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Promoter CpG Density Predicts Downstream
Gene Loss-of-Function Intolerance
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Summary
The aggregation and joint analysis of large numbers of exome sequences has recently made it possible to derive estimates of intolerance

to loss-of-function (LoF) variation for human genes. Here, we demonstrate strong and widespread coupling between genic LoF intoler-

ance and promoter CpG density across the human genome. Genes downstream of the most CpG-rich promoters (top 10% CpG density)

have a 67.2% probability of being highly LoF intolerant, using the LOEUF metric from gnomAD. This is in contrast to 7.4% of genes

downstream of themost CpG-poor (bottom 10%CpG density) promoters. Combining promoter CpG density with exonic and promoter

conservation explains 33.4% of the variation in LOEUF, and the contribution of CpG density exceeds the individual contributions of

exonic and promoter conservation. We leverage this to train a simple and easily interpretable predictive model that outperforms other

existing predictors and allows us to classify 1,760 genes—which are currently unascertained in gnomAD—as highly LoF intolerant or

not. These predictions have the potential to aid in the interpretation of novel variants in the clinical setting. Moreover, our results reveal

that high CpG density is not merely a generic feature of human promoters but is preferentially encountered at the promoters of themost

selectively constrained genes, calling into question the prevailing view that CpG islands are not subject to selection.
Introduction

A powerful way of gaining insight into a gene’s contribu-

tion to organismal homeostasis is by studying the fitness

effect exerted by loss-of-function (LoF) variants in that

gene. Fully characterizing this effect is challenging, as it

requires estimation of both the selection coefficient for in-

dividuals with bi-allelic LoF variants as well as the domi-

nance coefficient.1,2 However, recent studies based on

the joint processing and analysis of large numbers of

exome sequences have developed metrics which serve as

approximations to genic LoF intolerance in humans.3–5

These metrics correlate with several properties indicative

of LoF intolerance (such as enrichment for known haploin-

sufficient genes4,5) and can substantially help in the

assignment of pathogenicity to novel variants encoun-

tered in individuals as recommended by the American Col-

lege of Medical Genetics and Genomics.6

At the core of all these metrics is a comparison of the

observed to the expected number of LoF variants. Hence,

genes where the latter is small (e.g., due to small coding

sequence length or low mutation rate) will not be

amenable to this approach until the sample sizes become

much larger than they presently are. Currently in gno-

mAD, the largest such effort with publicly available

constraint data based on 125,748 exomes, approximately

28% of genes are unascertained with respect to their LoF

intolerance.5 It has been estimated that even with

500,000 individuals, the discovery of LoF variants will
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remain far from saturation, with potentially a sizeable

fraction of genes still difficult to ascertain.7

The cardinal feature of highly LoF-intolerant genes, i.e.,

genes depleted of even monoallelic LoF variants in healthy

individuals, is dosage sensitivity; a gene copy containing

one or more LoF variants produces mRNAs that are typically

degraded via nonsense-mediated decay.8,9 Therefore, the

deleterious effects of LoF variants in these genes are often

mediated through a reduction of the normal amount of

mRNA used for protein production. This in turn, implies

that studying the characteristics of regulatory elements con-

trolling the expressionofhighlyLoF-intolerantgeneshas the

potential to yield two important benefits.10,11 First, it can

highlight the features of the most functionally important

regulatory elements in thehumangenome. Second, suchfea-

tures can then provide the basis for predictive models of LoF

intolerance, which can be applied to unascertained genes.

In promoters, one sequence feature that has been exten-

sively studied is CpG density. A large number of mamma-

lian promoters harbor CpG islands,12,13 which typically

remain constitutively unmethylated in all cell types.14,15

Recently, it has been shown that clusters of unmethylated

CpG dinucleotides are recognized by CxxC-domain-con-

taining proteins,16,17 thereby facilitating the deposition

of transcription-associated marks such as H3K4me3.18–20

Additionally, there is now evidence that unmethylated

CpGs surrounding transcription factor (TF) motifs may

contribute to promoter activity by also increasing the

probability that the cognate TFs will bind.21,22
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Material and Methods

Selecting Transcripts with High-Confidence Loss-of-

Function Intolerance Estimates
In total, gnomAD5 provides LoF intolerance estimates for 79,141

human protein-coding transcripts (hereafter referred to as tran-

scripts) labeled with ENSEMBL identifiers, of which 19,172 are

annotated as canonical. For each transcript, these LoF intolerance

estimates consist of the point estimate of the observed/expected

number of LoF variants, as well as a 90% confidence interval

around it. The upper bound of this confidence interval (LOEUF)

is the suggested metric of LoF intolerance.5 For any given tran-

script, the ability to reliably estimate LOEUF is directly related to

the expected number of LoF variants; when that expected number

is small, there is uncertainty around the point estimate (and thus a

large LOEUF value), because it is not possible to determine

whether an observed depletion of LoF variants is due to negative

selection against these variants in the population or due to inade-

quate sample size. Therefore, for transcripts with high-confidence

LOEUF values, there should be a strong positive correlation be-

tween the point estimate and LOEUF; in contrast, low-confidence

LOEUF transcripts will have LOUEF values substantially larger

than their point estimates.

Based on this assessment, and consistent with Karczewski et al.,5

we determined that for transcripts with %10 expected LoF vari-

ants, there is inadequate power for LOEUF estimation (34,232

out of 79,141 total transcripts; 5,413 out of 19,172 canonical tran-

scripts; Figure S1). Throughout the text, we refer to the genes en-

coding for these transcripts as ‘‘unascertained.’’

Even though in Karczewski et al.5 most of the analyses were per-

formed using transcripts with >10 expected LoF variants, we saw

that, with increasing expected number of LoF variants, there was

a non-negligible increase in the probability (conditional on a

given point estimate) of a transcript belonging in the highly

LoF-intolerant category (LOEUF < 0.35), even for genes with ex-

pected LoF variants between 10 and 20. We thus adopted a more

stringent threshold, and considered transcripts with R20 ex-

pected LoF variants (25,474 out of 79,141 total transcripts; 8,506

out of 19,172 canonical transcripts; Figure S1) to have high-confi-

dence LOEUF. The genes encoding for these transcripts form the

‘‘well-ascertained’’ set, which, after further filtering based on

promoter annotation (see the section Selecting Transcripts with

High-Confidence Annotations in GENCODE v.19), we used to

establish the association between promoter CpG density and

LOEUF and to train predLoF-CpG.
Selecting Transcripts with High-Confidence Annotations

in GENCODE v.19
gnomAD supplies LOEUF estimates for 79,141 transcripts in GEN-

CODE v.19. However, we conducted our analyses at the gene level,

based on the following reasoning: typically, transcripts from the

same gene have overlap in their coding sequence, which makes

it hard to disentangle their LOEUF estimates. For example, a tran-

script whose loss does not have severe phenotypic consequences,

and therefore its promoter does not contain informative features,

may still have low LOEUF merely because it overlaps with a

different transcript of the same gene.

For each gene, GENCODE labels a single transcript as canonical

and recognizes the difficulty of accurately annotating transcrip-

tional start sites (TSSs).23 We manually inspected GENCODE’s

choices of canonical transcripts and found some problematic
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cases. An illustrative example is KMT2D (Figure S2). First, even

though this gene is broadly expressed across tissues in GTEx, its ca-

nonical promoter shows POLR2A (the major subunit of RNA PolII

complex24,25) ChIP-seq peaks in only 4 ENCODE experiments (out

of 74 total). Even though there does exist a non-canonical tran-

script whose promoter has POLR2A signal in 59 experiments (as

would be expected for a broadly expressed gene since binding of

the RNA PolII complex is the main hallmark of transcriptional

initiation at protein-coding gene promoters), that non-canonical

transcript has an unusually short coding sequence, which does

not even encode for the catalytic SET domain. In this particular

case, we reasoned that the 50 UTR of the canonical transcript needs

to be extended up until the TSS of the non-canonical transcript.

