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1 Comparison between the original and shuffled networks

In this section, we provide a detailed characterisation of the k-core decomposition of the shuffled networks for
all the empirical networks. Supplementary Figure S1 shows the survival function of the probability distribution
of the k-shell index, P≥(ks), of the original networks and their shuffled counterparts (deg, commA, and commB).
The figure indicates that commA and commB produce k-shell distributions that are more similar to the original
ones, compared to deg, in particular when commA or commB is combined with SBM. This result also holds true
for the Greece and Spain networks of Cookpad where, contrarily to the other data sets, the deg networks have a
degeneracy, D, higher than the original networks.

In Supplementary Table S1, we report the values of the four indicators used for comparing the k-core de-
composition between the original and shuffled networks. In particular, we report the average value and standard
deviation of the relative difference ∆X = |X(G)−X(G′)| /X(G) where X is either the average k-shell index,
〈ks〉, or D. In the same table, we also report the values of the Jaccard score, J , and Kendall’s tau, τK , calculated
for the set of nodes belonging to the innermost k-shells (see the main text for the details of the methods). We
notice that, in general, commB-SBM yields the smallest values of ∆〈ks〉 and ∆D and the largest values of J and
τK ; confirming its good performances in reconstructing the k-core decomposition of the original network. Sup-
plementary Figure S2 provides an overview of the performances of each shuffling method. Figure 2 in the main
text is a projection of the information contained in Supplementary Fig. S2.

1



0 50 100

ks

10−1

100

P≥(ks)

(a)

Facebook 1

(a)

Facebook 1

0 25 50

ks

0.25

0.50

0.75

1.00

(b)

Facebook 2

(b)

Facebook 2

original

deg

commA-Lvn

commB-Lvn

commA-SBM

commB-SBM

0 25 50

ks

0.25

0.50

0.75

1.00

(c)

Facebook 3

(c)

Facebook 3

0 25 50

ks

10−2

10−1

100

P≥(ks)

(d)

Facebook 4

(d)

Facebook 4

0 25 50 75

ks

10−2

10−1

100

(e)

Facebook 5

(e)

Facebook 5

0 50 100

ks

10−2

10−1

100

(f)

Twitter

(f)

Twitter

0 10 20 30

ks

10−1

100

P≥(ks)

(g)

Web-blog

(g)

Web-blog

0 10 20 30

ks

0.5

1.0

(h)

Emails

(h)

Emails

0 10 20

ks

10−3

10−2

10−1

100

(i)

Cond. Matter

(i)

Cond. Matter

0 50 100

ks

10−3

10−2

10−1

100

P≥(ks)

(j)

Comp. Science

(j)

Comp. Science

0 10 20 30

ks

10−1

100

(k)

Global airline

(k)

Global airline

0 10 20 30

ks

10−3

10−2

10−1

100

(l)

Words

(l)

Words

0 50 100 150

ks

10−2

10−1

100

P≥(ks)

(m)

Cookp. Greece

(m)

Cookp. Greece

0 100 200

ks

10−2

10−1

100

(n)

Cookp. Spain

(n)

Cookp. Spain

0 10 20 30

ks

10−2

10−1

100

(o)

Cookp. UK

(o)

Cookp. UK

Supplementary Figure S1: Survival function of the probability distribution of the k-shell index, P≥(ks), as a
function of ks for the empirical network (dotted lines) and shuffled networks (solid lines). Each panel corresponds
to a data set. The horizontal dashed lines represent P≥(ks) = 0.1. The results shown are averages over 10 different
runs of each shuffling method, and the shaded areas (when visible) represent the standard deviations.
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Data set Indicator deg commA–Lvn commB–Lvn commA–SBM commB–SBM

Facebook 1

∆〈ks〉 0.132 ± 0.002 0.011 ± 0.001 0.007 ± 0.003 0.004 ± 0.002 0.002 ± 0.001
∆D 0.622 ± 0.004 0.004 ± 0.006 0.009 ± 0.007 0.014 ± 0.006 0.017 ± 0.007
J 0.340 ± 0.025 0.512 ± 0.009 0.515 ± 0.004 0.722 ± 0.212 0.787 ± 0.207
τK 0.884 ± 0.005 0.971 ± 0.014 0.974 ± 0.012 0.963 ± 0.015 0.980 ± 0.018

Facebook 2

∆〈ks〉 0.043 ± 0.000 0.020 ± 0.003 0.011 ± 0.001 0.006 ± 0.000 0.002 ± 0.001
∆D 0.018 ± 0.000 0.007 ± 0.009 0.018 ± 0.000 0.018 ± 0.000 0.012 ± 0.008
J 0.515 ± 0.008 0.664 ± 0.038 0.695 ± 0.014 0.685 ± 0.021 0.737 ± 0.064
τK 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Facebook 3

∆〈ks〉 0.019 ± 0.004 0.025 ± 0.002 0.017 ± 0.003 0.007 ± 0.003 0.002 ± 0.001
∆D 0.035 ± 0.006 0.017 ± 0.005 0.011 ± 0.007 0.006 ± 0.008 0.000 ± 0.000
J 0.788 ± 0.009 0.853 ± 0.009 0.856 ± 0.027 0.840 ± 0.066 0.918 ± 0.017
τK 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Facebook 4

