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Interpretable Clinical Genomics
with a Likelihood Ratio Paradigm

Peter N. Robinson,1,2,* Vida Ravanmehr,1 Julius O.B. Jacobsen,3 Daniel Danis,1

Xingmin Aaron Zhang,1,8 Leigh C. Carmody,1 Michael A. Gargano,1 Courtney L. Thaxton,4 UNC
Biocuration Core,4 Guy Karlebach,1 Justin Reese,5 Manuel Holtgrewe,6 Sebastian Köhler,6

Julie A. McMurry,7 Melissa A. Haendel,7 and Damian Smedley3

Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a

variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algo-

rithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide

measures of howmuch any individual phenotypic observation has contributed to the prioritization result. However, given that the overall

success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the

gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood

ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO pheno-

type, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL)

placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct

diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of

genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic

diagnostics.
Introduction

Phenotype-driven prioritization of candidate genes and

diseases is a well-established approach to genomic diagnos-

tics in rare disease.1–12 Most current approaches use the

Human Phenotype Ontology (HPO) for annotating the

set of phenotypic abnormalities observed in the individual

being investigated by whole-exome or whole-genome

sequencing. The HPO contains 14,813 terms arranged as

a directed acyclic graph in which edges represent subclass

relations; 13,182 of these terms represent phenotypic ab-

normalities. For instance, Abnormal renal cortex

morphology (HP:0011035) is a subclass of Abnormal renal

morphology (HP:0012210). The HPO project additionally

provides computational disease models of 7,623 rare dis-

eases that are constructed from HPO terms and metadata

that define the diseases on the basis of the phenotypic ab-

normalities that characterize them, their modes of inheri-

tance, and in many cases, the age of onset of diseases or

phenotypic features and the overall frequencies of features

in a disease.13 For instance, Meckel syndrome type 7 is

characterized by Patent ductus arteriosus (HP:0001643)

with a frequency of two of seven affected individuals and

Antenatal onset (HP:0030674).14

Diagnostic exome or genome sequencing typically re-

veals tens or hundreds of variants that are predicted to be
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deleterious by common computational frameworks, and

therefore, the analysis of such data generally requires

some additional criterion to prioritize genes.15 Phenotypic

approaches leverage the proband’s observed phenotypic

abnormalities to assess candidate diseases by searching dis-

eases with similar phenotypic abnormalities that are asso-

ciated with genes that harbor a predicted pathogenic

variant.16 However, current algorithms for phenotype-

driven genomic diagnostics have a number of shortcom-

ings that represent impediments to the successful imple-

mentation of genomic testing outside of specialist centers.

All current approaches that we are aware of present their

results as an ordered list of candidate genes or diseases. The

overall success rate of genomic diagnostics depends on the

cohort and the next-generation sequencing (NGS) tech-

nique but is still hovering at about 40% for a wide range

of conditions.17–20 Therefore, one must expect that, in

many cases, the top-ranked gene is actually not a good

candidate. Also, existing approaches do not provide a

framework for deciding how many candidates in the

ranked list are worthy of detailed examination. Therefore,

it would be desirable to provide a transparent measure of

how good the top predictions are and why. Such an

approach could reduce the number of candidates that

busy diagnostic labs have to review. Finally, current ap-

proaches do not provide information about how much
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individual phenotypic features contribute to the computa-

tional prediction. For clinical use, approaches that allow

users to understand the reasons for the computational pre-

dictions are preferable to black-box algorithms and better

support clinical decision making.21

In this work, we present an algorithm, LIkelihood Ratio

Interpretation of Clinical AbnormaLities (LIRICAL), that cal-

culates the likelihood ratio of each observed or excluded

phenotypic abnormality. If genomic data is available, likeli-

hood ratios are additionally calculated for genotypes. In

contrast topreviousapproachesbasedonsemantic similarity,

LIRICAL provides an estimate of the posttest probability of

candidate diagnoses. For each candidate diagnosis, LIRICAL

calculates the extent to which each phenotypic abnormality

(and if available genotype) is consistent with the diagnosis.

To test the performance of LIRICAL, we generated simulated

data from384published case reports and leverageddata from

116solvedcases fromthe100,000GenomesProject. LIRICAL

was highly accurate and robust to several sources of noise.
Material and Methods

Data Sources
The hp/releases/2019-09-06 version of the HPO (hp.obo) was used

for the analysis described here. The phenotype.hpoa file, contain-

ing HPO annotations (HPOA), was downloaded on October 16,

2019 from the HPO website.

Likelihood Ratio
The likelihood ratio (LR) is defined as the probability of a given test

result ðxÞ in an individual with a diseaseD divided by the probabil-

ity of that same result in a person without the disease ð:DÞ:

LRðxÞ¼ PrðxjDÞ
Prðxj:DÞ (Equation 1)

PrðxjDÞ is the sensitivity (true positive rate) of the test, i.e., the ex-
pected proportion of individuals with disease D who are correctly

identified. The specificity or true negative rate is the proportion

of individuals without diseaseDwho are correctly identified as un-

affected, i.e., Prð:xj:DÞ. Therefore, the LR can be expressed as

LRðxÞ¼ sensitivity

1� specificity
(Equation 2)

The definition of the LR can be extended tomultiple tests.22 Sup-

pose X ¼ ðx1; x2;/; xnÞ is an array of n test results. Under the

assumption that the tests are independent, LRðXÞ is defined as

PrðXjDÞ
PrðXj:DÞ¼

Prðx1; x2;/; xnjDÞ
Prðx1; x2;/; xnj:DÞ ¼

Yn
i¼1

PrðxijDÞ
Prðxij:DÞ (Equation 3)

The posttest probability refers to the probability that an individ-

ual has a disease given the information from test results X and the

pretest probability of the disease. The posttest probability can be

calculated as

PrðDjXÞ¼ pLRðXÞ
ð1� pÞ þ pLRðXÞ; (Equation 4)

where p is the pretest probability of D. Depending on the cohort,

the pretest probability can be defined as the population prevalence
404 The American Journal of Human Genetics 107, 403–417, Septem
of the disease or by some other estimate of the frequency of the

disease in the cohort being tested.

LIRICAL calculates LRs for observed phenotypic abnormalities

(HPO terms) and observed genotypes (as inferred from VCF files)

by defining probability distributions for phenotypes and geno-

types as described in the following sections.
LR for Phenotypes
The signs and symptoms and other phenotypic abnormalities of

probands being investigated by this approach are represented us-

ing terms of the HPO, which provides a structured, comprehen-

sive, and well-defined set of 14,813 classes (i.e., terms; September

2019 release) describing human phenotypic abnormalities.13,23–25

We model the clinical encounter that results in a set of n pheno-

typic observations encoded as HPO terms h1; h2; .; hn. The LR

of each phenotype term with respect to a specific disease D is

defined as

LRðhiÞ¼ PrðhijDÞ
Prðhij:DÞ: (Equation 5)

We assume that the tests are independent and the LR of the n

HPO terms can be obtained from the product of the individual

ratios.

The Probability of Having Phenotypic Abnormality hi Given a

Disease D
Wefirst explain howwe define the numerator of Equation 5 on the

basis of the relationship of term hi to the set of phenotype terms to

which disease D is annotated (Figure S1). We distinguish seven

cases, all of which are detailed in the following sections.

hi Is Identical to One of the Terms to Which D Is Annotated

In this case, we define PrðhijDÞ ¼ f Di , that is, the frequency of the

phenotypic featurehi among individualswithdiseaseD. For instance,

if the disease model for D is based on a study in which seven of ten

persons with D had hi, then f Di ¼ 0:7. If no information is available

about the frequency of hi, then by default, we define f Di ¼ 1.

hi Is an Ancestor of One or More of the Terms to WhichD Is Annotated

Because of the annotation propagation rule of subclass hierarchies

in ontologies,26 D is implicitly annotated to all of the ancestors of

the set of annotating terms. For instance, if the computational dis-

easemodel of some diseaseD includes the HPO term polar cataract

(HP:0010696), then the disease is implicitly annotated to the

parent term cataract (HP:0000518) (to see this, consider that any

person with a polar cataract can also be said to have a cataract).

By extension, this is also true of more distant ancestors of the

term. We therefore define the probability of a term hi (e.g., cata-

ract) that is an ancestor of any term hj (e.g., polar cataract) that

explicitly annotates disease D as

Pr hijDð Þ ¼ max
j

f Dj such that hi˛anc hj

� �
and hj˛annot Dð Þ

(Equation 6)

where ancðhjÞ is a function that returns the set of all ancestors of

term hj and annotðDÞ is a function that returns the set of all HPO

terms that explicitly annotate disease D. In other words, the proba-

bility of hi in diseaseD is equal to themaximum frequency of any of

the descendants of hi that directly annotate disease D.

hi Is a Child Term of One or More of the Terms to Which D Is Anno-

tated

In this case, hi is a child (i.e., a specific subclass) of some term hj

that directly annotates D. For instance, disease D might be anno-

tated to syncope (HP:0001279), and the query term hi is
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orthostatic syncope (HP:0012670), which is a child term of syn-

cope. In addition, syncope has two other child terms, carotid sinus

syncope (HP:0012669) and vasovagal syncope (HP:0012668). Ac-

cording to our model, we will weight the frequency of syncope

in disease D (say, 0.72) by ð1 =��childðhjÞ
��Þ, where childðhjÞ is the

set of child terms of hj (so in our example, we would use the fre-

quency 0:7231=3 ¼ 0:24). In our implementation, only the direct

children of a disease-associated term hj are considered. The

maximum frequency ðf Dj Þ is taken across all disease-associated

terms.

Pr hijDð Þ ¼ 1��child hj

� ���$max
j

f Dj such that hi˛child hj

� �
and

hj˛annot Dð Þ (Equation 7)

where childðhjÞ refers to the set of direct descendants (child terms)

of HPO term hj. This algorithm is a heuristic whose intuition is

that if a proband is annotated to a specific subterm of a term

used to annotate a disease, this is not an exact match and should

be penalized to some extent. If the proband is annotated to a term

that is separated by more than one link from the disease term,

then this heuristic does not consider it to be a match.

hi and Some Term toWhichD Is Annotated Have a Non-root Common

Ancestor

In this case, hi is not a child term of any disease term hj and no dis-

ease term hj is a descendant of hi. LIRICAL then finds the closest

common ancestor of hi and all terms that annotate D (denoted

hca in the following). Noting that hca might have a zero or very

small frequency in diseaseD, we define the LR using the following

heuristic:

LRðhiÞ¼ PrðhcajDÞ
Prðhcaj:DÞ

¼ max

 
1

100
;

f Dca
Prðhcaj:DÞ

!

Because the common ancestor is higher up in the HPO hierar-

chy, the LR tends to be lower and sometimes substantially lower

for features with a high frequency across the HPO corpus [with a

corresponding low value for Prðhcaj:DÞ]. Therefore, in order to

avoid a single term’s having an excessive influence on the final

result, the LR is taken to be at least ð1 =100Þ.
hi Does Not Have Any Non-root Common Ancestor with Any Term to

Which D Is Annotated

In this case, hi does not affect the same organ system as any of the

annotations of D. A heuristic small value of ð1 =100Þ is assigned.
The Proband Has a Phenotypic Abnormality hi That Is Explicitly

Excluded from Disease D
In the HPO annotation resource, each disease is represented by a

list of HPO terms that characterize it together with metadata,

including provenance, and in some cases, frequency and onset in-

formation.13 Some diseases additionally have explicitly excluded

terms (there are a total of 921 such annotations in the September

2019 release of the HPOA data). These annotations are used for

phenotypic abnormalities that are important for the differential

diagnosis. For instance, Marfan syndrome and Loeys-Dietz syn-

drome share many phenotypic abnormalities.27 The feature ecto-

pia lentis (HP:0001083) is characteristic of Marfan syndrome but

is not found in Loeys-Dietz syndrome.28 The LR for such query

terms is assigned an arbitrary value of ð1 =1;000Þ, i.e., the ratio
The American
for a candidate diagnosis is reduced by a factor of one thousand

if an HPO term is present in the proband that is explicitly excluded

from the disease.

The Proband Was Shown Not to Have a Phenotypic Abnormality hi

That Is Explicitly Excluded from Disease D
On the other hand, if the query includes a negated term that is

explicitly excluded in the disease, then the opposite value is as-

signed, i.e., the ratio for a candidate diagnosis is increased by a fac-

tor of one thousand if an HPO term is present in the proband that

is explicitly excluded from the disease.

The Probability of Having Phenotypic Abnormality hi if Disease D Is

Not Present

The denominator of Equation 5 specifies the probability of the test

result given that the proband does not have some disease D. This

would be difficult to calculate for the general population for the

same reasons as those described above. However, we can estimate

this probability if we assume that all persons being tested have

some (unknown) Mendelian disorder by simply summing over

the overall frequency of a feature in the entire HPO corpus (with

N diseases).

Pr
�
hij:Dj

�¼ 1

ðN � 1Þ
X
ksj

PrðhijDkÞ ¼ 1

ðN � 1Þ
X
ksj

f Dk
i (Equation 8)

Equation 8 would need to be calculated separately for each of the

N diseases, but noting that we are summing over a relatively large

number of diseases (7,623 in September, 2019) in the complete

HPO database of rare diseases, we use the following approximation

that allows us to precalculate Prðhij:DjÞ for an arbitrary disease Dj.

Pr
�
hi

��:Dj

�
z

1

N

XN
k¼1

f Dk
i (Equation 9)

Likelihood Ratio for Genotypes
Our model of predicting the relevance of any given genotype

makes use of the following concepts. We define the genotype of

each specific gene with 0;.;n variants located in the gene on

the basis of the set of heterozygous or homozygous calls for each

observed variant as derived from a Variant Call Format (VCF) file.

There is a true but unobservable pathogenicity of each variant,

defined as a deleterious effect on the biochemical function of a

gene and the gene product it encodes, that leads to disease. We

can estimate the pathogenicity of a variant on the basis of a

computational pathogenicity score that ranges from 0 (predicted

benign) to 1 (maximum pathogenicity prediction). Our model

posits two distributions that allow us to calculate the likelihoods

of an observed genotype given that the sequenced individual

has the disease ðDÞ as compared to the situation in which the in-

dividual does not have the disease in question and the variants

originate from population background (B; that is, the variants

are called pathogenic by bioinformatic analysis but are not related

to the disease in question).