Such an annotation would also be consistent with the annotation

of the mouse ortholog. Importantly, if this annotation error is

ignored, it is impossible to select a KMT2D transcript with accurate

estimates of both LOEUF and promoter CpG density.

With this example in mind, we developed an empirical

approach to only retain transcripts with high-confidence GEN-

CODE annotations in our analysis. First, we defined promoters

as 4 kb elements centered around the TSS. We then leveraged

data from ENCODE26 on the genome-wide binding locations of

POLR2A from 74 ChIP-seq experiments on several cell lines, orig-

inating from diverse human tissues (see POLR2A ENCODE ChIP-

Seq Data section below).

As expected, we observed that genes that are broadly expressed

across the53different tissues inGTEx (t < 0:6; seeGTExExpression

Data section below) tend to have promoters with POLR2A ChIP-seq

peaks in multiple experiments, while the opposite is true for genes

expressed in a restricted number of tissues (t > 0:6, Figures S3A–

S3C). However, as in the KMT2D example above, we also observed

geneswithbroadexpressionandvery lowbindingofPOLR2Aat their

canonical promoter (Figure S3C) and a few genes with restricted

expression but POLR2A peaks at their canonical promoter in multi-

ple experiments (Figure S3C), raising our suspicion that these reflect

inaccurate annotation of the canonical TSS.

Therefore, we required that the canonical promoter of a broadly

expressed gene exhibits POLR2A peaks in multiple ENCODE ex-

periments and that the canonical promoter of a gene with

restricted expression exhibits POLR2A peaks only in a small num-

ber of ENCODE experiments. As additional layers of evidence for

canonical promoters, we used the presence of CpG islands, which

are known markers of promoters in mammalian genomes,12,13 as

well as the concordance between the human TSS coordinate and

the TSS coordinate of a mouse ortholog transcript (when the latter

is mapped onto the human genome).

Specifically, we first excluded genes on the sex chromosomes,

since, due to X-inactivation in females and hemizygosity inmales,

LoF intolerance estimates have different interpretation in these

cases. This gave us 17,657 genes with at least one canonical tran-

script, of which 17,359 had expression measurements in GTEx.

We then applied the following criteria (when none of the criteria

were satisfied, we entirely discarded the gene):

Criterion 1: The gene is broadly expressed (t < 0:6) and the ca-

nonical promoter has a POLR2A peak in more than 35 ENCODE

experiments.

We found 7,250 cases satisfying this criterion and therefore kept

the canonical promoter annotation.

Criterion 2: The gene is broadly expressed (t < 0:6), the canon-

ical promoter has a POLR2A peak in less than 10 ENCODE exper-

iments, and there is an alternative promoter with POLR2A peaks

in more than 35 experiments.
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We found 218 cases satisfying this criterion (Figure S3D) and

therefore classified the alternative promoter as the canonical (all

such cases are provided in Table S1). When there were more

than one alternative promoter satisfying our requirement, we

distinguished the following subcases:

(a) If none of these alternative promoters overlapped a CpG is-

land, we classified the promoter corresponding to the tran-

script with the greater number of expected LoF variants as

the canonical.

(b) If exactly one of these alternative promoters overlapped a

CpG island, we classified that promoter as the canonical.

(c) If more than one of these alternative promoters overlapped

a CpG island, we classified the promoter that, among the

CpG-island-overlapping promoters, had the greatest num-

ber of expected LoF variants as the canonical.

For our subsequent analyses, we used the LOEUF value of the

newly annotated canonical promoter.

Criterion 3: The gene is not broadly expressed (t > 0:6) and the

canonical promoter has a POLR2A peak in fewer than 10 ENCODE

experiments and overlaps a CpG island.

We found 1,862 cases satisfying this criterion and therefore kept

the canonical promoter annotation.

Criterion 4: The gene is not broadly expressed (t > 0:6), the ca-

nonical promoter has a POLR2A peak in fewer than 10 ENCODE

experiments, none of the promoters corresponding to the gene

overlap a CpG island, and there is a mouse ortholog TSS in RefSeq

no more than 500 bp away from the canonical human TSS.

We found 3,049 cases satisfying this criterion and therefore kept

the canonical promoter annotation.

Criterion 5: The gene is not broadly expressed (t > 0:6), the ca-

nonical promoter has a POLR2A peak in fewer than 10 ENCODE

experiments, none of the promoters corresponding to the gene

overlap a CpG island, there is no mouse ortholog TSS in RefSeq,

and there are no alternative transcripts with different TSS

coordinates.

We found 1,411 cases satisfying this criterion and therefore kept

the canonical promoter annotation.

The promoters selected from the above five criteria along with

their coordinates are provided in Table S2.

Finally, regarding coding sequence annotations, errors such as

the one in KMT2D described at the beginning of the section are

difficult to systematically detect and correct, and our manual in-

spection suggested that they are also less frequent. We chose to

entirely discard cases where:

(a) the transcript we had selected after promoter filtering had

%10 expected LoF variants (placing the gene into the unas-

certained category) and

(b) there was an alternative transcript that had longer coding

sequence and R20 more expected LoF variants compared

to the one our procedure selected.

This approach removes KMT2D and 14 more potentially prob-

lematic cases such as ZNF609.
Overlapping Promoters
When defining the set of genes with high-confidence LOEUF esti-

mates, we excluded genes whose promoters overlapped promoters

of genes with fewer than 20 expected LoF variants, with an
The American
observed/expected LoF point estimate for the latter suggestive of

LoF intolerance (<0.5). In cases of overlapping promoters with

both genes having R20 expected LoF variants, we kept the pro-

moter corresponding to the gene with the lowest LOEUF. In cases

of overlapping promoters with both genes having %10 expected

LoF variants, we kept the promoter with the highest CpG density.

Finally, when defining the set of unascertained genes, we excluded

genes whose promoters overlapped promoters of genes with more

than 10 expected LoF variants, unless there was strong evidence

that these were LoF tolerant (observed/expected LoF point esti-

mate >0.8 and at least 20 expected LoF variants).

We recognize, however, that in cases where promoters overlap,

the predictions are potentially informative not only for the gene

whose promoter was ultimately used, but also for the genes with

overlapping promoters. In addition, in cases of genes predicted

as highly LoF intolerant, these predictions might also have been

influenced by the overlapping promoter (there are only three

such potential cases). With that in mind, in Tables S3, S4, and

S5, we provide such information under the column

‘‘other_genes_with_overlapping_promoter.’’

Promoters in Subtelomeric Regions
It is known that subtelomeric regions are rich in CpG islands,

which are however different than those in the rest of the genome,

in that they appear in clusters and their CpG richness is driven

mainly by GC-biased gene conversion.27 We thus excluded pro-

moters residing in subtelomeric regions (defined as 2 Mb on

each of the two chromosomal ends of each chromosome) from

our analyses.

A schematic of our overall approach to partitioning genes, based

on this and the previous three sections, is shown in Figure S4.

Calculating the CpG Density of a Promoter
For a given promoter, we defined its CpG density as the observed-

to-expected (o/e) CpG ratio of the 4 kb interval centered around

the TSS. To calculate the o/e CpG ratio, we used the definition in

Gardiner-Garden and Frommer,28 applied to the entire 4 kb

sequence (that is, without using sliding windows). Specifically,

we used the formula

pðCGÞ
pðCÞpðGÞ

with p(CG) being the proportion of CpG dinucleotides observed in

the sequence (and similarly for p(C), p(G)). The sequenceof eachpro-

moter was obtained using the BSgenome.Hsapiens.UCSC.hg19 R

package.

Given that CpG density is a ratio, it is theoretically possible that

it becomes an unreliable metric when the expected number of

CpGs is small. We therefore asked whether the association with

LOEUF persists if, instead of the CpG density, we use the observed

count of CpGs in a promoter. We found this to be true, with

the results being almost the same quantitatively (Figures 1A, 1B,

and S5).

