0.092	0.093	0.051	0.065	0.062	0.063	0.060
EAS	KHV	0.127	0.113	0.148	0.143	0.138	0.149	0.146	0.064	0.060	0.075	0.069	0.002	0.006	0.003	0.013		0.090	0.085	0.090	0.089	0.089	0.047	0.062	0.058	0.059	0.056
EUR	CEU	0.103	0.085	0.130	0.124	0.119	0.130	0.128	0.014	0.032	0.077	0.010	0.094	0.091	0.093	0.093	0.090		0.006	0.000	0.002	0.003	0.035	0.031	0.036	0.025	0.036
EUR	FIN	0.107	0.088	0.133	0.127	0.122	0.134	0.131	0.017	0.033	0.074	0.015	0.089	0.085	0.088	0.087	0.085	0.006		0.007	0.010	0.011	0.035	0.032	0.037	0.027	0.037
EUR	GBR	0.103	0.085	0.130	0.124	0.119	0.130	0.128	0.014	0.033	0.077	0.010	0.094	0.092	0.094	0.093	0.090	0.000	0.007		0.002	0.004	0.035	0.031	0.036	0.026	0.037
EUR	IBS	0.099	0.081	0.126	0.120	0.115	0.126	0.124	0.013	0.032	0.078	0.008	0.093	0.091	0.093	0.092	0.089	0.002	0.010	0.002		0.002	0.035	0.031	0.036	0.026	0.036
EUR	TSI	0.101	0.083	0.127	0.121	0.116	0.128	0.125	0.014	0.033	0.078	0.009	0.093	0.091	0.093	0.093	0.089	0.003	0.011	0.004	0.002		0.034	0.030	0.034	0.025	0.035
SAS	BEB	0.094	0.077	0.116	0.112	0.106	0.117	0.115	0.026	0.033	0.063	0.026	0.050	0.049	0.050	0.051	0.047	0.035	0.035	0.035	0.035	0.034		0.004	0.002	0.003	0.002
SAS	GIH	0.097	0.080	0.120	0.115	0.110	0.121	0.119	0.026	0.035	0.068	0.025	0.066	0.064	0.065	0.065	0.062	0.031	0.032	0.031	0.031	0.030	0.004		0.004	0.004	0.004
SAS	ITU	0.096	0.079	0.119	0.114	0.109	0.119	0.117	0.029	0.037	0.068	0.028	0.062	0.060	0.062	0.062	0.058	0.036	0.037	0.036	0.036	0.034	0.002	0.004		0.003	0.001
SAS	PJL	0.093	0.076	0.117	0.112	0.106	0.117	0.115	0.022	0.031	0.065	0.021	0.063	0.062	0.063	0.063	0.059	0.025	0.027	0.026	0.026	0.025	0.003	0.004	0.003		0.003
SAS	STU	0.095	0.079	0.118	0.113	0.108	0.119	0.117	0.029	0.037	0.068	0.028	0.060	0.059	0.060	0.060	0.056	0.036	0.037	0.037	0.036	0.035	0.002	0.004	0.001	0.003	

Table S5B. Matrix of the weighted F_{ST} statistic values between the global 1000 genomes populations for comparison with African distances. Thecomparisons within super populations are highlighted in yellow and summarised in Table S5C below

	Max Fst	Mean Fst
Africa	0.0105	0.0063
Americas	0.0509	0.0222
East Asia	0.0160	0.0069
West Eurasia	0.0112	0.0047
South Asia	0.0043	0.0032

Table S5C. Summary of weighted F_{ST} statistic values within super populations of 1000 Genomes samples. Note the high values for F_{ST} within the Americas, which are presumably due to high levels of admixture. Although the values for Africa are similar to the values for the major Eurasian groups it should be remembered that the 1000 Genomes project only included samples from the Niger-Congo linguistic group and the other major linguistic groups were not represented.

Supplemental Excel Spreadsheets

Table S6. snpEff classification of effect of SNP and its impact.

Table S7. Genome wide distribution of extreme signatures of selection in the UNL. Ensembl annotations of the coding and non-coding regions of the genome harbouring extreme iHS scores (positive iHS > +3.0, negative iHS < -3).

Table S8. Protein coding genes under positive selection in the UNL. A list of unique genes having extreme iHS scores (> +3.0) including those that intersect with the UBB population.

Table S9. Top hits of significant genes in UNL. Top hits of significant genes in UNL. Genes in the 1% of 100kb bins with highest frequencies of SNP with absolute iHS > 2.

Table S10. Top hits of significant genes unique to the UNL. Genes in top 1% of 100kb bins from table S9 that are only present in the UNL and not found in the UBB population.

Table S11. Top hits of significant genes highly differentiated between the UNL and UBB. Genes were ranked individually on the parameters of xpEHH [UNL-UBB], high Fst [UNL-UBB], and Tajima's D [UNL], and then a combined rank was obtained by summation of the individual ranks.