We use the pathogenicity score of the Exomiser, which calcu-

lates a score for any variant in the coding exome or at the highly

conserved dinucleotide sequences at either end of introns. Exom-

iser pathogenicity scores are assigned via a variety of pathogenicity

predictors—usually a combination of PolyPhen, SIFT, and Muta-

tionTaster for missense mutations, heuristics for other classes of

variant, and membership of the variant in a high-confidence

pathogenic or likely pathogenic ClinVar dataset. The highest

(most deleterious) normalized score of these is used as the
Journal of Human Genetics 107, 403–417, September 3, 2020 405



Exomiser pathogenicity score.4,29 We use the estimated popula-

tion frequencies of variants from gnomAD,30 which is incorpo-

rated into the Exomiser database, to calculate the background dis-

tribution (version 12.1.0 was used for the analysis reported here).

Our model depends on the assumed mode of inheritance of the

disease; we will begin our explanation with autosomal-dominant

(AD) diseases. We are interested in the ratio of an observed geno-

type ðGÞ given that it is disease causing (i.e., the sequenced individ-

ual has disease D) or not disease causing (i.e., the sequenced indi-

vidual does not have disease D). Assume we observe n variants

ðv1; v2;.; vnÞ in gene g and have calculated their pathogenicity

score as sðviÞ for i˛f1;.; ng. For simplicity, we will assume that

the variants have been arranged such that sðv1ÞRsðv2ÞR.RsðvnÞ.
We first note that 98.9% of the pathogenicity scores of variants

classified as pathogenic in ClinVar31 are assigned a pathogenicity

score of 0.8 or more by Exomiser (Figure S2). For the purposes of as-

sessing and scoring candidate variants, we therefore divide the score

distribution into two bins,N and P; binN represents the predicted

non-pathogenic bin and has a range of pathogenicity scores of ½0;
0:8Þ, and bin P represents the predicted pathogenic bin with path-

ogenicity scores of ½0:8; 1�. That is, P represents the bioinformatic

prediction of whether a variant is ‘‘pathogenic.’’ In general, it is

not possible to know with certainty whether any variant (be it in

bin N or P) is causally related to a disease or phenotype.

In other words, LIRICAL models variants into two bins, N and

P. Variants in N are discarded. Variants in P are modeled as com-

ing from two distributions, D (disease-related) and B (back-

ground). The purpose of this scheme is to downweight variants

in genes that often show predicted pathogenic variants and tend

to be frequently found as false positives in exome sequencing re-

sults, such as many mucin and HLA genes.32

LIRICAL’s Genotype Concept

The word ‘‘genotype’’ is used with different meanings in different

contexts. Unless we specifically refer to the genotype of a variant

(e.g., homozygous reference, heterozygous, homozygous alter-

nate), in the following text we define ‘‘genotype’’ as follows. For

each gene that is associated with a candidate disease, LIRICAL

takes into account the predicted pathogenicity and genotype of

each variant. For instance, if three variants are observed in a

gene g and the first two are heterozygous (0/1) and the third is ho-

mozygous ALT (1/1), then LIRICAL defines the genotype of g to be

gtðgÞ¼ ½ð0 =1; sðv1ÞÞ; ð0 =1; sðv2ÞÞ; ð1 =1; sðv3ÞÞ� (Equation 10)

LIRICAL’s Genotype Model

Wemodel the expected counts of observed alleles in bin P as Pois-

son distributions, using separate distributions for the case that a

variation in a given gene is disease causing or not. In this context,

a Poisson distribution gives the probability of observing k variants

in a gene, based on a rate parameter l that represents the expected

number of variants.

PrðkÞ¼Poisðk; lÞ ¼ e�ll
k

k!
(Equation 11)

For an AD disease associated with pathogenic variants in gene g,

we expect one heterozygous disease-causing variant, and so lDg ¼
1; for autosomal-recessive diseases, lDg ¼ 2. We can estimate the

probability of observing a variant in bin P in a gene g that is not

related to the disease on the basis of the frequency of such variants

in the general population; we denote this probability as lBg .

Different genes have different distributions of predicted patho-

genic variants in the general population. If a gene has a low

frequency of predicted-pathogenic variants in the general popula-
406 The American Journal of Human Genetics 107, 403–417, Septem
tion, then the observation of a predicted-pathogenic variant in a

diagnostic context might be more likely to be a true-positive

disease-causing variant.33 We calculate lBg for each gene g on the

basis of available population frequency data from the gnomAD30

resource by summing up the frequencies of individual variants un-

der the independence assumption.

In detail, the frequency (if available) of each variant allele is

taken from each of the following populations: African/African

American (GNOMAD_E_AFR), Admixed American (GNOMA-

D_E_AMR), Ashkenazi Jewish (GNOMAD_E_ASJ), East Asian

(GNOMAD_E_EAS), Finnish (GNOMAD_E_FIN), Non-Finnish

European (GNOMAD_E_NFE), and South Asian (GNOMAD_E_

SAS). For the analysis reported here, the average frequency in

all populations is calculated. We note that this approach might

overestimate the overall frequency of variants per exome or

genome, but nonetheless we can use it as a heuristic to down-

weight genes commonly found to have predicted-pathogenic

variants in the population (e.g., Table S1), as we will show

below.

We denote the function that returns the predicted pathoge-

nicity of a variant as path and the function that returns the

average population frequency of a variant allele as freq. We repre-

sent the fact that variant i is assigned to gene g as vi˛g.

lBg ¼
X
vi

freqðviÞ þ e for vi ˛ g and pathðviÞ˛P (Equation 12)

The parameter lBg is thus the expected count of variant alleles in

gene g whose pathogenicity score is in bin P. A small number

ðe¼ 10�5Þ is added to the sum to avoid division by zero in subse-

quent steps because some genes did not display any variants in

bin P in the population data.

LIRICAL provides files with lBg values for hg19 and hg38 (back-

ground-hg19.tsv and background-hg38.tsv). The file appropriate

for the VCF file being analyzed is used automatically, but users

can provide custom background files if desired. The code used to

generate the background files is provided as a part of the LIRICAL

distribution.

Genotype LR for Genes Associated with AD Diseases

For a gene associated with an AD disease, the calculation pro-

ceeds as follows. Assume we are evaluating disease D, which is

associated with mutations in gene g, and that there is one pre-

dicted-pathogenic variant v0 in bin P and there are k other pre-

dicted-non-pathogenic variants in bin N . The model assumes

that any variants in bin N are unrelated to the disease and

have the same probability whether or not gene g is causally

related to the disease. That is, for a variant v
0
i˛N ,

Prðv0
i jDÞ ¼ Prðv0

i

��:DÞ. The genotype observed for gene g is sym-

bolized as gtðgÞ.

LRðgtðgÞÞ¼ PrðgtðgÞjDÞ
PrðgtðgÞj:DÞ

¼ Prðv0jDÞ
Prðv0j:DÞ3

Y
i

visv0

Prðvij:DÞ
Prðvij:DÞ

¼ Prðv0jDÞ
Prðv0j:DÞ

We model the process by which a variant or variants lead to dis-

ease by a compound distribution. A Poisson distribution models

the number of variants observed whose pathogenicity score is in
ber 3, 2020



bin P, and a Bernoulli distribution with parameter p ¼ sðv0Þ deter-
mines the probability that the allele is disease causing. Thus, let

fXng be a sequence of mutually independent random variables

each of which can take on the value of 0 (for not disease-causing)

or 1 (for disease-causing). The sum of N such variables is SN ¼ X1þ
X2 þ.þXn, and thus, SN represents the count of truly patho-

genic alleles (we expect SN ¼ 1 for AD diseases and SN ¼ 2 for auto-

somal-recessive diseases).

This leads to the compound distribution

PrfSn ¼ kg¼Binomðk;n; pÞPoisðk; lÞ (Equation 13)

It can be shown that this is equivalent to a Poisson distribution

with parameter lp.34 Therefore, to calculate the LR, we substitute

the parameters lDg and lBg as well as pi ¼ sðviÞ.

LRðgÞ¼Prðv0jDÞ
Prðv0jBÞ ¼

Pois
�
1; pil

Dg
�

Pois
�
1; pil

Bg
� (Equation 14)

To calculate Equation 14, LIRICAL extracts the value of lBg from

the corresponding background frequency file (see above). The

value of pi is calculated on the basis of the corresponding Exomiser

pathogenicity scores. Finally, lDg ¼ 1 for AD diseases and lDg ¼ 2

for autosomal-recessive diseases. Equation 14 will have the effect

of favoring genes with a single heterozygous variant in bin P
with a maximal pathogenicity score ðpi ¼ sðv0Þ ¼ 1Þ and that

have a minimal frequency of bin P variant alleles in the popula-

tion. If this is the case, then lBg ¼ e and we can calculate the LR

by using Equation 11:

LRðgÞ¼Poisð1;1Þ
Poisð1; eÞz36788 (Equation 15)

LIRICAL does not calculate the LR for a gene unless at least one

predicted-pathogenic variant is present (i.e., k is always at least 1).

If more than the expected number of variants are found (say three

predicted-pathogenic variants for an AD disease, where lDg ¼ 1),

the numerator of Equation 14 would be smaller, that is,

Poisð3; pilDg Þ < Poisð1; pilDg Þ.
Genotype LR for Genes Associated with Autosomal-Recessive Diseases

The procedure for autosomal-recessive diseases is analogous,

except that lDg ¼ 2. In the case that gene g is causative for the dis-

ease in the individual being sequenced, then we expect to find two

alleles (which will be identical in case of a pathogenic homozy-

gous variant and distinct in the compound heterozygous case).

The two alleles in bin P with the highest pathogenicity score are

chosen for analysis. Let savg denote the mean of the pathogenicity

scores of the two variant alleles observed in gene g that have the

two highest pathogenicity scores, i.e., savg ¼ 0:5$ðsðv1Þþsðv2ÞÞ.
Then,

LRðgtðgÞÞ¼ Prðv0jDÞ
Prðv0j:DÞ ¼

Pois
�
2; savg$l

Dg
�

Pois
�
2; savg$l

Bg
� (Equation 16)

This will have the effect of favoring genes with a minimal fre-

quency of bin P variants in the population and with two patho-

genic alleles (homozygous or compound heterozygous) in bin P,
which have a maximal pathogenicity score ðsðv0Þ ¼ 1Þ. In this

case, lBg ¼ e and LRðgÞz3;678;831;200, but this value is not

seen in practice.

If onlyonepredicted-pathogenicvariant is found inanautosomal-

recessive disease, thenumerator of Equation 16 is smaller than if two

variants are present, i.e., Poisð1; savg $lDg Þ < Poisð2; savg $lDg Þ. This
has the effect of downweighting disease genes associatedwith reces-
The American
sive diseases for which only one heterozygous pathogenic allele is

found but avoids filtering them out entirely.

In males, hemizygous variants on the X chromosome are called

as homozygous by current variant-calling software. Therefore, we

set lDg ¼ 2 for both recessive and dominant X chromosomal

diseases.

Genotype Likelihood Ratio: Special Cases
No Variants at All Found in Gene g

If the molecular basis of a disease is known to be mutations in a

gene g, but no bin P variants or no variants at all are found in

that gene, then an LR of 1/20 is assigned for AD diseases, reflecting

an estimation that the probability of missing a pathogenic variant

if one is present is about 5%. For autosomal-recessive diseases, we

estimate the probability at 0:0530:05 ¼ 0:0025.

The motivation for this approach is that some downweighting

should be performed if no candidate variant is found in a gene,

but given the presumed high prevalence of false-negative results

in exome/genome sequencing, it would not be desirable to radi-

cally downweight otherwise strong candidates.

Clinvar Pathogenic Variant(s) Found in Gene g

ClinVar31 makes use of the American College of Medical Genetics

and Genomics and the Association for Molecular Pathology stan-

dards for the interpretation of a variant as pathogenic (i.e., causa-

tive of a disease).35 Denote the count of ClinVar pathogenic alleles

as c. If c ¼ 2 for autosomal-recessive diseases, then a heuristic LR of

1;0002 is assigned. If c ¼ 1 for an AD disease, then a heuristic LR of

1,000 is assigned. If the c does not match the count of pathogenic

alleles that would be expected for the mode of inheritance, then a

heuristic LR of 1,000 is assigned.

This heuristic means that if a ClinVar pathogenic variant is

found even in a gene, such as TTN, that is characterized by a

high frequency of predicted-pathogenic variants in the popula-

tion, then this is taken as being supportive of a diagnosis associ-

ated with variants in the gene.

Heuristic for Genes with Many Variants

Some genes commonly harbor variants in the general population

that are predicted as pathogenic by bioinformatic software (cf.

Figure S3 and Table S1). LIRICAL uses the background score to

assess this. The background score ranged from 0 to 20.7 (for

MUC4). Numerous disease-associated genes displayed scores over

1.0, including, for example, TTN, which had a score of 9.5. Accord-

ing to our model, it is not surprising to observe a predicted-path-

ogenic variant in a gene such as TTN whether or not the gene is

associated with the disease being investigated in any particular

case. LIRICAL downweights the LR for genotypes in these genes

if predicted-pathogenic variants are found in a VCF file because

such variants are commonly encountered as false positive find-

ings.15 It does so by limiting the value of lBg to be at most the

observed count of predicted-pathogenic variants, cpath, in cases

where lBgR1 (if the observed called-pathogenic variant count is

much higher, the probability calculated by the Poisson distribu-

tion will be very low).

lBg : ¼min
�
cpath; l

B
g

�
:

For instance, if one predicted-pathogenic variant is identified in

TTN, this scheme would lead to an LR of one—the observation of

the predicted-pathogenic variant in this gene neither adds to nor

detracts from the probability of the differential diagnosis (we treat

known disease-associated variants in ClinVar differently, see

above).
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–global Setting for Genotype Likelihood Ratio

Our approach has two options for dealing with genes in which no

predicted pathogenic variants are observed. With the default op-

tion, LIRICALwill remove the genes and the diseases they are asso-

ciated with from further analysis. This might be most appropriate

if the goal of analysis is to demonstrate the genetic etiology of a

disease.