The Impact of Promoter Definition
There is currently no single accepted definition of a promoter in

terms of the size of the interval around the TSS. Our main motiva-

tion behind the choice of 4 kb was that CpG density has been

mechanistically linked to the presence of histone marks such as

H3K4me3,18,20 which are typically detected in that interval. How-

ever, since using 4 kb around the TSS often leads to the inclusion
Journal of Human Genetics 107, 487–498, September 3, 2020 489
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Figure 1. The Relationship between Promoter CpG Density (o/e CpG Ratio) and Downstream Gene Loss-of-Function Intolerance
(A) The distribution of genic LOEUF (as provided by gnomAD) in each decile of promoter CpG density. The vertical line corresponds to
the cutoff for highly LoF-intolerant genes (LOEUF < 0.35).
(B) Odds ratios and the corresponding 95% confidence intervals, quantifying the enrichment for highly LoF-intolerant genes (LOEUF <
0.35) that is exhibited by the set of genes in each decile of promoter CpG density. For each of the other deciles, the enrichment is
computed against the 10th decile. The horizontal line corresponds to zero enrichment.
In both (A) and (B), CpG density deciles are labeled from 1-10 with 1 being the most CpG-poor and 10 the most CpG-rich decile.
(C) The percentage of LOEUF variance (adjusted r2) explained by CpG density, computed in 1 kb windows. Each point corresponds to a
window. We start with a window centered at 2 kb upstream of the TSS, and slide it in 250 bp steps in the 50-to-30 direction, until the final
window is centered at 2 kb downstream. Red and pink points correspond to intervals entirely upstream or downstream, respectively, of
the TSS, with squares indicating intervals extending beyond 2 kb. Orange points correspond to intervals containing both upstream and
downstream sequence.
of some exonic sequence, we sought to compare the contribution

of promoter CpGs to that of CpGs in the N-terminal part of the en-

coded protein. We used 1 kb windows, starting with a window

centered at 2 upstream of the TSS, and slid these windows (in

250 bp steps in the 50-to-30 direction) until the final window was

centered at 2 downstream of the TSS. In each window, we

computed the CpG density and asked how much LOEUF variance

(adjusted r2) it explains. This clearly revealed that the association

between CpG density and LOEUF is driven by the CpGs proximal

to the TSS, with the maximal explained variance attained with a

window centered at 500 bp upstream of the TSS (Figure 1C). As

these sliding windows move away from the TSS and into the cod-

ing sequence, the explained variance drops to almost 0 (Figure 1C).

This result can be interpreted in two ways. One is that the CpGs

proximal to the TSS (both upstream and downstream) are driving

the association with LOEUF, because they are part of the promoter

region. This is the interpretation we favor and is consistent with

the aforementioned experiments which suggest causal links be-

tween high CpG density and histone mark recruitment, as well

as TF binding. The alternative interpretation is that there is an in-

dependent contribution of the CpGs upstream and those down-

stream of the TSS, with the downstream ones having a different

biological role related to their presence within the exonic

sequence. We find this interpretation less plausible, especially in

light of the fact that exonic sequence has no contribution once

we start moving away from the TSS.

ENCODE ChIP-Seq Data
We used the rtracklayer R package to download the ‘‘wgEncodeR-

egTfbsClusteredV3’’ table from the ‘‘Txn Factor ChIP’’ track, part

of the ‘‘Regulation’’ group as provided by the UCSC Table Browser

for the hg19 human assembly. We then restricted to peak clusters

corresponding to our factor of interest. For POLR2A, for example,

this gave us a set of genomic intervals, each of which has been

derived from uniform processing of 74 POLR2A ChIP experiments
490 The American Journal of Human Genetics 107, 487–498, Septem
on 32 distinct cell lines (some cell lines were represented by more

than one experiments). Each genomic interval was associated with

a single number, which ranged from 0 to 74 and indicated the

number of ChIP experiments where a peak was detected at that in-

terval. The EZH2 and CTCF data were downloaded in an identical

manner.

The EZH2 ChIP experiments were performed on the following

cell lines: H1-hESC (embryonic stem cells), HeLa-S3 (cervical carci-

noma), HMEC (mammary epithelial cells), HSMM (skeletal muscle

myoblasts), NH-A (astrocytes), NHDF-Ad (dermal fibroblasts),

NHEK (epidermal keratinocytes), NHLF (lung fibroblasts), Dnd41

(T cell leukemia with Notch mutation), GM12878 (lymphoblas-

toid), HepG2 (hepatocellular carcinoma), HSMMtube (skeletal

musclemyotubes differentiated from theHSMMcell line), HUVEC

(umbilical vein endothelial cells), and K562 (lymphoblasts). The

cell lines on which the POLR2A and CTCF ChIP experiments

were performed are too numerous to list here and can be found

on the UCSC genome browser.

GTEx Expression Data
We used the GTEx portal to download amatrix with the gene-level

TPM expression values from the v7 release, derived from RNA-seq

expression measurements from 714 individuals, spanning 53 tis-

sues.29

As the metric of tissue specificity for a given gene, we used t,

which has been shown to be the most robust such measure

when benchmarked against alternatives.30 To calculate t, we first

computed the gene’s median expression across individuals, within

each tissue. Since it has been shown that the transcriptomic pro-

files of the different brain regions are very similar, with the excep-

tion of the two cerebellar tissues,31 which are similar to one

another, we aggregated the median expression of each gene in

the different brain regions into two ‘‘meta-values.’’ One meta-

value corresponded to the median of its median expression in

the two cerebellar tissues, and the other to the median of its
ber 3, 2020



median expression in the other brain regions. We then formed a

matrix where rows corresponded to genes and columns to tissues,

with one column for the across-brain-regions meta-value and

another for the across-cerebellar-tissues meta-value; the entries

in the matrix were log2(TPMþ1) median expression values.

Finally, for each gene, t was calculated as described in Kryuch-

kova-Mostacci and Robinson-Rechavi.30

For our analyses of the association between promoter CpG den-

sity and expression level, we used the median (across individuals)

expression (log2(TPMþ1)), computed for the tissue where the gene

had the maximum median expression.

TSS Coordinates of Mouse Orthologs
We used the biomaRt R package to obtain a list of mouse-human

homolog pairs, using the human Ensembl gene IDs as the input.

For this query, we set the ‘‘mmusculus_homolog_orthology_confi-

dence’’ parameter equal to 1 (indicating high-confidence homolog

pairs). Then, for each of the mouse homolog Ensembl IDs, we

retrieved the RefSeq mRNA IDs, again with biomaRt.We discarded

cases where the same RefSeq mRNA ID was associated with more

than one Ensembl gene ID.We then used the rtracklayer R package

to download the ‘‘xenoRefGene’’ UCSC table, from the ‘‘Other Re-

fSeq’’ track, containing the TSS coordinates for each of the mouse

RefSeq transcripts.

Genes with Developmentally Specific Expression
We obtained mouse genes expressed at specific time points during

embryogenesis (see Web Resources). Specifically, these genes were

identified as differentially expressed across 5 time points during

mouse embryogenesis (E9.5 to E13.5) using single-cell RNA-

seq.32 For each of the 10 main developmental trajectories pro-

vided, we kept genes with a q-value < 0.01 and absolute fold

change R2. We then pooled the resulting mouse ENSEMBL gene

IDs from all 10 trajectories and obtained their human homologs

using the biomaRt R package. We restricted the human-mouse ho-

molog pairs to those where the ‘‘mmusculus_homolog_ortholo-

gy_confidence’’ was equal to 1. Intersecting these genes with our

list of 4,743 well-ascertained genes and reliable promoter annota-

tion yielded 559 genes, which we used for our analysis. Genes en-

coding for human key developmental regulators (defined as such

on the basis of their regulation by arrays of highly conserved

non-coding elements) were obtained from the supplemental ma-

terial of Akalin et al.33 (where they were labeled as ‘‘target genes’’).