If the –global option is chosen, LIRICAL ranks all diseases

(including those with and without known associated disease

genes) according to the posttest probability. In this case, if a dis-

ease has no associated disease gene, the LR is calculated from the

phenotype evidence alone. Our procedure is designed to work

whether or not genetic evidence is available to support a candidate

diagnosis. If, for instance, the individual being sequenced is

affected by a Mendelian disease for which the causative genes

have not yet been identified, then, if there is a good phenotypic

match, ideally the analysis procedure would include the disease

in the overall results. Therefore, we omit the genotype score

from the overall LR for Mendelian diseases in the HPO database

that have a currently unclarified molecular basis.
Combined Genotype-Phenotype Likelihood Ratio Score
Our procedure takes as input a VCF file and a list of HPO terms rep-

resenting the set of phenotypic abnormalities observed in the in-

dividual being sequenced. For each of the �4,300 Mendelian dis-

eases in the HPO database for which the causative disease gene

has been identified, all predicted-pathogenic variants are extracted

and the corresponding genotype LR is calculated. The LRs are

calculated for each phenotypic feature as described above. The

final LR for some disease D is then

LRðDÞ¼LRðgtðgÞÞ3
Y
i

PrðhijDÞ
Prðhij:DÞ (Equation 17)

Ranking Candidates
Our approach calculates the LR of Equation 17 for each disease

represented in the HPO disease database (n ¼ 7;623 in the 9/

2019 release). By default, LIRICAL uses disease definitions derived

from the Online Mendelian Inheritance in Man (OMIM) knowl-

edge resource.36 This definition of disease treats each disease-

gene pair as a unique disease (e.g., each of the ten forms of

Hermansky-Pudlak syndrome are treated as a unique disease).

LIRICAL can also be run using phenotype annotations derived

from Orphanet37 by using the –orpha flag. Orphanet defines dis-

eases based on clinical considerations, whatever the number and

nature of the causes (i.e., number of causative genes, different

modes of inheritance, etc.),38 and so in this example, there is

only one disease code for Hermansky-Pudlak syndrome.

Finally, LIRICAL ranks diseases according to their posttest prob-

ability as calculated by Equation 4.
Visualization
The results of analysis are displayed here by showing bars whose

magnitude is proportional to the decadic logarithm of the LRs of

each tested feature. Features that support the differential diag-

nosis are shown in green and directed to the right of a vertical

line in the center of the plot, and features that speak against

the differential diagnosis are shown in red and directed to the

left.
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We curated HPO terms from 384 published case reports (Tables 1

and S2). We chose case reports in which the causative mutation

had been identified so that we could perform simulations with

and without a simulated exome. For each case report, we strove

to capture all of the phenotypic features that were observed or

explicitly excluded with corresponding HPO terms. The variants

reported in the case reports were recorded via hg19 coordinates

and checked via VariantValidator.39

We downloaded the file project.NIST.hc.snps.indels.vcf from

the Genome in a Bottle project website.40 This file contains variant

calls derived from Illumina short-read exome sequencing of the

samples NIST7035 and NIST7086. We used bcftools41 to create a

VCF file with NIST7035 as the single sample. For each pheno-

packet, the causative mutation or mutations were spiked into

the VCF file.

We compared the results of simulation with the original data

and also performed various types of obfuscation to assess the in-

fluence of noise on the performance of LIRICAL and Exomiser,

adding varying degrees of phenotypic or genotypic noise

(Table S3).

A comparison of LIRICAL and Exomiser was also performed for

116 solved cases from the 100,000 Genomes Project for which

detailed clinical phenotype data in the form of HPO terms had

been collected. All cases were singletons with single-sample VCF

files available. The diagnoses came from 89 different genes across

a wide spectrum of rare disease areas (cardiovascular, ciliopathies,

dermatological, dysmorphic and congenital abnormalities, endo-

crine, hearing and ear, metabolic, neurology and neurodevelop-

mental, ophthalmological, renal and urinary tract, rheumatologi-

cal, skeletal, and tumor syndromes).

Implementation
LIRICAL is implemented as a Java application. It is written in Java

1.8 and compiles under Java 11. An executable and source code

can be downloaded from the GitHub page, and detailed documen-

tation is available at the read the docs page (see Web Resources).

LIRICAL is freely available for academic use.
Results

In this work, we present an approach to clinically inter-

pretable prioritization of candidate diseases based on the

LR framework. The LR is defined as the probability of a

given test result in an individual with the target disorder

divided by the probability of that same result in an individ-

ual without the target disorder. The LR framework allows

multiple test results to be combined by multiplying the in-

dividual ratios and also relates the pretest probability to the

posttest probability in a way that can be used to guide clin-

ical decision making.22,42,43

The LIRICAL Algorithm

We define an LR-basedmodel of the clinical examination of

an individual being investigated for a suspected but un-

knownMendelian disorder as follows. Each recordedpheno-

typic observation is defined as a clinical test. The probability

that a person with disease D has a phenotypic abnormality

encoded by HPO term hi, denoted as f Di , is taken to be the
ber 3, 2020



Table 1. Phenopackets Used for Evaluating the Performance of LIRICAL

Total case reports 384

Diseases

Median # cases per disease 1

Maximum # cases per disease 19

Autosomal-recessive diseases 203

Autosomal-dominant diseases 128

X chromosomal diseases 10

Multiple modes of inheritance 43

Total 262

Disease genes

Total 259

HPO terms

Total over all cases 1687

Mean # HPO terms per case 11.1 (median 9)

Mean # negated HPO terms per case 2.71 (median 0)

384 phenopackets each describing a single published case report were derived from the literature by manual biocuration. See Table S2 for details. Multiple modes
of inheritance means that more than one mode has been described for the disease in question, e.g., inherited cataract associated with variants in PITX3 can be
inherited in an autosomal-dominant or autosomal-recessive fashion. The phenopacket schema represents an open standard for sharing machine-readable pheno-
typic descriptions in the context of rare disease, common disease, or cancer (see Web Resources).
frequency with which the abnormality is observed in

affected individuals as recorded in the computationaldisease

models of the HPO project based on literature biocuration (a

default value of 100% is used if specific frequency informa-

tion isnotavailable). Formanydiseasesandfeatures, anover-

all frequency of the feature is known; for instance, 19/437

persons ð� 4%Þ with neurofibromatosis type 1 have sei-

zures.44 On the other hand, 338/442 individuals ð� 87%Þ
with this disease havemultiple café-au-lait spots.45 In our al-

gorithm f Di represents the numerator of the LR.

The denominator of the LR is the probability of the

phenotypic feature if the proband does not have the disease

ðDÞ in question. It would be difficult to calculate this for

each of the 13,182 phenotypic abnormalities of the HPO

in the general population, but we note that a tractable

and realisticmodel for our purposes is that any proband be-

ing investigated by genomic diagnostics has some genetic

disease. We can therefore calculate the denominator of

the LR by means of the overall prevalence of HPO feature

hi in genetic diseases other than D. For instance, if D and

13 of the 7,622 other diseases in the HPO database are char-

acterized by feature hi andwe assume an equal pretest prob-

ability for all diseases, then the probability of the proband’s

having feature hi if the proband is not affected by diseaseD
is the sum of the frequencies of hi in the 13 diseases divided

by 7,622 (an efficient approximation of this probability is

used; see Methods).

Our algorithm takes as input a VCF file with genetic var-

iants identified in an exome, genome, or gene panel exper-

iment as well as a list of HPO terms that describe the

phenotypic abnormalities observed in the proband. The al-
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gorithm returns a ranked list of candidate diagnoses each

of which is assigned a posttest probability. Each of the

HPO terms is conceived of as a diagnostic test, and an LR

is calculated for each term, representing the probability

that a proband has the term in question if the proband

has the candidate disease divided by the probability of

the proband’s having the term if the proband does not

have the candidate disease.

The current version of the HPO database comprises

7,623 diseases of which 5,192 are associated with at least

one gene (total disease-associated genes: 4,025) and

2,431 diseases are not associated with a gene. In contrast

to previous approaches to phenotype-driven genomic di-

agnostics,1,2,29 our approach includes diseases with no

known disease-associated gene in the differential. Howev-

er, if a disease-associated gene is known, then the genotype

of the proband is also used as a diagnostic test in the LR

framework. The LR is calculated for the observed genotype

of the gene on the basis of our expectation of observing

one or two causative alleles according to the mode of in-

heritance of the disease and also the probability of

observing called pathogenic variants in the gene in the

general population. The individual LRs are multiplied to

obtain a composite LR, which, together with the pretest

probability of each disease, is used to calculate the posttest

probability in order to rank the diseases.

LIRICAL Supports Clinical Interpretation with Estimates

of Posttest Probability and Per-phenotype LRs

Figure 1 illustrates our approach for a published proband

with five characteristic features of ataxia-pancytopenia
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Figure 1. LIRICAL Evaluation of a Simulated Case of Ataxia-Pancytopenia Syndrome (ATXPC)
For each candidate diagnosis with an above-threshold posttest probability, LIRICAL shows the contribution of each phenotypic feature
and of the genotype to the final diagnosis. In this case, the data were extracted from a published case report on an individual with
ATXPC,46 and an additional unrelated term (high myopia) was added to simulate the effect of noise.
(A) LIRICAL provides a table of the top candidates with the posttest probability and a sparkline view of the contributions of each HPO
term and the relevant genotype.
(B) The observed HPO terms.
(C) The correct diagnosis, ATXPC, is ranked in first place because of a good phenotype match and a positive LR for the heterozygous
genotype for the causative gene SAMD9L.
(D) The second candidate has many of the same phenotype matches, but the first query term, dysmetria, matches exactly with Ataxia-
pancytopenia syndrome and only approximately with the second candidate, spinocerebellar ataxia, autosomal recessive 7.
(E) The third candidate has a posttest probability close to zero because it has more mismatching or poorly matching query terms.
syndrome (ATXPC; MIM: 159550): dysmetria, Babinski

sign, cerebellar atrophy, dysarthria, and ataxia.46 We addi-

tionally added the HPO term high myopia to simulate an

unrelated (false-positive) finding that is not related to the

underlying Mendelian disease. Exome sequencing was

simulated in this example case by spiking a heterozygous

variant in the causative gene for ATXPC, SAMD9L, into

an otherwise ‘‘normal’’ VCF file. LIRICAL was then run
410 The American Journal of Human Genetics 107, 403–417, Septem
on the combined phenotype and genotype data and

ranked ATXPC first out of the 7,623 diseases in the HPO

database. The graphical display of the results shown in

Figure 1A indicates how much each feature contributed

to the prediction. Figure 1D shows the second highest

ranking candidate, spinocerebellar ataxia, autosomal reces-

sive 7 (SCAR7). SCAR7matches four of the five phenotypic

features that ATXPC does. It scores lower because the
ber 3, 2020



match to the term dysmetria was exact for ATXPC but in

SCAR7 the closest match to dysmetria was ataxia, resulting

in a lower LR (the HTML output of LIRICAL allows the user

to browse the matching and approximate terms and their

LRs by tool tips that appear when mousing over the bars

that display the LR). The third candidate, oculodental

dysplasia (MIM: 164200), has two additional mismatching

HPO terms, Babinski sign and cerebellar atrophy, and is as-

signed a posttest probability of under 0.1%. LIRICAL

thereby provides users both with an assessment of the de-

gree to which any given phenotypic feature supports a

diagnosis or argues against it, as well as an estimated post-

test probability of the candidate diagnosis on the basis of

the information provided. Users can remove terms deemed

irrelevant (e.g., high myopia) and rerun the analysis. They

can choose to concentrate detailed follow-up on candidate

diagnoses with a high posttest probability.
LIRICAL Achieves State-of-the-Art Performance and Is

Robust to Phenotypic and Genotypic Noise

We evaluated the performance of LIRICAL by using several

different approaches. Many previous studies simulated

cases by choosing a certain number of HPO terms at

random to simulate a proband (e.g., choosing five terms

at random from the 56 terms that annotate Marfan syn-

drome in the HPO database). Phenotypic noise is simu-

lated by adding a certain number of HPO terms at random

from all available annotations (‘‘noise terms’’). In some

cases, imprecision of clinical data entry is simulated by re-

placing the randomly chosen disease terms by parent

terms. If studies simulate genomic analysis, then addition-

ally a published disease-associated variant would be spiked

into an otherwise normal VCF file.47–50 However, this kind

of simulation can be criticized because randomly chosen

terms are unlikely to resemble terms that would be chosen

in a real clinical encounter. In a real clinical encounter, the

clinician may or may not be able to describe phenotypic

abnormalities with the greatest possible detail. For

instance, a general practitioner may diagnose reduced vi-

sual acuity, but the precise abnormality, say Y-shaped cata-

ract, may only be observable by an ophthalmologist.

Therefore, in real-life situations, the different aspects of

the phenotype of a proband may have been observed, re-

corded, or communicated at different levels of detail.

Our basic approach for this study was therefore to

extract HPO terms and disease-causing variants from pub-

lished case reports and to perform simulations with the

original data as well as simulations in which varying types

of phenotypic or genotypic noise were added. We tested

the performance of LIRICAL by using a collection of 384

case reports derived from the literature and curated by us-

ing the GA4GH phenopacket format (Table 1; Web Re-

sources). LIRICAL can be run with or without genetic

data, and so we first compared it to Phenomizer, which ex-

ploits semantic similarity between query terms and dis-

eases on the basis of clinical (but not genetic) data.47 LIRI-
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CAL placed a total of 43.7% of cases in the top three ranks

compared to 35.3% for Phenomizer (Figure S4).

We then compared LIRICAL to Exomiser, which has

shown state-of-the-art performance against other algo-

rithms.49 Exomiser currently ranks disease genes

(combining all diseases associated with any given gene),

and so for this comparison, we recorded LIRICAL’s rank

by gene. LIRICAL placed the correct gene in the first ranks

in 80.7% of cases, compared to 77.3% for Exomiser. The

percentages for placing the correct gene in the top three

ranks were 92.9% for LIRICAL and 92.2% for Exomiser

(Figure 2B).

Diagnostic NGS data, including exome, genome, and

gene-panel investigations, can be affected by many

different kinds of noise.15 The disease-causing variant

may be missed, or in autosomal-recessive conditions, one

of the two pathogenic alleles may fail to be detected.

Phenotypic features unrelated to the Mendelian disease

may be included in the analysis. On the other hand,

phenotypic features associated with the disease may be

observed or described imprecisely. LIRICAL was designed

with a number of features that can help mitigate these

kinds of noise.

We first compared the performance of both approaches

in the presence of phenotypic noise (Figure 2A explains

the obfuscations). Figure 2E shows the performance if

two random HPO terms are added to each case to simulate

noise. Figure 2F shows the effect of additionally replacing

each of the original HPO terms with a parent term, and

Figure 2G shows the effect of additionally replacing each

original term with a grandparent term. The latter two ex-

periments simulate the effect of two different degrees of

imprecision in the description of the clinical data (e.g.,

not entering a term such as zonular cataract but instead

entering its parent term, cataract, or even grandparent

term, abnormality of the lens). It can be seen that LIRI-

CAL’s performance is better than Exomiser’s on this dataset

and that LIRICAL’s performance degrades less in the pres-

ence of noise.