Across-Species Conservation Quantification
For each nucleotide, we quantified conservation across 100 verte-

brate species using the PhastCons score,34 obtained with the

phastCons100way.UCSC.hg19 R package. The PhastCons score

ranges from 0 to 1 and represents the probability that a given

nucleotide is conserved. As the promoter PhastCons score for a

given gene, we computed the average PhastCons of all nucleotides

in the 4 kb region centered around the TSS. As the exonic Phast-

Cons for a given gene, we pooled all nucleotides belonging to

the coding sequence of the gene (that is, excluding the 50 and 30

UTRs), and computed their average PhastCons.

Previously Published LoF Intolerance Predictions
The updated version of the score of Huang et al.35 was downloaded

from the DECIPHER database (see Web Resources). The scores of

Steinberg et al.36 and Han et al.10 were downloaded from the sup-

plemental materials of the respective publications. In our compar-
The American
ison we did not include HIPred,37 since it provides binary haploin-

sufficiency predictions for only a small number of genes.

Structural Variation Data
We used the gnomAD browser to download a bed file containing

the coordinates and characteristics of structural variants in gno-

mAD v.2 (see Web Resources). We then restricted to deletions

that passed quality control (‘‘FILTER’’ column value equal to

‘‘PASS’’). Subsequently, we excluded deletions that overlapped

more than one of our high-confidence promoters (n ¼ 499), in or-

der to avoid ambiguous links between deletions and genes.

Gene Catalogs
The following gene catalogs were used for Figure 5D.

(a) 404 heterozygous lethal genes in mouse (see Web Re-

sources, and see the supplemental material of Karczewski

et al.5 for details on obtaining this set). We mapped these

genes to their human homolog ensembl IDs with the bio-

maRt R package using the ‘‘mgi_symbol’’ filter, keeping

only pairs with the ‘‘mmusculus_homolog_orthology_con-

fidence’’ parameter equal to 1. This yielded a total of 390

human homologs.

(b) 1,254 high-confidence transcription factor genes from Bar-

rera et al.38

(c) 371 olfactory receptor genes (see Web Resources).
Enrichment Quantification
All enrichment point estimates in the text correspond to odds ra-

tios, and the associated p values were calculated using Fisher’s

exact test (two-sided) with the ‘‘fisher.test’’ function in R.
Results

Promoter CpG Density Is Strongly and Quantitatively

Associated with Downstream Gene LoF Intolerance

We discovered a strong relationship between the observed-

to-expected CpG ratio (hereafter referred to as CpG den-

sity) of a promoter and LoF intolerance of the downstream

gene (Figures 1A and 1B); high CpG density is associated

with high LoF intolerance. To establish this, we used the

LOEUF metric provided by gnomAD, an updated and

more accurate measure of genic LOF intolerance compared

to pLI.5 In contrast to pLI, which is essentially a binary

metric with limited resolution,4 LOEUF places human

genes on a 0-to-2 continuous scale, with lower values indi-

cating higher LoF intolerance. Following previous work,39

we classified genes with LOEUF < 0.35 as highly LoF

intolerant.

In Karczewski et al.,5 genes with %10 expected LoF var-

iants were found to be insufficiently powered for LOEUF

estimation in gnomAD. We refer to these genes as unascer-

tained. Based on additional assessment (Figure S1; Material

and Methods), we here adopted an even more stringent

threshold and considered 8,506 genes with R20 expected

LoF variants, which we refer to as ‘‘well-ascertained.’’ We

refer to genes in the intermediate category (expected LoF
Journal of Human Genetics 107, 487–498, September 3, 2020 491
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Figure 2. The Relationship between Promoter CpG Density (o/e CpG Ratio) and Loss-of-Function Intolerance Conditional on Down-
stream Gene Expression Level and Tissue/Developmental Specificity (t)
(A) The distribution of LOEUF, stratified by promoter CpG density, in each quartile of downstream gene expression level, computed us-
ing the GTEx dataset (Material and Methods).
(B) The distribution of LOEUF, stratified by promoter CpG density, in each quartile of downstream tissue specificity. For each gene, tissue
specificity is quantified by t, and is computed using the GTEX dataset (Material and Methods).
For both (A) and (B) quartiles are labeled from 1-4, with 1 being the quartile with the lowest and 4 the quartile with the highest expres-
sion/tissue specificity, respectively.
(C) The percentage of LOEUF variance (adjusted r2) that is explained by downstream gene expression level, t, the interaction between the
two, and promoter CpG density.
(D) The distribution of LOEUF, stratified by promoter CpG density, for 559 genes whose mouse homologs are differentially expressed at
specific time points during embryogenesis (Material andMethods). The stratificationwas done based on the CpG density quartiles calcu-
lated for all 4,743 genes, as in (A) and (B).
variants between 10 and 20) as ‘‘ascertained.’’ We then

further restricted our analysis to those genes for which

we could reliably determine the canonical promoter

(4,743 well ascertained, 2,772 ascertained, and 2,430 unas-

certained genes; Material and Methods; Figure S4 contains

a schematic of our approach to partitioning genes).

When ranked according to the CpG density of their pro-

moter, genes in the top 10% have a 67.2% probability of

being highly LoF intolerant. This in contrast to 7.4% for

genes in the bottom 10%, yielding a 25.6-fold enrichment

(p< 2.23 10�16; Figure 1B). We note that there is a contin-

uous gradient of enrichment across CpG density deciles

(Figure 1B). When splitting genes into just two groups,

consisting of those with CpG island-overlapping pro-

moters and those without, we found that the enrichment

for highly LoF-intolerant genes in the CpG-island-overlap-

ping group is markedly weaker (odds ratio ¼ 3.71, p <

2.2 3 10�16), showing that this dichotomy masks the

more continuous nature of CpG density. Finally, regression

modeling revealed that CpG density alone can explain

19.3% of the variation in LOEUF (p < 2.2 3 10�16; b ¼
�1.02) (Figure S6; Material andMethods) and that its effect

on LOEUF is unchanged when accounting for coding

sequence length (p < 2.2 3 10�16; b ¼ �1.00).

We emphasize that our result remains pronounced even

when we omit the filtering for high-confidence promoters

and merely consider all canonical promoters with R20 ex-

pected LoF variants (p < 2.2 3 10�16; Figure S7). However,

the association becomes weaker (14.6-fold enrichment of

highly LoF-intolerant genes in the top CpG density decile),
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underscoring the importance of accurate promoter annota-

tion. We also found that the relationship between CpG

density and LOEUF is mostly driven by the CpGs in the

TSS-proximal region (Figure 1C; Material and Methods)

and that the exact definition of the promoter (in terms of

the size of the interval around the TSS) has only a small

impact on the strength of this relationship (Figure S8).

The Association between CpG Density and LoF

Intolerance Is Not Mediated through Tissue/

Developmental Specificity or Expression Level

It is established that promoter CpG islands are associated

with genes that exhibit broad, housekeeping-like expres-

sion,40,41 genes whose expression is developmentally regu-

lated,41 and genes expressed at high levels.22,42 However,

we found that these associations are not sufficient to

explain the relationship with LoF intolerance. First, after

stratifying genes according to either expression level or tis-

sue specificity (using RNA-seq data from the GTEx

consortium; Material and Methods), we saw a clear rela-

tionship between promoter CpG density and LOEUF

within each stratum (Figures 2A and 2B). Second, the effect

of CpG density on LOEUF is almost equally strong when

adjusting for either expression level or tissue specificity

(regression b ¼ �1:00 and � 0:85, respectively, p < 2.2 3

10�16 for both regression models; Figure S9). Third, even

the combination of the two expression properties explains

less LOEUF variance than CpG density by itself (Figure 2C).

Finally, when restricting to 559 genes whose mouse homo-

logs are differentially expressed at specific time points
ber 3, 2020
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Figure 3. The Loss-of-Function Intolerance of Tissue-Specific
Genes Conditional on High Promoter CpG-Density (o/e CpG Ra-
tio) and Promoter EZH2 Binding
(A) Themedian number of ENCODE ChIP-seq experiments (out of
14 total) where an EZH2 peak is detected, shown separately for tis-
sue-specific (t > 0:6) and broadly expressed (t < 0:6) genes,
within each quartile of promoter CpG density. The quartiles are
labeled from 1-4, with 1 being the most CpG-poor and 4 the
most CpG-rich.
(B) The LOEUF distributions of tissue-specific genes with high-
CpG-density (top 25%) promoters, stratified according to whether
their promoters show EZH2 peaks in at least 2 ENCODE experi-
ments, or in less than 2 experiments.
during embryogenesis32 (Material and Methods), the

relationship between CpG density and LOEUF is still

pronounced (Figure 2D); the same is true when focusing

on 46 key human developmental regulator genes33

(Figure S10, Material and Methods), even though these

genes overall have very high promoter CpG density

(25th percentile ¼ 0.58).

Regulatory Factor Binding at Promoters Can Provide

Information about LoF Intolerance which Adds to CpG

Density

We next turned our attention to the fraction of LOEUF

variation (80.7%) that remains unexplained by CpG den-

sity. We hypothesized that part of it might be explained

by preferential binding of specific regulatory factors at

LoF-intolerant gene promoters. Since a comprehensive

assessment of this is currently out of reach (due to the

lack of extensive genome-wide binding data for most regu-

latory factors), we focused on two such factors, EZH2 and

CTCF, as a proof-of-principle. EZH2 is a relatively well-

characterized histone methyltransferase that specifically

localizes to CpG islands of non-transcribed genes43,44 (Fig-

ures 3A and S11); CTCF is a transcription factor with

diverse roles in gene activation, repression, and 3D-contact

regulation.45,46

We discovered that tissue-specific genes with CpG-dense

and EZH2-bound promoters (EZH2 binding in at least two

ENCODE experiments) have lower LOEUF compared to

their EZH2-unbound counterparts (Figure 3B; regression

b ¼ � 5:66, p < 5.21 3 10�8, for the interaction between

CpG density and EZH2 binding, conditional on tissue

specificity t > 0:6). In this subset of promoters, the inter-

action of EZH2 binding with CpG density explains an
The American
additional 27.1% of LOEUF variance on top of what CpG

density explains (2.1%). In contrast to EZH2, however,

we saw that CTCF binding has no effect on LOEUF on

top of CpG density (Figure S12). Together, these results

illustrate that regulatory factor binding can indeed modify

the relationship between CpG density and LoF intoler-

ance, but this is not universally true even for factors with

established importance.

Promoter CpG Density with Promoter and Exonic

Across-Species Conservation Can Collectively Predict

LoF Intolerance with High Accuracy

We then sought to develop a predictive model for LoF

intolerance, with the goal of providing high-confidence

predictions for the unascertained genes. Specifically, we

aimed to classify genes as highly LoF intolerant (LOEUF

< 0.35) or not.

To build our model, we first separately computed the

promoter and exonic across-species conservation for each

gene (using the PhastCons score; Material and Methods)

and asked whether they provide information about LOEUF

complementary to CpG density. We found this to be true

(Figure S13); notably, CpG density explains at least as

much LOEUF variance as exonic or promoter conservation

(Figure 4A).When all threemetrics are combined, 33.4% of

the total LOEUF variation is explained (Figure 4A).We note

that while EZH2 explains a substantial amount of LOEUF

variance when considering tissue-specific genes with

high CpG-density promoters, these are a small subset.

Hence, inclusion of this feature only minimally increases

the overall explained variance (0.4% increase). We there-

fore settled on training a logistic regression model with

CpG density, and promoter/exonic conservation as three

linear predictors. As our training set we used 3,000 genes,

randomly selected from the 4,743 well-ascertained genes.

Our predictor, which we called predLoF-CpG (predictor

of LoF intolerance based on CpG density) showed strong

out-of-sample performance on the test set of the remaining

1,743 genes. The precision (positive predictive value) was

82.6% at the 0.75 prediction probability cutoff, and the

negative predictive value was 88.4% at the 0.25 cutoff

(Figure 4B); 144 genes were predicted to be highly LoF intol-

erant, 753 were predicted as non-highly LoF intolerant, and

806 (47.3%) were left unclassified. We chose to use two

thresholds instead of one, at the expense of leaving a frac-

tion of genes unclassified, since this endows our predictor

with precision and negative predictive value high enough

to be useful in the clinical setting. We note that our predic-

tive accuracy is comparable to that of widely adopted tools

for predicting damaging missense variants.47,48 Further

examining our out-of-sample classifications, we found

that (1) the genes falsely predicted as highly LoF intolerant

had a median observed-to-expected LoF point estimate of

0.29, indicating that at least half of them are very LoF intol-

erant even though their LOEUF values do not exceed the

0.35 cutoff, and (2) 25% of the genes correctly predicted

as non-highly LoF intolerant had LOEUF greater than 1.1,
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Figure 4. Training and Assessing predLoF-CpG: A Predictor of Loss-of-Function Intolerance Based on CpG Density
(A) The percentage of LOEUF variance (adjusted r2) that is explained by CpG density (o/e CpG ratio), exonic or promoter conservation,
and their combinations.
(B) The out-of-sample performance of predLoF-CpG. Shown are the LOEUF distributions of 1,743 genes belonging to the holdout test set
(which consists of well-ascertained genes with respect to LOEUF), stratified according to their classification as highly LoF-intolerant or
not. The dashed vertical line corresponds to the cutoff for highly LoF-intolerant genes (LOEUF < 0.35).
(C and D) The negative predictive value (y axis in C) and precision (y axis in D) plotted against the number of correctly classified genes (x
axis), for different predictors of loss-of-function intolerance. Predictors are from Han et al.,10 Huang et al.,35 and Steinberg et al.36 Each
point corresponds to a threshold. The thresholds span the [0,1] interval, with a step size of 0.05. We note that because we are using two
classification thresholds, a ROC curve would not be an appropriate evaluation metric here.
and a lower confidence interval bound for their observed-

to-expected LoF point estimates greater than 0.56, suggest-

ing that they are likely to be relatively tolerant of bi-allelic

inactivation as well (Figure 4B).

Regardless of the choices for the two classification

thresholds, predLoF-CpG outperforms all of the previously

published predictors of LoF intolerance (Figure 4C). Specif-

ically, all models have comparable and high negative

predictive value, with ours being slightly superior

(Figure 4C). However, within a range of thresholds that

yield high precision, as would be required for use in clinical

decision making, predLoF-CpG provides clear gain versus

the rest (Figure 4D, upper left area of the plots). As an addi-

tional evaluation, we found that predLoF-CpG is capable

of explaining a greater proportion of out-of-sample LOEUF

variance compared to the other three (Figure S14).

Finally, we mention GeVIR, a recently developed metric

(primarily for intolerance to missense, but also useful for

LoF variation49) which identifies regions depleted of

protein-altering variation50 and weights these regions

by conservation within each gene. As expected given its

dependency on observed variation, GeVIR exhibits sub-
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stantial correlation with the expected number of LoF

variants (Spearman correlation ¼ 0.42 versus 0.26 for

predLoF-CpG). This limits its applicability to unascer-

tained genes, even though the weighting step slightly

alleviates this issue compared to LOEUF (Spearman

correlation ¼ 0.49).