LIRICAL’s genotype LR does not apply a hard filter to

candidates whose genotype does not match the expected

genotype for some disease. In exome and genome

sequencing, structural variants and single-nucleotide or

other small variants in GC-rich exons may be missed,

which can lead to only one of two pathogenic alleles’ being

detected for an autosomal-recessive disease. LIRICAL will

rate such a genotype less highly than a pathogenic bi-

allelic genotype but will not filter out such candidates

(Figure S5). We therefore compared the performance of

LIRICAL and Exomiser on the 221 autosomal-recessive

cases in our dataset. LIRICAL placed the correct candidate

in first place in 84.6% of cases compared to 71.0% for

Exomiser. If one of the two pathogenic alleles was

removed, LIRICAL still placed the correct gene in first place

in 62.0% of cases, compared to only 20.1% for Exomiser

(Figures 2C and 2D). The performance of LIRICAL was

slightly better in cases where at least one of the variants
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Figure 2. Evaluation of LIRICAL and Exomiser on 384 Case Studies
The case studies were formatted as phenopackets (Table 1), and the diagnostic process was simulated by spiking disease-causing variants
into a VCF file, which was passed together with phenotype data to LIRICAL and Exomiser.
(A) Simulation approach. Random noise terms were added to some simulations, and in some cases, terms were replaced by their parent
term or grandparent term to mimic imprecision in measuring or recording phenotypic abnormalities.
(B–G) Results of simulations are shown with the x axis showing the rank assigned by LIRICAL or Exomiser to the correct disease gene,
and the y axis showing the percentage of cases in which the given rank was achieved. The following is shown: original data (B), perfor-
mance on the subset of 221 autosomal-recessive cases (C), the same 221 autosomal-recessive cases in which one of the two pathogenic
alleles was removed (D), two random (‘‘noise’’) HPO terms added to each case (E), original terms replaced by a parent term and two noise
terms added (F), and original terms replaced by a grandparent term and two noise terms added (G).
was listed as pathogenic by ClinVar for both AD and auto-

somal-recessive modes of inheritance (Figure S6).

LIRICAL ranked 259 of 384 (67.4%) cases at a posttest

probability above 0.5, and 287 cases (74.7%) were above

a posttest probability of 0.05. The overall rankings as well

as the posttest probability were robust to the addition of

noise, deteriorating only slightly when two random terms

were added per case, somewhatmore if terms were replaced

by more general parent or even more general grandparent

terms, and falling to amean of only 29.4% if all pathogenic

alleles were omitted and to 2.9% if all HPO terms were re-

placed by random terms (Figure 3). This suggests that LIR-

ICAL assigns substantially mean lower posttest probabili-

ties to candidate diseases for which an apparently

pathogenic variant is identified by diagnostic NGS by

chance but where there is no clinical match.

Finally, we examined 116 solved singleton cases from

the 100,000 Genomes Project. All cases were singletons

with single-sample VCF files available. The diagnoses

came from 89 different genes across a wide spectrum of

rare disease areas (cardiovascular, ciliopathies, dermatolog-

ical, dysmorphic and congenital abnormalities, endocrine,

hearing and ear, metabolic, neurology and neurodevelop-

mental, ophthalmological, renal and urinary tract, rheu-

matological, skeletal, tumor syndromes). LIRICAL placed

the correct gene in first place in 60.3% of cases, compared
412 The American Journal of Human Genetics 107, 403–417, Septem
to 64.6% for Exomiser, and placed the correct gene in the

top five ranks in 88.8% compared to 87.1% for Exomiser

(Figure 4). This is an impressive outcome, considering

that Exomiser is already part of the 100,000 Genomes Pro-

ject’s diagnostic pipeline and was used as part of the deci-

sion-making process for 26 of the 115 diagnoses. Consid-

ering the 89 diagnoses where Exomiser was not utilized,

Exomiser prioritized 57/89 (64.0%) in first place compared

to 51/89 (57.3%) for LIRICAL.

Prioritization of Genes Associated with Multiple

Diseases

Many Mendelian-disease-related genes are associated with

more than one disease (for instance, mutations in FBN1 are

associated with both Marfan syndrome and geleophysic

dysplasia). In contrast to Exomiser, LIRICAL ranks diseases

rather than genes (for an example, see Figure 5). The by-

disease ranking results for LIRICAL for the data in

Figure 2B are shown in Figure S8.

Incorporation of ClinVar Data and Analysis of Excluded

Phenotypic Abnormalities

LIRICAL uses several heuristic algorithms to account for

some challenges in the prioritization of genomic data.

For instance, genes such as TTN have a high population

frequency of variants predicted computationally to be
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Figure 3. Posttest Probability
The posttest probability of the correct diagnosis was calculated for
each of the 384 phenopacket case reports (original).
Densities are shown for the original data (original; mean posttest
probability, pp, 67:4%.); noise2**, in which two random HPO
terms were added and original terms were replaced by grandparent
terms (mean pp, 50.3%); and random, in which all HPO terms
were replaced by random terms (mean pp, 2.9%). Figure S7 shows
results for other perturbations.

Figure 4. Performance of LIRICAL and Exomiser on 116 Solved
Singleton Cases from the 100,000 Genomes Project
The x axis shows the rank assigned by LIRICAL or Exomiser to the
correct disease gene. The y axis shows the percentage of cases in
which the given rank was achieved.
pathogenic that are found in apparently healthy individ-

uals. On the other hand, specific TTN variants are listed

as pathogenic in ClinVar.31 There is currently no approach

that always correctly interprets pathogenicity of variants

in such genes. In such cases, LIRICAL takes the approach

of downweighting rare, predicted pathogenic variants

without support in ClinVar, but heuristically assigns vari-

ants listed as pathogenic in ClinVar an LR score of 1,000.

In a simulated case of TTN-related dilated cardiomyopathy,

LIRICAL correctly ranks a known pathogenic variant in

first place but ranks a rare variant that is computationally

predicted to be pathogenic but is listed in ClinVar as uncer-

tain only in eighth place (Figure S9).

In clinical practice, the differential diagnostic process can

occasionally be empowered by identifying phenotypic ab-

normalities that a proband does not have. In medical ge-

netics,manydiseases share anumberof phenotypic features

but differ with respect to one characteristic feature that pre-

sents in one disease but never presents in others. Such a

feature can be very important for the differential diagnosis.

For instance, Loeys-Dietz syndrome4 isnot characterizedby

ectopia lentis, whereas the phenotypically similar disease

Marfan syndrome is.27 LIRICAL uses a heuristic to down-

weight candidate diagnoses by a factor of 1,000 if the candi-

date is explicitly annotated not to have a feature present in

thequery terms.Tenof the380phenopacketshaveexcluded

query terms (e.g., the individual does not have some HPO

term) that support one candidate diagnosis (column 1 in

Table S4) but speak against another (column 2 in the table).

In all cases, the correct diagnosis via the negated annota-

tions was 1, and the mean posttest probability was 98.9%.

If the negated query term was omitted, the average rank

was 1.3, and the mean posttest probability was 72.6%

(Figure S10). Figure S11 shows an example of a differential

diagnosis in which the omission of a negated term reduces
The American
the posttest probability of the correct diagnosis from

92.4% to 1.2% and changes the rank of the candidate from

1 to 2. To our knowledge, LIRICAL is the only HPO-based al-

gorithm for genomic diagnostics that leverages information

about excluded phenotypes in this way.
Simultaneous Analysis of Molecularly Elucidated and

Idiopathic Diseases

Another feature of LIRICAL is a mode (–global) that ranks

all candidates, including diseases whose molecular etiol-

ogy is unknown as well as diseases with a known associated

gene in which no pathogenic variants were identified. This

is a harder prediction problem because there are more

candidate diseases, but it can prioritize diseases that would

be missed by conventional approaches. For example,

Arima syndrome is an autosomal-recessive disease with

no known disease-associated gene. LIRICAL prioritized it

in first place in a simulated run in which some clinically

similar diseases, such as Joubert syndrome, failed to

achieve a good score (Figure S12). LIRICAL placed the cor-

rect diagnosis in first place in 24.5% of cases compared to

1.0% for Exomiser and placed the correct candidate in

the top three ranks in 38.2% (1.0% for Exomiser). Overall,

LIRICAL placed the correct candidate in the top ten ranks

in roughly half of the cases (Figure S13).
Discussion

Clinical decision support systems and genomic diagnostics

have rapidly been gaining importance in recent years. The

interpretability of computational predictions is of utmost

importance in clinical settings for clinicians to efficiently

and correctly integrate computational analyses into medi-

cal workflows, and even accurate black-box algorithms

might not be appropriate in clinical settings.21,52,53 The

LIRICAL algorithm presented here adapts the LR
Journal of Human Genetics 107, 403–417, September 3, 2020 413
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Figure 5. LIRICAL Evaluation of Simulated Case with a Pathogenic FBN1 Variant
(A–E) Eight distinct diseases are associated with variants in FBN1. LIRICAL prioritizes each disease separately, and in this case correctly
placed Marfan syndrome at rank #1. Three other FBN1-associated diseases were placed in ranks #2–#4 (A). Clinical and molecular data
were simulated according to individual 1 in Cao et al.51 The HPO terms are shown in panel (B). The graphic shows LIRICAL’s summary
table and three of the detailed LR plots for the candidates at ranks #1 (C), #3 (D), and #5 (E).
framework that is widely used in the interpretation of clin-

ical laboratory results.22,54,55 To the best of our knowledge,

the LR framework has not previously been used to support

phenotype-driven genomic diagnostics. LIRICAL provides

predictions of rare-disease diagnoses whose accuracy is at

par with that of previous state-of-the-art approaches,

such as Exomiser.29 LIRICAL exhibits substantially better

performance in the face of phenotypic and genotypic

noise. Additionally, it provides an estimated posttest prob-

ability of each candidate diagnosis and allows clinicians to
414 The American Journal of Human Genetics 107, 403–417, Septem
evaluate the contribution of each individual phenotypic

abnormality to each candidate diagnosis.

An LR indicates how many times more or less likely indi-

viduals with the disease are to have that particular result

than are individuals without the disease. An LR greater

than one indicates that the result of the test is associated

with the presence of the disease being investigated, whereas

an LR less than one indicates the absence of the disease. The

more the value of the LR deviates from one, the stronger the

evidence is for the presence or absence of disease.43 In
ber 3, 2020



practice, the posttest probability can be used as an estimate

of the quality of any diagnosis. The mean posttest probabil-

ity estimated for the candidate at rank one for randomized

data was close to zero, whereas the posttest probability of

the correct diagnosis was about 67% for the case reports

(Figure 3). In some cases, however, the correct candidate

was placed at rank one but received a low posttest probabil-

ity. Future improvements in the quality and comprehen-

siveness of HPO annotations aswell as in the computational

assessment of variants might lead to an improved ability of

LIRICAL to estimate posttest probabilities.

LIRICAL can analyze an exome in less than a minute on

a typical laptop computer. We identified 14 other tools for

phenotype-driven analysis of diagnostic exome or genome

data. None of these tools was both up to date and available

for execution on the command line, which would

have enabled testing of the total of 1,978 original or obfus-

cated cases from the phenopackets and the 116 cases from

the 100,000 Genomes Project (Table S5).

In addition to having a performance that is comparable

to that of other state-of-the-art tools, such as Exomiser,

LIRICAL provides users with interpretable results that can

be used to guide clinical actions. For instance, large-scale

disease-sequencing projects, such as the 100,000 Genomes

Project, often have hundreds or thousands of unsolved

cases. LIRICAL can be run on collections of unsolved cases,

and the posttest probability of the highest ranked candi-

dates could be used as a criterion to decide whether to sub-

ject a case to detailed reanalysis.

LIRICAL’s assessment of the contribution of individual

phenotypic abnormalities can also be useful in many

ways. For instance, in practice, individuals with genetic

diseases may present with a mix of signs and symptoms

that are related to an underlying Mendelian disorder and

may also have unrelated (coincidental) findings. If a core

set of phenotypes and a genotype strongly support a candi-

date diagnosis but some features do not, clinicians might

consider whether alternate explanations for the non-

contributory features are plausible according to their clin-

ical judgment. For instance, features such as myopia, scoli-

osis, and gastresophageal reflux are relatively common in

the general population and might therefore occur in per-

sons with genetic disease as coincidental findings. Clinical

judgment would be necessary to evaluate each term. For

instance, myopia (short-sightedness) is relatively common

in young adults, but the presence of high myopia in a

toddler is more likely to be a clinical finding that is impor-

tant for the differential diagnostic workup.

LIRICAL takes as input a list of HPO terms and can be run

with or without an associated VCF file with genetic vari-

ants. The Java implementation of LIRICAL presented

here assumes an equal pretest probability for each of the

diseases under consideration (e.g., ð1 =7; 596Þ for the

7,596 diseases currently represented in the HPO database).

This is a reasonable approach to the analysis of exomes in a

setting such as the 100,000 Genomes Project where we

speculate that rarer genetic diseases are more likely to be
The American
analyzed than common, more easily recognized genetic

diseases. However, in other settings, LIRICAL could be

used with other values for the pretest probability. For

instance, in general care settings, the rare-disease preva-

lence data from Orphanet could be used.56
Limitations

Similar to the Naive Bayes approach, LIRICAL makes the

assumption that the individual (phenotypic) features are

independent of each other; this is called ‘‘naive’’ because

it is almost never true. However, in practice, Naive Bayes

and LIRICAL perform well on real data. In the future, the

LIRICAL algorithm could be extended to model the depen-

dencies in the data by defining compound probability dis-

tributions. For instance, what is the probability of

observing a set of abnormalities of the skeleton given

that a certain diagnosis is present or not? Speculatively,

this could further improve the performance of LIRICAL,

but it would require data about co-occurrences of pheno-

typic features that are currently not generally available.

Several of LIRICAL’s features depend on the underlying

biocurated data. Currently, the HPO database contains

10,756 annotations of 2,321 diseases with explicit fre-

quency data, meaning that most annotations have an un-

known frequency (the LIRICAL algorithm uses the default

frequency of 100% in these cases). Therefore, deeper and

more detailed biocuration will be required to take advan-

tage of LIRICAL’s ability to use frequencies to calculate

the LR.
Data and Code Availability

LIRICAL is implemented as a stand-alone Java desktop

application that can be installed in less than an hour. LIR-

ICAL is freely available for academic use, and source

code can be downloaded from https://github.com/

TheJacksonLaboratory/LIRICAL. The 384 phenopackets

generated for this work are available via zenodo (https://

zenodo.org/record/3905420).
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.06.021.
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Figure S1. Calculating the likelihood ratios for phenotypes. (A) We will explain how the likelihood
ratios (LR) for phenotypes are calculated using the example ontology shown here. The ontology contains 17
terms. For a certain disease, which we will call D, four of the terms are directly annotated (HP:7, HP:11, HP:13,
and HP:16, shown in dark blue). Because of the propagation of annotations, each of the ancestors of these terms
is implicitly annotated to D as well (the terms are shown in light blue, and the edges encoding this inheritance
are also shown in light blue). For instance, if HP:15 refers to Nuclear cataract, HP:8 refers to Cataract,
and HP:3 refers to Abnormal lens morphology, then if we annotate disease D to Nuclear cataract, then we
are also stating that the disease is characterized by Cataract and by Abnormal lens morphology. The term
HP:1 is the root of this ontology (comparable to Phenotypic abnormality in the full HPO); (B) In this case
a query term matches one of the directly annotated terms exactly. Then probability of observing HP:16 in
an individual with D is simply the frequency of HP:16 in D, or P (h16|D) = fD16; (C) In this case, the query
(HP:14) term matches a descendent of HP:7. HP:14 is not itself annotated to D. In this case, we assume that
the direct annotation (HP:7) is equally likely to correspond to an of its k subterms. If we assume that all
individuals with disease D have the phenotypic feature represented by HP:7, then the frequency is 100%, i.e.,
fD7 = 1.0. We therefore divide this frequency by k. In this case, HP:7 has two descendents and k = 2, and

therefore P (h14|D) =
fD
7

2 = 0.5; (D) Here, the query is to HP:8, an ancestor of a term that is directly annotated
to D. Because of annotation propagation, the probability of observing HP:8 in individuals with this disease is
equivalent to the probability of observing HP:16, viz., P (h8|D) = fD16.
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Figure S1. Calculating the likelihood ratios for phenotypes (continued). (E) HP:3 is an ancestor of
two terms used to annotate D. Here the maximum probability of HP:7 and HP:16 is taken, i.e., P (h3|D) =
max(fD7 , f

D
16); (F and G) In this case, the query term is not directly annotated in the disease and is not a

subclass of a disease term, nor is a disease term a subclass of the query term. Following the graph, the query
term and some disease annotation have a common ancestor. This common ancestor can be a root term (F) or
a non-root term (G). If their common ancestor is at the root, then the query does not affect an organ that is
affected by the disease. An arbitrary small likelihood ratio of 1

100 is assigned in this case. If there is a common
ancestor below the root (hca), then the query term affects the same organ as the disease annotation without
being a closely matched feature. In this case, we model the probability as being related to the overall frequency
of the feature in the HPO corpus, but set the probability to be a minimum of 1

100 to avoid an overly large
influence of very rare features.
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Figure S2. The Exomiser predicted pathogenicity score was calculated for each variant in ClinVar whose
genomic position was precisely specified as nucleotide positions (these tend to be single-nucleotide variants
or variants encompassing a small number of nucleotides rather than structural variants). A total of 160,714
such variants were available for analysis in the Exomiser data distribution version 12.1.0. The were 16,499
benign variants (10.3%), 64,123 likely benign variants (39.9%), 27,830 likely pathogenic variants (17.3%),
and 52,262 pathogenic variants (32.5%). For the purpose of this analysis, the category likely benign or

benign was assigned to likely benign, and likely pathogenic or pathogenic was assigned to likely

pathogenic. In this work, a threshold pathogenicity score of 0.8 was chosen. The percentages of variants with
an Exomiser score of at least 0.8 was: benign: 36.1%, likely benign: 26.5%, likely pathogenic: 99.3%,
and pathogenic: 98.9%. The analysis was performed using the hg19 data. Similar results were obtained for
hg38.
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Figure S3. Frequencies of called pathogenic variants per gene. The frequencies of variants whose
predicted pathogenicity score was 0.8 or higher was summed for each of 20,632 protein-coding genes and the
count (frequency) of genes is plotted. Data are derived from the hg19 gnomAD dataset. Similar results were
obtained for hg38. (a) An overview of the entire distribution. (b) Counts are shown for the 59 genes with
counts above 3. Gene symbols are shown for all genes with counts above 8.
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Figure S4. Comparison of LIRICAL and Phenomizer. The performance of LIRICAL (phenotype-only
mode) was compared with that of Phenomizer [1] on the dataset of 384 Phenopackets (Table S2). For this
analysis, the genetic information was not used, because Phenomizer is not able to use genetic information. The
percentage of cases in which the true diagnosis was placed at a given rank is shown on the Y axis. The X axis
shows the ranks or rank groups. LIRICAL placed a total of 43.7% of cases in the top 3 ranks, and Phenomizer
placed a total of 35.3% of cases in the top 3 ranks.
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Figure S5. Ranking of an autosomal recessive disease with one pathogenic allele. Current
exome and genome technologies can miss variants in highly GC-rich exons or can fail to detect struc-
tural variants. This may lead to only one of the expected two pathogenic alleles being identified for an
autosomal recessive candidate disease. In this example, we show a simulated case of Hyperphosphatasia
with mental retardation syndrome 1 (OMIM:239300) with two typical features. LIRICAL does not ap-
ply a hard filter to such cases but instead employs a flexible genotype likelihood ratio score. (a) Simu-
lation with two pathogenic alleles; (b) Simulation in which one of the two alleles was removed. The LR
for PIGV is lower but still contributory and the correct diagnosis remained in rank #1. The variants
are chr1:27121140C>G (NM 001202554.1:c.615C>G, NP 001189483.1:p.(Asn205Lys)) and chr1:27121379A>G
(NM 001202554.1:c.854A>G, NP 001189483.1:p.(Tyr285Cys)). Chromosomal coordinates are according to
hg19.
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Figure S6. Performance of LIRICAL and Exomiser according to mode of inheritance and ClinVar
status. The evaluation shown in Figure 2 of the main manuscript was repeated for subsets of the data. (a)
Autosomal dominant diseases with disease-associated variant listed as pathogenic in ClinVar (n = 84); (b)
Autosomal dominant diseases without variant listed as pathogenic in ClinVar (n = 67); (c) Autosomal recessive
diseases with at least one disease-associated variant listed as pathogenic in ClinVar (n = 150); (d) Autosomal
recessive diseases without variant listed as pathogenic in ClinVar (n = 71).
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Figure S7. LIRICAL’s posttest probability estimates. The post-test probability of the correct diagnosis
was calculated for each of the 384 phenopacket case reports (Original). The mean post-test probability (pp) of
the original data was 67.4%. Five procedures were applied to add noise to this data (Supplemental Table S3).
Results for the original data are shown as original. noise2: two random HPO terms were added (mean pp:
50.8%); noise2*: two random HPO terms were added and original terms were replaced by parent terms (mean
pp: 50.3%); noise2**: two random HPO terms were added and original terms were replaced by grandparent
terms (mean pp:(mean pp: 50.3%); remove2: All pathogenic alleles were removed (mean pp: 29.4%); random:
All HPO terms were replaced by random terms (mean pp: 2.9%).
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Figure S8. LIRICAL disease ranks. The ability of LIRICAL to predict the correct disease was assessed
with 384 case reports (Table S2). This is the same simulation as presented in Fig. 2 of the main manuscript,
but the rank is recorded for diseases instead of for disease genes. This is a harder prediction task because many
genes are associated with multiple Mendelian diseases. Four tests were performed: original: unaltered data
from the case reports. noise2: Two random (“noise”) HPO terms are added to each case; noise2*: Original
terms are replaced by a parent term and two noise terms are added; noise2**: Original terms are replaced by
a grandparent term and two noise terms are added. The X axis shows the rank assigned by LIRICAL to the
correct disease gene. The Y axis shows the percentage of cases in which the given rank was achieved.
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Figure S9. LIRICAL’s treatment of ClinVar pathogenic variants. In this example, we simulate a pa-
tient with a rare (0.02% maximum population frequency) variant in TTN, NM 001267550.2(TTN):c.18295C>T
[2], who is noted to have Dilated cardiomyopathy (HP:0001644). The variant is listed as having Uncer-
tain significance in ClinVar (VCV000263438.2). (a) The candidate placed in rank 1 is a false positive, Di-
lated cardiomyopathy 1D (OMIM:601494) related to a variant in the TNNT2 gene (NM 000364.3: c.683T>C,
p.(Ile228Thr) that was present in the control VCF file. This variant is listed in ClinVar as having uncertain
clinical significance (VCV000181604.2). (b) The correct candidate is placed at rank 6, Dilated cardiomy-
opathy 1G (OMIM:604145). The TTN mutation is scored with a likelihood ratio of just 2.70 in favor of
OMIM:604145 because of the high background frequency of variants in this gene (λB = 9.4564), despite the
near maximal raw pathogenicity score of Exomiser (0.997). (c) In a separate simulation, the TTN variant
NM 001267550.2:c.2926T>C (p.Trp976Arg) was spiked into the same control VCF file. This variant is listed
in ClinVar as likely pathogenic (VCV000012651.3), and for this reason is (heuristically) assigned a likelihood
ratio of 1000 by LIRICAL. The candidate is now correctly ranked in first place.
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Figure S10. Negated annotations. LIRICAL was run with ten cases with a negated (“not”) annotation
deemed important for the differential diagnosis. For instance, Loeys-Dietz syndrome 4 is annotated not to have
Ectopia lentis. Although the overall performance was good even without the negated annotations, in two
of the ten cases, including the negated annotation boosted the rank of the correct candidate disease from 2 or
3 to 1. The X axis shows the rank assigned by LIRICAL to the correct disease gene. The Y axis shows the
percentage of cases in which the given rank was achieved.
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Figure S11. Ranking of candidate diseases with and without excluded features. In this example,
panels (a) and (b) were run using a negated query term, Ectopia lentis, that had been excluded by exam-
ination of a hypothetical proband. Ranks 1 and 2 are shown. The correct diagnosis, Loeys-Dietz syndrome
4, has a posttest probability of 92.4%. In panels (c) and (d), the excluded term was omitted and the correct
diagnosis was placed in rank 2.
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Figure S12. Assessment of diseases based only on clinical criteria. In this example, a case of Arima
syndrome is simulated based on case 1 in a report on the clinicopathological features of the renal disease in
Arima syndrome [3]. Arima syndrome shares many phenotypic features with Joubert syndrome. (a) In the
simulated case using the control VCF file (without spiking in any pathogenic variant), Arima syndrome was
correctly ranked in first place. (b) A type of Joubert syndrome was ranked in fourth place. No pathogenic alleles
were identified in the causative gene TMEM216, which reduced the likelihood ratio (red bar corresponding to
TMEM216).
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Figure S13. Rankings with all pathogenic alleles removed. Performance of LIRICAL (blue) and
Exomiser (orange) on 384 case reports from which all pathogenic alleles have been removed from the VCF file.
LIRICAL placed the correct candidate in the first ten ranks in 49.7% of cases, while Exomiser placed 4 of 384
candidates in rank 1 and failed to rank any of the other candidates. The X axis shows the rank assigned by
LIRICAL or Exomiser to the correct disease gene. The Y axis shows the percentage of cases in which the given
rank was achieved.



Gene Frequency Associated disease

TTN (7273) 9.46 CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, 9 (OMIM:613765)
HLA-DRB1 (3123) 9.29 SARCOIDOSIS, SUSCEPTIBILITY TO, 1 (OMIM:181000)
KRT18 (3875) 7.25 CIRRHOSIS, FAMILIAL (OMIM:215600)
FLG (2312) 5.98 DERMATITIS, ATOPIC, 2 (OMIM:605803)
NEB (4703) 5.29 NEMALINE MYOPATHY 2 (OMIM:256030)
MUC5B (727897) 4.99 PULMONARY FIBROSIS, IDIOPATHIC (OMIM:178500)
HLA-DQB1 (3119) 4.47 CELIAC DISEASE, SUSCEPTIBILITY TO, 1 (OMIM:212750)
SYNE2 (23224) 3.94 EMERY-DREIFUSS MUSCULAR DYSTROPHY 5, AUTOSOMAL DOMINANT

(OMIM:612999)
SYN2 (6854) 3.71 SCHIZOPHRENIA (OMIM:181500)
RP1L1 (94137) 3.53 OCCULT MACULAR DYSTROPHY (OMIM:613587)
DSPP (1834) 3.38 DEAFNESS, AUTOSOMAL DOMINANT 39, WITH DENTINOGENESIS IMPERFECTA

1 (OMIM:605594)
FSIP2 (401024) 3.14 SPERMATOGENIC FAILURE 34 (OMIM:618153)
SCARF2 (91179) 3.11 VAN DEN ENDE-GUPTA SYNDROME (OMIM:600920)
ARMC9 (80210) 3.04 JOUBERT SYNDROME 30 (OMIM:617622)
DNAH11 (8701) 3.00 CILIARY DYSKINESIA, PRIMARY, 7 (OMIM:611884)
KMT2C (58508) 2.96 KLEEFSTRA SYNDROME 2 (OMIM:617768)
HLA-DQA1 (3117) 2.96 CELIAC DISEASE, SUSCEPTIBILITY TO, 1 (OMIM:212750)
EYS (346007) 2.87 RETINITIS PIGMENTOSA 25 (OMIM:602772)
HPS4 (89781) 2.73 HERMANSKY-PUDLAK SYNDROME 4 (OMIM:614073)
ALMS1 (7840) 2.54 ALSTROM SYNDROME (OMIM:203800)
FAT2 (2196) 2.47 SPINOCEREBELLAR ATAXIA 45 (OMIM:617769)
PIEZO1 (9780) 2.41 LYMPHATIC MALFORMATION 6 (OMIM:616843)
DST (667) 2.41 EPIDERMOLYSIS BULLOSA SIMPLEX, AUTOSOMAL RECESSIVE 2 (OMIM:615425)
ACAN (176) 2.37 SPONDYLOEPIMETAPHYSEAL DYSPLASIA, AGGRECAN TYPE (OMIM:612813)
HNF1A (6927) 2.37 DIABETES MELLITUS, INSULIN-DEPENDENT, 20 (OMIM:612520)
TNXB (7148) 2.35 VESICOURETERAL REFLUX 8 (OMIM:615963)
TRIOBP (11078) 2.33 DEAFNESS, AUTOSOMAL RECESSIVE 28 (OMIM:609823)
ISCU (23479) 2.29 MYOPATHY WITH LACTIC ACIDOSIS, HEREDITARY (OMIM:255125)
SON (6651) 2.21 ZTTK SYNDROME (OMIM:617140)
ADGRV1 (84059) 2.19 USHER SYNDROME, TYPE IIC (OMIM:605472)
TREH (11181) 2.16 TREHALASE DEFICIENCY (OMIM:612119)
SERPINA1 (5265) 2.11 ALPHA-1-ANTITRYPSIN DEFICIENCY (OMIM:613490)
FRRS1L (23732) 2.02 EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 37 (OMIM:616981)
FRG1 (2483) 2.01 FACIOSCAPULOHUMERAL MUSCULAR DYSTROPHY 1 (OMIM:158900)
CTU2 (348180) 1.95 MICROCEPHALY, FACIAL DYSMORPHISM, RENAL AGENESIS, AND AMBIGUOUS