32.5% of Currently Unascertained Genes in gnomAD

Receive High-Confidence Predictions by predLoF-CpG

We applied predLoF-CpG to genes unascertained in gno-

mAD. After filtering for these with high-confidence pro-

moter annotation, we retained 2,430 (out of 5,413). Of

these, 104 were classified as highly LoF intolerant, 1,656

as non-highly LoF intolerant, and 670 were left unclassi-

fied (Tables S3 and S4). We first examined the ratio of

observed-to-expected LoF variants in these genes. Even

though these point estimates are uncertain, there is a clear

difference in the distribution of the point estimates be-

tween genes we classify as highly LoF intolerant (median

¼ 0.14) and those as not (median ¼ 0.70), with the differ-

ence being in the expected direction (Figure 5A; Wilcoxon

test, p < 2.2 3 10�16).
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Figure 5. Using predLoF-CpG to Classify Currently Unascertained Genes as Highly Loss-of-Function Intolerant or Not
(A) The distribution of point estimates of the observed/expected proportions of LoF variants. Genes are stratified according to their clas-
sification as highly LoF intolerant or not.
(B) The proportion of promoters which harbor deletions in a sample of 14,891 healthy individuals. Promoters are stratified according to
downstream gene classification as highly LoF intolerant or not.
(C) The distribution of the size of deletions harbored by promoters in a sample of 14,891 healthy individuals. Promoters are stratified
according to downstream gene classification as highly LoF intolerant or not.
(D) Odds ratios and the corresponding 95% confidence intervals quantifying the enrichment for genes in each of the x axis groups that is
exhibited by genes predicted as highly LoF intolerant by predLoF-CpG. The enrichment is computed against genes predicted as non-
highly LoF intolerant. The horizontal line at 1 corresponds to zero enrichment.
Next, to provide orthogonal support for our predic-

tions, we leveraged a set of 175,716 deletions detected

in 14,891 healthy individuals using whole-genome

sequencing (Material and Methods).51 We reasoned that

LoF-intolerant gene promoters should be depleted of

such deletions; when they do harbor deletions, these

should be small. By considering only promoters, we

ensured that our assessment is not dependent on gene

length, which confounds LOEUF estimation. Using the

4,743 genes with high-confidence LOEUF (from the

training and test sets), we first observed that low LOEUF

is indeed associated with the presence of both fewer (p

<¼2.39 3 10�15) and smaller (p < 2.2 3 10�16) promoter

deletions (Figures S15A and S15B), showing that this is a

legitimate assessment strategy. Turning to our predictions,

we found the same: genes predicted to be highly LoF

intolerant are less likely to contain deletions in their pro-

moters compared to genes classified as non-highly LoF

intolerant (Figure 5B; probability of overlapping at least

one deletion ¼ 0.18 versus 0.33, permutation one-sided

p < 4 3 10�4 after 10,000 permutations); when such de-

letions are observed, they tend to be much smaller

(Figure 4C; median size ¼ 129 versus 1,092; Wilcoxon

test, p < 4.49 3 10�5).

Finally, we found that our predictions are in strong

agreement with what would be expected based on known

mouse phenotypes and membership in specific gene clas-

ses (Figure 5D). First, the predicted highly LoF-intolerant

genes show a 27.6-fold enrichment for genes heterozygous

lethal in mouse (p < 1.03 3 10�12), when compared

against those predicted as non-highly LoF intolerant. Sec-

ond, they exhibit a 12.7-fold enrichment for transcription

factors (p < 2.2 3 10�16), consistent with the known

dosage sensitivity of these genes.52–54 Third, they show a

total depletion (odds ratio ¼ 0) of olfactory receptor genes

(p < 2.5 3 10�5).
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predLoF-CpG Classifies 101 Genes with Expected LoF

Variants between 10 and 20 as Highly LoF Intolerant

In our analyses so far, we have ignored the set of ascer-

tained genes (3,440 genes with expected LoF variants be-

tween 10 and 20). Even though in Karczewski et al.5 these

were treated as well powered, our assessment suggests that

lack of power can affect whether they are categorized as

highly LoF intolerant or not (Figure S1, Material and

Methods). After filtering for reliable promoter annotation,

we applied predLoF-CpG to 2,772 genes and obtained

high-confidence classifications for 1,675. For the great ma-

jority (93.9%), we agree with the classification obtained by

purely considering whether their LOEUF is <0.35. Howev-

er, we observed 101 genes that were classified as highly LoF

intolerant by predLoF-CpG but had LOEUFR 0.35, a num-

ber not explained by the false positive rate of our predictor

(Table S5). 75% of these genes have an observed/expected

LoF point estimate less than 0.31, suggesting that they are

indeed highly LoF intolerant, but do not exceed the

required LOEUF threshold because of inadequate power.

Therefore, when interpreting LoF variants in these genes,

we suggest that both LOEUF as well as predLoF-CpG are

taken into account.
Discussion

Our study reveals that (1) there exists a strong, widespread

coupling between promoter CpG density and downstream

gene LoF intolerance in the human genome and (2) this

coupling can be exploited to predict LoF intolerance for

almost 1,800 genes that are otherwise largely intractable

with current sample sizes. Our predictions for these genes

(which we make available in Table S3) can inform research

into novel disease candidates and now become incorpo-

rated in the clinical genetics laboratory setting. Similarly
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to existing tools for missense variants,47,48 they can pro-

vide corroborating evidence during the evaluation of the

pathogenicity of LoF variants harbored by individuals

with disease phenotypes, as recommended by the Amer-

ican College of Medical Genetics and Genomics.6

In terms of understanding the regulatory architecture of

the genome, our findings extend decades of work12,13 to

show that high CpG density is not just a prevalent feature

of many promoters but is preferentially marking the pro-

moters of the most selectively constrained genes. We

believe this casts doubt on the prevailing view that CpG

islands are not under selection,27 as constrained genes

are typically paired with constrained promoters.55 Howev-

er, we note that our current results are correlative in nature.

If promoter CpG density is indeed under selection, its

presence at LoF-intolerant gene promoters has to be advan-

tageous, which raises the question of the underlying

biological mechanism. Our findings suggest that this

mechanism is not related to the high and constitutive

expression that LoF-intolerant genes typically exhibit. An

intriguing possibility has been recently raised by single-

cell expression measurements showing that promoter

CpG islands are associated with reduced expression vari-

ability.56 We hypothesize that this decreased variability is

beneficial for many processes where LoF-intolerant genes

are known to play central roles, such as neurodevelop-

ment.57

Our work represents an attempt at deciphering the link

between regulatory element characteristics and the LoF

intolerance of the genes they control. The fact that taking

promoter EZH2 binding into account improves our ability

to recognize LoF-intolerant genes on top of CpG density

implies that this mapping can be learned with even greater

accuracy by incorporating information about other

regulatory factors as well. However, a current barrier to em-

ploying this approach, and understanding its limits, is the

relative paucity of genome-wide binding data across the

full repertoire of transcription factors: the human genome

encodes approximately 1,500 transcription factors38,58,59

and at least 295 epigenetic regulators.54 In contrast to these

numbers, currently ENCODE has profiled only ~330 regu-

latory factors in K562 cells, the most extensively character-

ized cell line.

It is also natural to consider moving beyond promoters

to other regulatory elements. An initial step in this direc-

tion has recently been taken in Wang and Goldstein,11

motivated by work in Drosophila showing that develop-

mentally important genes can have multiple redundant

enhancers.60,61 While this ‘‘enhancer domain score’’ was

not designed to capture LoF intolerance and has poor asso-

ciation with LOEUF (adjusted r2 ¼ 0.03), it has been shown

to have some predictive capacity for human disease genes,

especially those with a developmental basis.

In summary, our study shows the existence of a strong

and widespread association between promoter CpG den-

sity and genic LoF intolerance and leverages this relation-

ship to predict LoF intolerance for unascertained genes.
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Mouse developmental scRNA-seq data, https://oncoscape.v3.

sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads.