GENITALIA SYNDROME (OMIM:618142)
KRT13 (3860) 1.79 WHITE SPONGE NEVUS 2 (OMIM:615785)
STXBP2 (6813) 1.79 HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS, FAMILIAL, 5 (OMIM:613101)
GEMIN4 (50628) 1.75 NEURODEVELOPMENTAL DISORDER WITH MICROCEPHALY, CATARACTS, AND

RENAL ABNORMALITIES (OMIM:617913)
DUOX2 (50506) 1.75 THYROID DYSHORMONOGENESIS 6 (OMIM:607200)
A2ML1 (144568) 1.75 OTITIS MEDIA, SUSCEPTIBILITY TO (OMIM:166760)
APOL1 (8542) 1.71 FOCAL SEGMENTAL GLOMERULOSCLEROSIS 4, SUSCEPTIBILITY TO

(OMIM:612551)
MYO5B (4645) 1.71 DIARRHEA 2, WITH MICROVILLUS ATROPHY (OMIM:251850)
TMEM216 (51259) 1.70 JOUBERT SYNDROME 2 (OMIM:608091)
LTBP4 (8425) 1.69 CUTIS LAXA, AUTOSOMAL RECESSIVE, TYPE IC (OMIM:613177)
PCLO (27445) 1.64 PONTOCEREBELLAR HYPOPLASIA, TYPE 3 (OMIM:608027)
KIZ (55857) 1.64 RETINITIS PIGMENTOSA 69 (OMIM:615780)
VCAN (1462) 1.61 WAGNER VITREORETINOPATHY (OMIM:143200)
VPS13B (157680) 1.61 COHEN SYNDROME (OMIM:216550)
RAI1 (10743) 1.60 SMITH-MAGENIS SYNDROME (OMIM:182290)
VWA3B (200403) 1.60 SPINOCEREBELLAR ATAXIA, AUTOSOMAL RECESSIVE 22 (OMIM:616948)
DHFR (1719) 1.58 MEGALOBLASTIC ANEMIA DUE TO DIHYDROFOLATE REDUCTASE DEFICIENCY

(OMIM:613839)

Table S1. The 50 Mendelian disease-associated genes with the highest sum of population frequencies of called
pathogenic variants.



Table S2. Phenopackets analyzed in this work.

Disease Gene Proband n.
HPO
terms

Publication

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 9 84 PMID:27087320

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 6-2 5 PMID:27040691

Ectodermal Dysplasia 1, Hypohidrotic, X-Linked EDA proband 9 PMID:18702659
Deafness, Autosomal Recessive 7 TMC1 935-IV:1 2 PMID:18616530
Osteogenesis Imperfecta, Type Xiv TMEM38B family2-

patient2
9 PMID:26911354

Cutis Laxa, Autosomal Recessive, Type Iic ATP6V1E1 Family 5 -
IV:2

4 PMID:27023906

Codas syndrome LONP1 Proband 13 PMID:28148925
Thrombocythemia 2 MPL FT2:VI:3 1 PMID:19036112
Parkinson Disease 23, Autosomal Recessive,
Early Onset

VPS13C VPS13C
case

11 PMID:28862745

Nemaline Myopathy 4 TPM2 1A 5 PMID:23378224
Noonan syndrome 3 KRAS Patient 2 14 PMID:17056636
Spinocerebellar Ataxia, Autosomal Recessive 20 SNX14 IV-1 18 PMID:30473892
Cleidocranial Dysplasia RUNX2 Family-A-II1 19 PMID:31548836
Epileptic Encephalopathy, Early Infantile, 28 WWOX Patient 1 18 PMID:27495153
Congenital Disorder Of Glycosylation, Type Iip TMEM199 F1-II2 11 PMID:26833330
Loeys-Dietz syndrome 1 TGFBR1 patient 18 PMID:30701076
Ataxia-Pancytopenia syndrome SAMD9L P5 2 PMID:29217778
Branchiooculofacial syndrome TFAP2A 10-year-old

girl
13 PMID:20461149

Lowe Oculocerebrorenal syndrome OCRL Patient 1 8 PMID:29300302
Spastic Paraplegia 76, Autosomal Recessive CAPN1 Fam1Pat1 7 PMID:29379883
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 7 88 PMID:27087320

Cerebral Creatine Deficiency syndrome 1 SLC6A8 proband 7 PMID:30400883
Epileptic Encephalopathy, Early Infantile, 14 KCNT1 Patient-1 5 PMID:24029078
Cutis Laxa, Autosomal Recessive, Type Iid ATP6V1A PV:1 11 PMID:28065471
Spastic Paraplegia 76, Autosomal Recessive CAPN1 index 4 PMID:28566166
Cohen syndrome VPS13B proposita 18 PMID:29149870
Combined Oxidative Phosphorylation Deficiency
30

TRMT10C Subject 1 18 PMID:27132592

Cutis Laxa, Autosomal Recessive, Type Iic ATP6V1E1 PII:1 13 PMID:28065471
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 3-1 15 PMID:27040691

Nijmegen Breakage syndrome NBN 12-year-old
girl

18 PMID:24044622

Microcephaly 6, Primary, Autosomal Recessive CENPJ IV-5 7 PMID:16900296
Spondylocostal Dysostosis 1, Autosomal Reces-
sive

DLL3 II.6 6 PMID:15200511

Microcephaly 3, Primary, Autosomal Recessive CDK5RAP2 patient 6 PMID:23726037
Aarskog-Scott syndrome FGD1 II-1 10 PMID:23211637
Bardet-Biedl syndrome 4 BBS4 4-year-old fe-

male patient
10 PMID:25533820

Muscular Dystrophy, Limb-Girdle, Type 2z POGLUT1 Patient II.1 13 PMID:27807076
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 7 38 PMID:29330883

Continued on next page



Table S2 – Continued from previous page
Disease Gene Proband n.

HPO
terms

Publication

Mental Retardation, Autosomal Dominant 42 GNB1 proband 10 PMID:29174093
Ataxia-Pancytopenia syndrome SAMD9L UB085 12 PMID:29146883
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 8 37 PMID:29330883

Cornelia De Lange syndrome 1 NIPBL Patient 1 14 PMID:25447906
Tietz syndrome MITF family 815 6 PMID:10851256
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 6 13 PMID:29330883

Papillon-Lefevre syndrome CTSC Case 1P1 6 PMID:23311634
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 3 35 PMID:29330883

Townes-Brocks syndrome SALL1 VMFS 23 PMID:29110636
Retinitis Pigmentosa 18 PRPF3 020001-II:4 4 PMID:27886254
Ataxia-Pancytopenia syndrome SAMD9L UB081 7 PMID:29146883
Bernard-Soulier syndrome GP1BA Patient 3 10 PMID:26044173
Ehlers-Danlos syndrome, Classic Type COL5A1 AN-002501 9 PMID:23587214
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 10 6 PMID:27087320

Retinitis Pigmentosa With Or Without Skeletal
Anomalies

CWC27 II-4 11 PMID:28285769

Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 Subject 5 21 PMID:26805781

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 8 93 PMID:27087320

Hajdu-Cheney syndrome NOTCH2 proband 12 PMID:23566664
Retinitis Pigmentosa 11 PRPF31 IV:3 5 PMID:30099644
Intellectual Developmental Disorder With Dys-
morphic Facies And Ptosis

BRPF1 Individual
11/Family F

11 PMID:27939639

Treacher Collins syndrome 2 POLR1D family 1:pa-
tient

4 PMID:24603435

Amyloidosis, Finnish Type GSN III:5 6 PMID:26915616
Legius syndrome SPRED1 P62 2 PMID:28150585
Neuropathy, Hereditary Sensory And Autonomic,
Type Iib

RETREG1 F2:IV:1 8 PMID:30643655

Spastic Paraplegia 76, Autosomal Recessive CAPN1 Fam2Pat1 7 PMID:29379883
Myhre syndrome SMAD4 patient 18 PMID:24715504
Thrombocytopenia 3 FYB1 IV:5 4 PMID:25516138
Homocystinuria Due To Cystathionine Beta-
Synthase Deficiency

CBS patient 4 PMID:8755636

Albinism, Oculocutaneous, Type Iii TYRP1 patient 2 3 PMID:21739261
Rett syndrome, Congenital Variant FOXG1 Patient 2 11 PMID:28851325
Emery-Dreifuss Muscular Dystrophy 3, Autoso-
mal Recessive

LMNA II3 12 PMID:23313286

Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 IV-6 4 PMID:28575651

Oliver-Mcfarlane syndrome PNPLA6 18 year-old
female

17 PMID:30097146

Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 F1:II.2 23 PMID:26805782

Continued on next page
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Disease Gene Proband n.

HPO
terms

Publication

Ehlers-Danlos syndrome, Classic-Like, 2 AEBP1 AN-006205 23 PMID:30759870
Gm1-Gangliosidosis, Type Iii GLB1 KT 6 PMID:1907800
Hyperoxaluria, Primary, Type Ii GRHPR patient 11 PMID:28569194
Bethlem Myopathy 1 COL6A1 II.1 21 PMID:30808312
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 Patient 2 8 PMID:28148688

Ehlers-Danlos syndrome, Musculocontractural
Type 1

CHST14 3-year old
boy

16 PMID:30249733

Stankiewicz-Isidor syndrome PSMD12 Subject 2 30 PMID:28132691
Marfan syndrome FBN1 B15 7 PMID:11175294
Nemaline Myopathy 3 ACTA1 Patient 5 10 PMID:30517146
Fanconi Anemia, Complementation Group C FANCC proband 7 PMID:22701786
Autoimmune Polyendocrine syndrome, Type I,
With Or Without Reversiblemetaphyseal Dyspla-
sia

AIRE V-1 10 PMID:28540407

Noonan syndrome 6 NRAS case 1 15 PMID:26467218
Mental Retardation, Autosomal Recessive 38 HERC2 Pedigree

1A,VIII:8
9 PMID:23243086

Marfan syndrome FBN1 Patient 2 11 PMID:30101859
Retinitis Pigmentosa With Or Without Skeletal
Anomalies

CWC27 3:II-1 2 PMID:28285769

Cockayne syndrome B ERCC6 index 18 PMID:30113454
Neuropathy, Hereditary Sensory And Autonomic,
Type Iia

WNK1 Patient 13 PMID:16636245

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK A-II-1 28 PMID:27040692

Elliptocytosis 2 SPTA1 proband 10 PMID:29484404
Spastic Paraplegia 76, Autosomal Recessive CAPN1 II-4 5 PMID:29678961
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK B-IV-6 16 PMID:27040692

Homocystinuria Due To Cystathionine Beta-
Synthase Deficiency

CBS III:3 12 PMID:26667307

Ataxia-Pancytopenia syndrome SAMD9L UB049 7 PMID:29146883
Waardenburg syndrome, Type 3 PAX3 proposita 8 PMID:12949970
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 D:IV-1 23 PMID:28132690

Osteogenesis Imperfecta, Type Xi FKBP10 proband 9 PMID:29801479
Retinitis Pigmentosa 27 NRL II:2 4 PMID:28106895
Cutis Laxa, Autosomal Recessive, Type Ia FBLN5 4-year-old

Burmese girl
12 PMID:24962763

Rubinstein-Taybi syndrome 2 EP300 11 26 PMID:29506490
Amelogenesis Imperfecta, Type Ij ACP4 Family

1-IV:3
2 PMID:28513613

Osteogenesis Imperfecta, Type Viii P3H1 proband 4 PMID:27864101
Cornelia De Lange syndrome 3 SMC3 patient 1 23 PMID:28781842
3-@methylglutaconic Aciduria With Deafness,
Encephalopathy, And Leigh-Likesyndrome

SERAC1 proband 23 PMID:31251474

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 2 84 PMID:27087320

Geleophysic Dysplasia 1 ADAMTSL2 patient 16 PMID:27057656
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Parkinson Disease 23, Autosomal Recessive,
Early Onset

VPS13C Family B, II-
1

5 PMID:26942284

Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 Patient 4 II-
1

10 PMID:28969374

Myopathy, Distal, Tateyama Type CAV3 I1 16 PMID:18930476
Ataxia-Pancytopenia syndrome SAMD9L III-1 10 PMID:28202457
Stankiewicz-Isidor syndrome PSMD12 Subject 3 12 PMID:28132691
Arthrogryposis, Distal, Type 2a MYH3 proband 13 PMID:28584669
Polymicrogyria With Seizures RTTN Patient 3 10 PMID:29883675
Cutis Laxa, Autosomal Recessive, Type Iid ATP6V1A PIV:1 19 PMID:28065471
Glycogen Storage Disease Vi PYGL 2-year 5-

month old
child

14 PMID:28984260

Polyarteritis Nodosa, Childhood-Onset ADA2 patient 1 13 PMID:28830446
Bardet-Biedl syndrome 1 BBS1 IV-5/family

A
7 PMID:23559858

Arthrogryposis, Distal, With Impaired Proprio-
ception And Touch

PIEZO2 Patient 12 PMID:27974811

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 2-1 12 PMID:27040691

Severe Combined Immunodeficiency, Autosomal
Recessive, T Cell-Negative,b Cell-Negative, Nk
Cell-Negative, Due To Adenosine Deaminase De-
ficiency

ADA Patient 6 PMID:1680289

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK Patient 2 16 PMID:30103036

Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 Patient 36-
16DG1123

5 PMID:28940097

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 5 31 PMID:29330883

Structural Heart Defects And Renal Anomalies
syndrome

TMEM260 1-II-1 23 PMID:28318500

Cone-Rod Dystrophy 2 CRX IV:5 4 PMID:30095615
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK B-IV-4 24 PMID:27040692

Smith-Lemli-Opitz syndrome DHCR7 patient 13 PMID:28503313
Congenital Disorder Of Glycosylation, Type Il ALG9 IV:5 16 PMID:26453364
Nephrotic syndrome, Type 1 NPHS1 patient 1 9 PMID:28392951
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 3 96 PMID:27087320

Acromesomelic Dysplasia, Maroteaux Type NPR2 IV-2/family-
A

10 PMID:25959430

Ayme-Gripp syndrome MAF patient
CSA108.01

1 PMID:28482824

Spastic Paraplegia 76, Autosomal Recessive CAPN1 SAL-399-073 7 PMID:27320912
Geleophysic Dysplasia 2 FBN1 Family 1,

Patient 1
14 PMID:29191498

Robinow syndrome, Autosomal Recessive ROR2 Patient 1 20 PMID:24932600
Parkinson Disease 23, Autosomal Recessive,
Early Onset

VPS13C Family C, II-
1

4 PMID:26942284

Wiedemann-Steiner syndrome KMT2A P1 16 PMID:25186178
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Diarrhea 8, Secretory Sodium, Congenital SLC9A3 Patient 9 9 PMID:26358773
Spastic Paraplegia 76, Autosomal Recessive CAPN1 Index 7 PMID:28321562
Retinitis Pigmentosa With Or Without Skeletal
Anomalies

CWC27 4:II-3 14 PMID:28285769

Spastic Paraplegia 7, Autosomal Recessive SPG7 II-3 13 PMID:17646629
Hyaline Fibromatosis syndrome ANTXR2 II-3 13 PMID:30050362
Cleidocranial Dysplasia RUNX2 Family-B-II1 19 PMID:31548836
Heterotaxy, Visceral, 1, X-Linked ZIC3 III-1 12 PMID:9354794
Autoimmune Lymphoproliferative syndrome FASLG patient 14 PMID:22857792
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 E:II-1 20 PMID:28132690

Muenke syndrome FGFR3 Proband 27 5 PMID:26740388
Congenital Disorder Of Glycosylation, Type Iip TMEM199 Patient 1 7 PMID:29321044
Marfan syndrome FBN1 Patient 1 4 PMID:30101859
Mental Retardation, Autosomal Dominant 7 DYRK1A Patient 2 19 PMID:26922654
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 Patient 1 50 PMID:28331220

Van Den Ende-Gupta syndrome SCARF2 proband 17 PMID:29378527
Bartter syndrome, Type 4a BSND family-A-

III3
9 PMID:18776122

Loeys-Dietz syndrome 3 SMAD3 54-year old
woman

2 PMID:28286188

Holoprosencephaly 5 ZIC2 proband 3 PMID:30855487
Epidermolysis Bullosa, Junctional, Herlitz Type LAMC2 patient 5 PMID:24533970
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 6 78 PMID:27087320

Apert syndrome FGFR2 Patient 1 14 PMID:23546041
Stankiewicz-Isidor syndrome PSMD12 Subject 4 21 PMID:28132691
Myasthenic syndrome, Congenital, 8 AGRN Patient

3/Kinship 2
15 PMID:24951643

Donohue syndrome INSR ISR1 14 PMID:24498630
Cornelia De Lange syndrome 1 NIPBL Patient 2 10 PMID:25447906
Microcephaly 5, Primary, Autosomal Recessive ASPM patient 10 PMID:29644084
Hypothyroidism, Thyroidal Or Athyroidal, With
Spiky Hair And Cleftpalate

FOXE1 patient 7 PMID:24219130

Fanconi Anemia, Complementation Group I FANCI NCI-309-1 9 PMID:26590883
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 1-1 20 PMID:27040691

Camurati-Engelmann Disease TGFB1 patient 13 PMID:30034812
Bernard-Soulier syndrome GP1BA 73 year old

male
5 PMID:9233564

Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 AII-1 14 PMID:28132690

Galloway-Mowat syndrome 4 TP53RK II-1 10 PMID:30053862
Leukocyte Adhesion Deficiency, Type I ITGB2 P1 4 PMID:26497373
Spastic Paraplegia 76, Autosomal Recessive CAPN1 Family

B-IV:1
7 PMID:27153400

Ataxia-Pancytopenia syndrome SAMD9L II-4 13 PMID:28202457
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 8-1 14 PMID:27040691

Trichothiodystrophy 3, Photosensitive GTF2H5 male infant 27 PMID:30359777
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Deafness, Autosomal Recessive 15 GIPC3 Ahv-14:23 1 PMID:29605370
Galactosemia GALT FKT118 7 PMID:25681079
Vici syndrome EPG5 18-month

son
15 PMID:29983806

Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 B:II-2 28 PMID:28132690

Sick Sinus syndrome 2, Autosomal Dominant HCN4 family
A/II:1

3 PMID:25145518

Charcot-Marie-Tooth Disease, Demyelinating,
Type 1c

LITAF Proband 14 PMID:19541485

Chudley-Mccullough syndrome GPSM2 case 1 13 PMID:27180139
Schinzel-Giedion Midface Retraction syndrome SETBP1 proposita 26 PMID:29333303
Orofaciodigital syndrome V DDX59 Patient 1 11 PMID:29127725
Ventricular Tachycardia, Catecholaminergic
Polymorphic, 1, With Orwithout Atrial Dysfunc-
tion And/or Dilated Cardiomyopathy

RYR2 proband 6 PMID:30296944

Long Qt syndrome 15 CALM2 Case 1 4 PMID:27374306
Cleidocranial Dysplasia RUNX2 Family-D-II1 19 PMID:31548836
Renal Cysts And Diabetes syndrome HNF1B patient 6 PMID:29491316
Ataxia-Pancytopenia syndrome SAMD9L II-4 6 PMID:27259050
Acromicric Dysplasia FBN1 patient 17 PMID:27834076
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 2 22 PMID:29330883

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK II-4 16 PMID:27275012

Intellectual Developmental Disorder With Dys-
morphic Facies, Seizures, And Distal Limb
Anomalies

OTUD6B proband 14 PMID:30364145

Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 Patient 3 II-
3

9 PMID:28969374

Fibrodysplasia Ossificans Progressiva ACVR1 patient 10 PMID:29482508
Neurodegeneration With Brain Iron Accumula-
tion 1

PANK2 Family I pa-
tient I

7 PMID:28821231

Al Kaissi syndrome CDK10 F1-II:1 20 PMID:28886341
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 5 92 PMID:27087320

Hypotrichosis, Congenital, With Juvenile Macu-
lar Dystrophy

CDH3 Patient 14 PMID:28061825

Epileptic Encephalopathy, Early Infantile, 4 STXBP1 P1 6 PMID:29896790
Myopathy, Centronuclear, 1 DNM2 Patient 1 12 PMID:24465259
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK C-II-1 26 PMID:27040692

Apert syndrome FGFR2 Patient 2 16 PMID:23546041
Kufor-Rakeb syndrome ATP13A2 Case 1 12 PMID:30746398
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 4-2 4 PMID:27040691

Ichthyosis, Congenital, Autosomal Recessive 11 ST14 patient 7 PMID:18445049
Alzheimer Disease 4 PSEN2 proband 3 PMID:30104866
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 Patient 3 28 PMID:28148688

Congenital Disorder Of Glycosylation, Type Iip TMEM199 F2-II2 17 PMID:26833330
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Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 4-1 10 PMID:27040691

Tuberous Sclerosis 2 TSC2 III-1 4 PMID:8825048
Osteogenesis Imperfecta, Type Ix PPIB second fetus 5 PMID:28242392
Spastic Paraplegia 76, Autosomal Recessive CAPN1 Tun66275 3 PMID:27320912
Chitayat syndrome ERF proband 17 PMID:30569521
Charge syndrome CHD7 Patient A

III-2
14 PMID:17661815

Cholestasis, Progressive Familial Intrahepatic, 4 TJP2 proband 17 PMID:30658709
Congenital Disorder Of Glycosylation, Type Iip TMEM199 Patient 3 6 PMID:29321044
Osteogenesis Imperfecta, Type Xii SP7 II:5 16 PMID:29382611
Ectodermal Dysplasia 9, Hair/nail Type HOXC13 IV-1 7 PMID:28403827
Diamond-Blackfan Anemia 1 RPS19 patient 5 PMID:27732904
Spinal Muscular Atrophy With Progressive My-
oclonic Epilepsy

ASAH1 patient 13 PMID:31213928

Cutis Laxa, Autosomal Recessive, Type Iib PYCR1 Patient 4 16 PMID:21487760
Intellectual Developmental Disorder With Dys-
morphic Facies And Behavioral Abnormalities

FBXO11 Individual 1 26 PMID:30057029

Nemaline Myopathy 1 TPM3 II.2 20 PMID:24239060
Skraban-Deardorff syndrome WDR26 Individual 1,

PPMD01P,
GEA055P

53 PMID:28686853

Stankiewicz-Isidor syndrome PSMD12 Subject 1 34 PMID:28132691
Myasthenic syndrome, Congenital, 9, Associated
With Acetylcholinereceptor Deficiency

MUSK patient 17 PMID:23326516

Neurodevelopmental Disorder With Progressive
Microcephaly, Spasticity, And Brain Anomalies

PLAA Family
A-IV:6

22 PMID:28413018

Peutz-Jeghers syndrome STK11 20-year-old
woman

3 PMID:15200509

Structural Heart Defects And Renal Anomalies
syndrome

TMEM260 2-II-4 19 PMID:28318500

Spherocytosis, Type 4 SLC4A1 c.1432-2A¿T 3 PMID:23255290
Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 III-1 19 PMID:28575651

Multiple Endocrine Neoplasia, Type I MEN1 III-3 15 PMID:26239674
Hyper-Ige Recurrent Infection syndrome, Auto-
somal Dominant

STAT3 12 year old
girl

12 PMID:20149460

Stickler syndrome, Type Ii COL11A1 proband 9 PMID:28971234
Congenital Disorder Of Glycosylation, Type Iip TMEM199 Patient 2 7 PMID:29321044
Spastic Paraplegia 45, Autosomal Recessive NT5C2 II.3 13 PMID:28327087
Werner syndrome WRN 48-year-old

male
18 PMID:30891318

Alagille syndrome 1 JAG1 Proband 18 PMID:30046498
Corneal Dystrophy, Fuchs Endothelial, 4 SLC4A11 Patient 1 2 PMID:25007886
Parkinson Disease 23, Autosomal Recessive,
Early Onset

VPS13C Family A, V-
2

18 PMID:26942284

Congenital Disorder Of Glycosylation, Type Iip TMEM199 F3-II1 12 PMID:26833330
Epidermolysis Bullosa, Junctional, Herlitz Type LAMA3 Proband 2 PMID:20881434
Mucolipidosis Ii Alpha/beta GNPTAB proband 14 PMID:30208878
Combined Oxidative Phosphorylation Deficiency
30

TRMT10C Subject 2 15 PMID:27132592
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Stickler syndrome, Type I COL2A1 proband 19 PMID:28841907
Myotonia Congenita, Autosomal Dominant CLCN1 man 7 PMID:30243293
Spondyloepimetaphyseal Dysplasia With Joint
Laxity, Type 1, With Orwithout Fractures

B3GALT6 P7/F6 29 PMID:23664117

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 6-1 13 PMID:27040691

Tuberous Sclerosis 1 TSC1 II:3/Family
2

7 PMID:18830229

Weill-Marchesani syndrome 1 ADAMTS10 18-year-old
woman

9 PMID:25469541

Megalocornea CHRDL1 III-1 4 PMID:24073597
Hyperuricemic Nephropathy, Familial Juvenile, 1 UMOD proband 6 PMID:15673476
Cutis Laxa, Autosomal Recessive, Type Iid ATP6V1A PIII:1 14 PMID:28065471
Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 F6,II-2 24 PMID:29388673

Tuberous Sclerosis 1 TSC1 patient 6 7 PMID:29196670
Retinitis Pigmentosa 78 ARHGEF18 Individual 1 8 PMID:28132693
Amelogenesis Imperfecta, Type Ia LAMB3 proband 2 PMID:27220909
Bardet-Biedl syndrome 5 BBS5 II:2 6 PMID:30850397
Bleeding Disorder, Platelet-Type, 17 GFI1B II:6 5 PMID:30655368
Nemaline Myopathy 7 CFL2 Patient 1 12 PMID:22560515
Neurodevelopmental Disorder With Progressive
Microcephaly, Spasticity, And Brain Anomalies

PLAA A-VI3 17 PMID:28007986

Bardet-Biedl syndrome 2 BBS2 II:2 9 PMID:26078953
Neurofibromatosis, Type I NF1 0548 8 PMID:9101303
Gapo syndrome ANTXR1 14 year old

brother
11 PMID:27587992

Charcot-Marie-Tooth Disease, Axonal, Type 2a2 MFN2 patient 11 PMID:26956144
Platelet Disorder, Familial, With Associated
Myeloid Malignancy

RUNX1 Pedigree I,
V:2

3 PMID:28181366

Trichohepatoenteric syndrome 1 TTC37 index 17 PMID:28292286
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK Patient 1 30 PMID:30103036

Glutaric Acidemia I GCDH Patient 5 5 PMID:27672653
Choreoacanthocytosis VPS13A Patient-2 9 PMID:28446873
Ataxia-Pancytopenia syndrome SAMD9L P7 2 PMID:29217778
Albinism, Oculocutaneous, Type Ii OCA2 B 4 PMID:29050284
Cockayne syndrome A ERCC8 Patient A 7 PMID:30200888
Pseudoachondroplasia COMP patient 17 PMID:23562786
Galactosialidosis CTSA BAB3767 13 PMID:24769197
Neurodevelopmental Disorder With Progressive
Microcephaly, Spasticity, And Brain Anomalies

PLAA Family D-
Case VIII-1

14 PMID:28413018

Cardiomyopathy, Dilated, 1g TTN JK109 4 PMID:11846417
Joubert syndrome 30 ARMC9 UW132-3 5 PMID:28625504
Dyskeratosis Congenita, Autosomal Dominant 3 TINF2 proband 12 PMID:29742735
Temtamy Preaxial Brachydactyly syndrome CHSY1 IV-1 16 PMID:24269551
Krabbe Disease GALC child 6 PMID:26567009
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 4 16 PMID:29330883

Spastic Paraplegia 76, Autosomal Recessive CAPN1 SAL-584-005 4 PMID:27320912
Continued on next page



Table S2 – Continued from previous page
Disease Gene Proband n.