Mouse lethal genes, https://github.com/macarthur-lab/gnomad_

lof/blob/master/R/ko_gene_lists/list_mouse_het_lethal_genes.tsv.

Olfactory genes, https://github.com/macarthur-lab/gene_lists/

blob/master/lists/olfactory_receptors.tsv.

DECIPHER (accessed November 2019), https://decipher.sanger.ac.

uk/files/downloads/HI_Predictions_Version3.bed.gz.

gnomAD structural variants, https://storage.googleapis.com/

gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.bed.gz.tbi.
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lauer, C., Burger, L., and Schübeler, D. (2019). CG dinucleo-

tides enhance promoter activity independent of DNAmethyl-

ation. Genome Res. 29, 554–563.

23. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Die-

khans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A.,

Searle, S., et al. (2012). GENCODE: the reference human

genome annotation for The ENCODE Project. Genome Res.

22, 1760–1774.

24. Wintzerith, M., Acker, J., Vicaire, S., Vigneron, M., and Ke-

dinger, C. (1992). Complete sequence of the human RNA po-

lymerase II largest subunit. Nucleic Acids Res. 20, 910.

25. Mita, K., Tsuji, H., Morimyo, M., Takahashi, E., Nenoi, M.,

Ichimura, S., Yamauchi, M., Hongo, E., and Hayashi, A.

(1995). The human gene encoding the largest subunit of

RNA polymerase II. Gene 159, 285–286.

26. ENCODE Project Consortium (2012). An integrated encyclo-

pedia of DNA elements in the human genome. Nature 489,

57–74.

27. Cohen, N.M., Kenigsberg, E., and Tanay, A. (2011). Primate

CpG islands are maintained by heterogeneous evolutionary

regimes involving minimal selection. Cell 145, 773–786.

28. Gardiner-Garden, M., and Frommer, M. (1987). CpG islands

in vertebrate genomes. J. Mol. Biol. 196, 261–282.

29. Battle, A., Brown, C.D., Engelhardt, B.E., Montgomery, S.B.;

GTEx Consortium; Laboratory, Data Analysis &Coordinating

Center (LDACC)—Analysis Working Group; Statistical

Methods groups—Analysis Working Group; Enhancing

GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/

NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection

Source Site—NDRI; Biospecimen Collection Source Site—

RPCI; Biospecimen Core Resource—VARI; Brain Bank Reposi-

tory—University of Miami Brain Endowment Bank; Leidos

Biomedical—Project Management; ELSI Study; Genome

Browser Data Integration &Visualization—EBI; Genome

Browser Data Integration &Visualization—UCSC Genomics

Institute, University of California Santa Cruz; Lead analysts;

Laboratory, Data Analysis &Coordinating Center (LDACC);

NIH program management; Biospecimen collection; Pathol-

ogy; and eQTL manuscript working group (2017). Genetic ef-

fects on gene expression across human tissues. Nature 550,

204–213.

30. Kryuchkova-Mostacci, N., and Robinson-Rechavi, M. (2017).

A benchmark of gene expression tissue-specificity metrics.

Brief. Bioinform. 18, 205–214.

31. GTEx Consortium (2015). Human genomics. The Genotype-

Tissue Expression (GTEx) pilot analysis: multitissue gene regu-

lation in humans. Science 348, 648–660.

32. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M.,

Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers,

F.J., et al. (2019). The single-cell transcriptional landscape of

mammalian organogenesis. Nature 566, 496–502.

33. Akalin, A., Fredman, D., Arner, E., Dong, X., Bryne, J.C., Su-

zuki, H., Daub, C.O., Hayashizaki, Y., and Lenhard, B.

(2009). Transcriptional features of genomic regulatory blocks.

Genome Biol. 10, R38.

34. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M.,

Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards,

S., et al. (2005). Evolutionarily conservedelements invertebrate,

insect, worm, and yeast genomes. Genome Res. 15, 1034–1050.
Journal of Human Genetics 107, 487–498, September 3, 2020 497

http://refhub.elsevier.com/S0002-9297(20)30244-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref5
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref6
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref7
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref8
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref9
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref10
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref11
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref12
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref13
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref13
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref14
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref15
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref16
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref17
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref18
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref19
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref20
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref21
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref22
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref23
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref24
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref25
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref26
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref27
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref27
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref27
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref28
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref28
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref29
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref30
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref30
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref30
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref31
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref31
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref31
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref32
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref32
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref32
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref32
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref33
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref33
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref33
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref33
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref34
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref34
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref34
http://refhub.elsevier.com/S0002-9297(20)30244-5/sref34


35. Huang, N., Lee, I., Marcotte, E.M., and Hurles, M.E. (2010).

Characterising and predicting haploinsufficiency in the hu-

man genome. PLoS Genet. 6, e1001154.

36. Steinberg, J., Honti, F., Meader, S., andWebber, C. (2015). Hap-

loinsufficiency predictions without study bias. Nucleic Acids

Res. 43, e101.

37. Shihab, H.A., Rogers, M.F., Campbell, C., and Gaunt, T.R.

(2017). HIPred: an integrative approach to predicting haploin-

sufficient genes. Bioinformatics 33, 1751–1757.

38. Barrera, L.A., Vedenko, A., Kurland, J.V., Rogers, J.M., Gissel-

brecht, S.S., Rossin, E.J., Woodard, J., Mariani, L., Kock, K.H.,

Inukai, S., et al. (2016). Survey of variation in human tran-

scription factors reveals prevalent DNA binding changes. Sci-

ence 351, 1450–1454.

39. Cummings, B.B., Karczewski, K.J., Kosmicki, J.A., Seaby, E.G.,

Watts, N.A., Singer-Berk,M.,Mudge, J.M., Karjalainen, J., Satter-

strom, F.K., O’Donnell-Luria, A.H., et al.; Genome Aggregation

Database Production Team; andGenome Aggregation Database

Consortium (2020). Transcript expression-aware annotation

improves rare variant interpretation. Nature 581, 452–458.

40. Saxonov, S., Berg, P., and Brutlag, D.L. (2006). A genome-wide

analysis of CpG dinucleotides in the human genome distin-

guishes two distinct classes of promoters. Proc. Natl. Acad.

Sci. USA 103, 1412–1417.

41. Lenhard, B., Sandelin, A., and Carninci, P. (2012). Metazoan

promoters: emerging characteristics and insights into tran-

scriptional regulation. Nat. Rev. Genet. 13, 233–245.

42. Agarwal, V., and Shendure, J. (2020). Predicting mRNA abun-

dance directly from genomic sequence using deep convolu-

tional neural networks. Cell Rep. 31, 107663.

43. Riising, E.M., Comet, I., Leblanc, B., Wu, X., Johansen, J.V.,

and Helin, K. (2014). Gene silencing triggers polycomb repres-

sive complex 2 recruitment to CpG islands genomewide. Mol.

Cell 55, 347–360.

44. Berrozpe, G., Bryant, G.O., Warpinski, K., Spagna, D., Nar-

ayan, S., Shah, S., and Ptashne, M. (2017). Polycomb responds

to low levels of transcription. Cell Rep. 20, 785–793.

45. Filippova, G.N. (2008). Genetics and epigenetics of the multi-

functional protein CTCF. Curr. Top. Dev. Biol. 80, 337–360.

46. Ong, C.-T., and Corces, V.G. (2014). CTCF: an architectural

protein bridging genome topology and function. Nat. Rev.

Genet. 15, 234–246.

47. Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., and Ng,

P.C. (2012). SIFT web server: predicting effects of amino acid

substitutions on proteins. Nucleic Acids Res. 40, W452-W457.