HPO
terms

Publication

Ataxia, Early-Onset, With Oculomotor Apraxia
And Hypoalbuminemia

APTX V-3 4 PMID:28652255

Retinitis Pigmentosa 78 ARHGEF18 Individual 2 8 PMID:28132693
Hypochondroplasia FGFR3 VI-5 9 PMID:30681580
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 5-1 18 PMID:27040691

Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 BII-1 26 PMID:28132690

Spastic Paraplegia 76, Autosomal Recessive CAPN1 Family
A-V:2

8 PMID:27153400

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 1 88 PMID:27087320

Larsen syndrome FLNB patient 12 PMID:18322662
Muckle-Wells syndrome NLRP3 proband 9 PMID:27435956
Leukocyte Adhesion Deficiency, Type Iii FERMT3 index 4 PMID:31068971
Cardiofaciocutaneous syndrome 1 BRAF CFC16 16 PMID:16474404
Ataxia-Pancytopenia syndrome SAMD9L UB612 3 PMID:29146883
Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 Patient 1 10 PMID:28148688

Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 Subject 6 17 PMID:26805781

Boucher-Neuhauser syndrome PNPLA6 II.2 8 PMID:29749493
Nail-Patella syndrome LMX1B index 6 PMID:30881852
Neurodegeneration With Brain Iron Accumula-
tion 2b

PLA2G6 family II pa-
tient II

8 PMID:28821231

Osteogenesis Imperfecta, Type Xv WNT1 proband 11 PMID:30012084
Spastic Paraplegia 10, Autosomal Dominant KIF5A proband 12 PMID:30057544
Palmoplantar Keratoderma, Epidermolytic KRT9 III:4 3 PMID:18477167
Cerebral Dysgenesis, Neuropathy, Ichthyosis,
And Palmoplantar Keratodermasyndrome

SNAP29 The patient 19 PMID:29051910

Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 Suject 1 20 PMID:26805781

Spastic Ataxia 8, Autosomal Recessive, With Hy-
pomyelinating Leukodystrophy

NKX6-2 Patient 1 II-
1

13 PMID:28969374

Hyperekplexia, Hereditary 1 GLRA1 proband 5 PMID:24969041
Rett syndrome, Congenital Variant FOXG1 Patient 4 9 PMID:28851325
Loeys-Dietz syndrome 4 TGFB2 proposita 15 PMID:25163805
Smith-Magenis syndrome RAI1 SMS324 25 PMID:20932317
Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 Subject 4 16 PMID:26805781

Parkinson Disease 15, Autosomal Recessive
Early-Onset

FBXO7 ANK-07 7 PMID:25085748

Alpha-Thalassemia/mental Retardation syn-
drome, X-Linked

ATRX Proband 9 PMID:28371217

Rett syndrome, Congenital Variant FOXG1 Patient 1 12 PMID:28851325
Smith-Kingsmore syndrome MTOR index 9 PMID:27753196
Trichorhinophalangeal syndrome, Type I TRPS1 girl 4 PMID:23691375
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Holoprosencephaly 4 TGIF1 male
proband

7 PMID:16962354

Candidiasis, Familial, 2 CARD9 Patient 8 PMID:26044242
Megaloblastic Anemia 1 AMN III:1 3 PMID:26040326
Desmosterolosis DHCR24 proband 34 PMID:29175559
Spastic Paraplegia 76, Autosomal Recessive CAPN1 Family

C-IV:13
3 PMID:27153400

Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK 1-2 8 PMID:27040691

Larsen syndrome FLNB 19 12 PMID:16801345
Toe Syndactyly, Telecanthus, And Anogenital
And Renal Malformations

CCNQ Case 2 14 PMID:18297069

Loeys-Dietz syndrome 2 TGFBR2 Patient 4 15 PMID:30101859
Poikiloderma With Neutropenia USB1 patient 7 PMID:27247962
Neuropathy, Hereditary, With Liability To Pres-
sure Palsies

PMP22 Proband 7 PMID:29078790

Pierpont syndrome TBL1XR1 seven year
old male

29 PMID:28687524

Hemophagocytic Lymphohistiocytosis, Familial,
2

PRF1 8-year-old
boy

6 PMID:28468610

Jervell And Lange-Nielsen syndrome 1 KCNQ1 family III-
IV-5

4 PMID:29037160

Niemann-Pick Disease, Type C1 NPC1 The proband 14 PMID:27900365
Spherocytosis, Type 5 EPB42 proposita 5 PMID:7803799
Cutis Laxa, Autosomal Recessive, Type Iic ATP6V1E1 PI:1 13 PMID:28065471
Multiple Endocrine Neoplasia, Type Iia RET DM patient 3 PMID:24331334
Polymicrogyria, Symmetric Or Asymmetric TUBB2B proband 18 PMID:28966590
Ataxia-Pancytopenia syndrome SAMD9L IV-1 5 PMID:27259050
Metabolic Encephalomyopathic Crises, Recur-
rent, With Rhabdomyolysis, Cardiac Arrhyth-
mias, And Neurodegeneration

TANGO2 Subject 2 33 PMID:26805781

Myasthenic syndrome, Congenital, 22 PREPL proband 18 PMID:29483676
Gaucher Disease, Perinatal Lethal GBA boy weighing

1690 g
7 PMID:15967693

Kabuki syndrome 2 KMT2D 3 month old
boy

21 PMID:30509212

Charge syndrome CHD7 B III-3 14 PMID:17661815
Mental Retardation, Autosomal Recessive 18 MED23 IV.8 7 PMID:30847200
Citrullinemia, Classic ASS1 5 8 PMID:23099195
Long Qt syndrome 14 CALM1 Case 2 4 PMID:27374306
Nance-Horan syndrome NHS III:1 9 PMID:30642278
Palmoplantar Keratoderma, Punctate Type Ia AAGAB family

1:proband
4 PMID:28239884

Mental Retardation, Autosomal Dominant 21 CTCF proband 28 PMID:28619046
Ventricular Tachycardia, Catecholaminergic
Polymorphic, 3

TECRL Patient 1 8 PMID:27861123

Immunoskeletal Dysplasia With Neurodevelop-
mental Abnormalities

EXTL3 C:II-1 12 PMID:28132690

Parkinson Disease 7, Autosomal Recessive Early-
Onset

PARK7 proband 13 PMID:27460976

Cockayne syndrome A ERCC8 Patient C 5 PMID:30200888
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Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK II-3 21 PMID:27275012

Myopathy, Myofibrillar, 3 MYOT patient 5 PMID:19458539
Codas syndrome LONP1 Patient 1 8 PMID:25808063
Rett syndrome, Congenital Variant FOXG1 Patient 3 9 PMID:28851325
Retinitis Pigmentosa With Or Without Skeletal
Anomalies

CWC27 1:II-3 12 PMID:28285769

Cockayne syndrome B ERCC6 Patient B 5 PMID:30200888
Mucolipidosis Iv MCOLN1 6 year old

boy
8 PMID:28620732

Chediak-Higashi syndrome LYST patient 14 PMID:28183707
Marfan syndrome FBN1 Patient 3 4 PMID:30101859
Congenital Disorder Of Glycosylation, Type Iih COG8 proband 27 PMID:30690882
Pseudoachondroplasia COMP II-1 9 PMID:27330822
Polymicrogyria, Bilateral Frontoparietal ADGRG1 Family A,

II:2
4 PMID:29707406

Dyggve-Melchior-Clausen Disease DYM Patient 2 7 PMID:24300288
Arthrogryposis, Distal, Type 9 FBN2 IV:7 6 PMID:30147916
Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 9 21 PMID:29330883

Smith-Magenis syndrome RAI1 SMS335 15 PMID:20932317
Inclusion Body Myopathy With Early-Onset
Paget Disease With Or Withoutfrontotemporal
Dementia 1

VCP II-3 11 PMID:19208399

Neurodevelopmental Disorder With Or Without
Anomalies Of The Brain, Eye, Or Heart

RERE Subject 4 87 PMID:27087320

Bleeding Disorder, Platelet-Type, 15 ACTN1 proband 5 PMID:24069336
Encephalopathy, Neonatal Severe, With Lactic
Acidosis And Brain Abnormalities

LIPT2 P1 16 PMID:28757203

Cleidocranial Dysplasia RUNX2 III:3 10 PMID:24966961
Congenital Disorder Of Glycosylation, Type Iic SLC35C1 Proband 1 20 PMID:24403049
Rubinstein-Taybi syndrome 2 EP300 38 26 PMID:29506490
Craniofrontonasal syndrome EFNB1 3269 17 PMID:23335590
Brugada syndrome 1 SCN5A proband 3 PMID:31590245
Amyotrophic Lateral Sclerosis 1 SOD1 patient 7 PMID:30236613
Spastic Paraplegia 76, Autosomal Recessive CAPN1 R-III:1 5 PMID:27320912
Hypotonia, Infantile, With Psychomotor Retar-
dation And Characteristic Facies 3

TBCK D-II-1 27 PMID:27040692

Ehlers-Danlos syndrome, Classic Type, 2 COL5A2 patient 8 PMID:27656288
Birt-Hogg-Dube syndrome FLCN 253 2 PMID:96481
Diarrhea 3, Secretory Sodium, Congenital, With
Or Without Other Congenitalanomalies

SPINT2 two-month-
old male

13 PMID:29575628

Robinow syndrome, Autosomal Recessive ROR2 Patient 2 19 PMID:24932600



original unaltered data from case report
noise2 two “random” HPO terms added
noise2* like noise2 but the original terms were replaced by a randomly chosen parent

term
noise2** like noise2 but the original terms were replaced by a randomly chosen grand-

parent term
allele-2 remove all pathogenic alleles (i.e., remove one allele for dominant and two for

recessive). Otherwise do not change the data
allele-2,** remove all pathogenic alleles (i.e., remove one allele for dominant and two for

recessive), replace all terms with a parent term and then add two noise terms
terms-randomized replace all HPO terms by “random” terms
biallelic limit the case reports to those describing autosomal recessive (biallelic) diseases
biallelic-1 same as biallelic but one of two pathogenic alleles is removed
not 10 cases in which a negated (“not”) finding is important to the differential

diagnosis (Table S4)
not* same as not, but all negated terms are removed

Table S3. Approaches to add noise to the case report data (Phenopackets).



Correct diagnosis Differential diagnosis Differentiating
feature

Loeys-Dietz syndrome 4 [OMIM:614816] Marfan syndrome [OMIM:154700] Ectopia lentis
[HP:0001083]

Tietz albinism-deafness syndrome [OMIM:103500] Waardenburg syndrome, type 2A [OMIM:193510] Heterochromia
iridis
[HP:0001100]

Hypochondroplasia [OMIM:146000] Achondroplasia [OMIM:100800] Trident hand
[HP:0004060]

Osteogenesis imperfecta, type XII [OMIM:613849] Osteogenesis imperfecta, type IV [OMIM:166220] Dentinogenesis
imperfecta
[HP:0000703]

Spinal muscular atrophy with progressive myoclonic
epilepsy [OMIM:159950]

Spinal and bulbar muscular atrophy of Kennedy
[OMIM:313200]

Elevated serum
creatine kinase
[HP:0003236]

Myotonia congenita, dominant [OMIM:160800] Myotonic dystrophy 1 [OMIM:160900] Muscle
weakness
[HP:0001324]

Trichorhinophalangeal syndrome, type I
[OMIM:190350]

Trichorhinophalangeal syndrome, type II
[OMIM:150230]

Intellectual
disability
[HP:0001249]

GM1-gangliosidosis, type III [OMIM:230650] GM1-gangliosidosis, type I [OMIM:230500] Cherry red
spot of
the macula
[HP:0010729]

Megalocornea 1, X-linked [OMIM:309300] Glaucoma 3, primary congenital, A [OMIM:231300] Abnormal
intraocu-
lar pressure
[HP:0012632]

Ectodermal dysplasia 9, hair/nail type
[OMIM:614931]

Ectodermal dysplasia 1, hypohidrotic, X-linked
[OMIM:305100]

Abnormality of
the dentition
[HP:0000164]

Table S4. Pairs of diseases whose differential diagnosis is defined in part by the absence of the phenotypic
abnormality listed in the third column. For instance, Loeys-Dietz syndrome 4 is noted not to be characterized
by ectopia lentis, while the phenotypically similar disease Marfan syndrome is [4]. In each case, the disease in
the first column is explicitly annotated not to have the phenotype in question, and the disease in the second
column is annotated to have the feature. These ten cases are included in the 384 case reports (Phenopackets)
analyzed in this work.



Tool First published VCF HPO Web Shell Assemblies Last update
eXtasy [5] 2013 3 3 3 3 hg19 2013
Exomiser [6, 7, 8] 2014 3 3 5 3 hg19, hg38 2019
Phen-Gen [9] 2014 3 3 3 3 hg19 2014
PhenoVar [10] 2014 3(a) 3 3 5 hg19 2017
BierApp [11] 2014 3 3 7(no access) 5 hg19 2016
wANNOVAR [12] 2015 3 3 3 5 hg19, hg38 2019
OVA [13] 2015 3 3 3 5 hg19 2015
OMIM Explorer [14] 2016 3 3 7(no access) 5 hg19 2016
QueryOR [15] 2017 3 3 7(no access) 5 hg19 2016
GenIO [16] 2018 3 3 3 5 hg19 2017
AMELIE/Phrank [17] 2019 3 3 7(b) 5 hg19 2019
Phenoxome [18] 2019 3 3 3 5 hg19 2019
DeepPVP [19] 2019 3 3 5 7(c) hg19 2019
MutationDistiller [20] 2019 3 3 3 5 hg19 2019
PhenoPro [21] 2019 3 3 7(no access) 5 hg19 2019

Table S5. Other tools for phenotype-driven exome/genome analysis. Symbols: 3 The tool has
the capability denoted in the column. 5 The tool does not have the capability denoted in the column. 7
The publication describes the capability in question but it was not functional during the period of time this
manuscript was being prepared (Sep.-Dec., 2019). Additional comments: (a) Requires registration, which is not
working; (b) Web version of AMELIE not accepting jobs (attempted various times, October–December, 2020);
(c) Install instructions failed on dependencies or docker file; (no access): Web server could not be accessed on
multiple occasions.
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