48. Adzhubei, I., Jordan, D.M., and Sunyaev, S.R. (2013). Predict-

ing functional effect of human missense mutations using Pol-

yPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, 20.
498 The American Journal of Human Genetics 107, 487–498, Septem
49. Abramovs, N., Brass, A., and Tassabehji, M. (2020). GeVIR is a

continuous gene-level metric that uses variant distribution

patterns to prioritize disease candidate genes. Nat. Genet.

52, 35–39.

50. Havrilla, J.M., Pedersen, B.S., Layer, R.M., and Quinlan, A.R.

(2019). A map of constrained coding regions in the human

genome. Nat. Genet. 51, 88–95.

51. Collins, R.L., Brand, H., Karczewski, K.J., Zhao, X., Alföldi, J.,
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Supplemental Figure S1. Assessing the reliability of LOEUF estimates. Scatterplots of the point estimates of the
observed/expected proportion of loss-of-function variants (x axis), against LOEUF (y axis; defined as the upper
bound of the 90% confidence interval around the point estimate). Each point corresponds to a transcript. The
horizontal line corresponds to the 0.35 cutoff for highly LoF-intolerant genes. Shown for: (a) all transcripts, and
(b) canonical transcripts only (based on GENCODE annotation).
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Supplemental Figure S2. UCSC genome browser screenshot of a 10kb region containing the transcriptional
start sites of the canonical and one alternative KMT2D transcript. The precise coordinates are
chr12:49,446,107-49,456,107. The sequence of the canonical transcript extends beyond the 10kb region shown.
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Supplemental Figure S3. Assessing the relationship between tissue specificity of gene expression and
POLR2A binding at the canonical promoter. (a) The distribution of the number of ENCODE ChIP-seq
experiments showing POLR2A peaks, for all canonical promoters (4 kb regions centered around the TSS) in
Ensembl (hg19 assembly). (b) The distribution of τ computed using gene-level expression quantifications from
GTEx. (c) Scatterplot of τ against the number of ENCODE ChIP-seq experiments showing POLR2A peaks at the
canonical promoter. Each point corresponds to a gene-promoter pair. (d) Scatterplot of the number of ENCODE
ChIP-seq experiments showing POLR2A peaks at the canonical (x axis) promoter versus the corresponding
number at the promoter with the greatest number of detected peaks (out of all the alternative promoters of a gene;
y axis). Each point corresponds to a promoter pair for a single gene; shown are only genes that are broadly
expressed (τ < 0.6) but whose canonical promoter shows POLR2A binding in less than 10 ENCODE experiments.
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Supplemental Figure S4. Partitioning genes according to the reliability of their LOEUF estimates and
promoter annotation. Schematic illustrating our approach (see Methods for details). We start with 17,359 genes
that: a) are present in both GTEx and gnomAD, b) reside in autosomes, and c) their promoters are not
subtelomeric. We then filter these according to whether they have reliable promoter annotations, and in cases of
pairs of genes with overlapping promoters we only keep one pair. This gives us the set of high-confidence genes
that we use to establish the relationship between CpG density and LOEUF and to train predLoF-CpG, and the set
of unascertained genes to which we apply predLoF-CpG.
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Supplemental Figure S5. The relationship between CpG count and downstream gene LOEUF. (a). Like
Figure 1A, but with the CpG count of a promoter instead of CpG density. (b). The percentage of LOEUF variance
(adjusted r2) that is explained by either promoter CpG density or CpG count.
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Supplemental Figure S6. Scatterplot of promoter CpG density (o/e CpG ratio) against downstream gene
LOEUF. Each point corresponds to a promoter-gene pair.
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Supplemental Figure S7. The effect of filtering for high-confidence promoter annotations on the relationship
between CpG density (o/e CpG ratio) and LOEUF. Like Figure 1b, but shown both for the 4,859 genes with
high-confidence promoter annotations (red), and for 6,656 genes with canonical (based on GENCODE) promoter
annotations and at least 20 expected LoF variants, without further promoter filtering (blue).
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Supplemental Figure S8. The impact of promoter definition on the relationship between CpG density (o/e
CpG ratio) and LOEUF. (a) Like Figure 1A, but with different choices of the interval around the transcription start
site that is defined as the promoter. The ”-” sign refers to upstream of the TSS in the 5’ direction (that is, taking
gene strandedness into account). (b) The percentage of LOEUF variance (adjusted r2) that is explained by
promoter CpG density, for each of the promoter definitions in (a).
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Supplemental Figure S9. Distributions of downstream gene expression level and tissue specificity across
promoter CpG density (o/e CpG ratio) deciles. (a) The distribution of expression level within CpG density
deciles. (b) The distribution of tissue specificity (τ) within CpG density deciles. (c) The distribution of the number
of tissues with detectable expression (defined as median TPM > 0.3) within CpG density deciles. Both expression
level and τ were computed from the GTEx dataset (see Methods). In all three figures, CpG density deciles are
labeled 1-10, with 1 the most CpG-poor decile and 10 the most CpG-rich.
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Supplemental Figure S10. The relationship between promoter CpG density (o/e CpG ratio) and
loss-of-function intolerance of key human developmental regulators. Each point corresponds to a gene. 46 key
human developmental regulators were obtained from the supplemental material of Akalin et al. 1 (see Methods).
The 25th and 75th CpG density percentiles were computed from the empirical CpG density distribution of these
genes and were equal to 0.58 and 0.8, respectively.
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Supplemental Figure S11. The proportion of promoters with EZH2 peaks in 1-14 ENCODE experiments,
stratified based on their CpG density (o/e CpG ratio) and downstream gene tissue specificity. Tissue specificity
was quantified from the GTEx dataset using τ (Methods). Low tissue specificity corresponds to τ < 0.6 and high
tissue specificity corresponds to τ > 0.6.
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Supplemental Figure S12. Loss-of-function intolerance of CTCF-bound versus CTCF-unbound genes. The
LOEUF distributions of well-ascertained genes, stratified according to whether their promoters show CTCF peaks
in at least 70 ENCODE experiments (CTCF-bound), or in no experiments (CTCF-unbound; see also panel (e)). (a)
Broadly expressed (τ < 0.6) genes with high-CpG-density (top 25%) promoters. (b) Tissue specific (τ > 0.6) genes
with high-CpG-density (top 25%) promoters. (c) Broadly expressed (τ < 0.6) genes with low-CpG-density
(bottom 25%) promoters. (d) Tissue specific (τ > 0.6) genes with low-CpG-density (bottom 25%) promoters. (e)
The distribution of the number of ENCODE ChIP-seq experiments showing CTCF peaks, for well-ascertained
gene promoters.
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Supplemental Figure S13. The relationship between promoter CpG density (o/e CpG ratio) and
loss-of-function intolerance conditional on promoter and exonic across-species conservation. (a) The
distribution of LOEUF, stratified by promoter CpG density, in each quartile of promoter PhastCons score
(Methods). (b) The distribution of LOEUF, stratified by promoter CpG density, in each quartile of exonic
PhastCons (Methods). For both (a) and (b) quartiles are labeled from 1-4, with 1 being the least and 4 the most
conserved, respectively.
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Supplemental Figure S14. The percentage of out-of-sample LOEUF variance explained by the different
predictors of LoF-intolerance. Each boxplots corresponds to a LoF-intolerance predictor as shown on the x-axis,
and shows the sampling distribution of the adjusted r2 after regressing the LOEUF of genes in the test set on the
corresponding predictor. We performed 1,000 random train/test splits. For predLoF-CpG, the regression was
performed on the prediction probably of high LoF-intolerance.
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Supplemental Figure S15. The relationship between promoter deletions seen in healthy individuals and
downstream gene loss-of-function intolerance. (a) The proportion of promoters harboring deletions across
different strata of downstream gene loss-of-function intolerance. For each stratum, the distribution is obtained via
the bootstrap. (b) The distribution of the size of deletions harbored by promoters across different strata of
downstream gene loss-of-function intolerance.
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