∆〈ks〉 0.044 ± 0.003 0.012 ± 0.002 0.005 ± 0.002 0.003 ± 0.001 0.002 ± 0.001
∆D 0.203 ± 0.006 0.206 ± 0.000 0.165 ± 0.008 0.027 ± 0.010 0.005 ± 0.007
J 0.247 ± 0.017 0.531 ± 0.186 0.744 ± 0.015 0.837 ± 0.005 0.951 ± 0.016
τK 0.818 ± 0.011 0.584 ± 0.154 0.535 ± 0.027 0.865 ± 0.008 0.959 ± 0.014

Facebook 5

∆〈ks〉 0.030 ± 0.002 0.002 ± 0.001 0.002 ± 0.001 0.001 ± 0.001 —
∆D 0.237 ± 0.005 0.169 ± 0.006 0.098 ± 0.004 0.017 ± 0.006 —
J 0.406 ± 0.023 0.619 ± 0.004 0.664 ± 0.004 0.712 ± 0.015 —
τK 0.724 ± 0.016 0.699 ± 0.016 0.721 ± 0.011 0.881 ± 0.014 —

Twitter

∆〈ks〉 0.055 ± 0.000 0.028 ± 0.000 0.030 ± 0.000 0.014 ± 0.000 0.008 ± 0.000
∆D 0.542 ± 0.000 0.005 ± 0.005 0.007 ± 0.005 0.011 ± 0.007 0.007 ± 0.005
J 0.540 ± 0.001 0.641 ± 0.008 0.637 ± 0.005 0.834 ± 0.003 0.881 ± 0.011
τK 0.580 ± 0.004 0.749 ± 0.002 0.755 ± 0.002 0.884 ± 0.002 0.941 ± 0.002

Web-blog

∆〈ks〉 0.005 ± 0.002 0.004 ± 0.003 0.004 ± 0.002 0.007 ± 0.004 0.003 ± 0.002
∆D 0.069 ± 0.014 0.056 ± 0.012 0.042 ± 0.014 0.022 ± 0.011 0.008 ± 0.013
J 0.416 ± 0.009 0.780 ± 0.021 0.775 ± 0.022 0.853 ± 0.021 0.920 ± 0.017
τK 0.794 ± 0.018 0.619 ± 0.061 0.646 ± 0.038 0.651 ± 0.068 0.664 ± 0.070

Emails

∆〈ks〉 0.011 ± 0.006 0.005 ± 0.002 0.003 ± 0.001 0.005 ± 0.003 0.002 ± 0.001
∆D 0.103 ± 0.015 0.103 ± 0.015 0.065 ± 0.012 0.024 ± 0.012 0.029 ± 0.000
J 0.422 ± 0.044 0.454 ± 0.035 0.671 ± 0.069 0.701 ± 0.027 0.845 ± 0.057
τK 0.908 ± 0.008 0.895 ± 0.008 0.864 ± 0.023 0.855 ± 0.011 0.842 ± 0.048

Cond. Matter

∆〈ks〉 0.123 ± 0.001 0.111 ± 0.001 0.113 ± 0.001 0.117 ± 0.001 0.113 ± 0.001
∆D 0.680 ± 0.000 0.284 ± 0.012 0.296 ± 0.020 0.244 ± 0.022 0.016 ± 0.020
J 0.395 ± 0.006 0.423 ± 0.013 0.481 ± 0.008 0.548 ± 0.013 0.615 ± 0.005
τK 0.521 ± 0.018 0.415 ± 0.025 0.479 ± 0.016 0.623 ± 0.013 0.685 ± 0.008

Comp. Science

∆〈ks〉 0.171 ± 0.004 0.153 ± 0.000 0.159 ± 0.000 0.146 ± 0.000 0.144 ± 0.000
∆D 0.933 ± 0.004 0.641 ± 0.006 0.651 ± 0.004 0.047 ± 0.007 0.023 ± 0.004
J 0.374 ± 0.069 0.488 ± 0.002 0.456 ± 0.002 0.504 ± 0.003 0.493 ± 0.002
τK 0.371 ± 0.358 0.688 ± 0.003 0.673 ± 0.002 0.686 ± 0.002 0.711 ± 0.002

Global airline

∆〈ks〉 0.023 ± 0.001 0.004 ± 0.003 0.008 ± 0.003 0.009 ± 0.003 0.010 ± 0.002
∆D 0.161 ± 0.000 0.013 ± 0.016 0.035 ± 0.017 0.010 ± 0.015 0.003 ± 0.010
J 0.766 ± 0.011 0.826 ± 0.010 0.824 ± 0.039 0.852 ± 0.016 0.933 ± 0.008
τK 0.661 ± 0.016 0.831 ± 0.006 0.846 ± 0.014 0.872 ± 0.020 0.932 ± 0.006

Words

∆〈ks〉 0.118 ± 0.000 0.105 ± 0.000 0.108 ± 0.000 0.107 ± 0.000 0.102 ± 0.000
∆D 0.552 ± 0.010 0.484 ± 0.000 0.458 ± 0.013 0.097 ± 0.000 0.032 ± 0.000
J 0.473 ± 0.003 0.575 ± 0.001 0.575 ± 0.002 0.592 ± 0.001 0.675 ± 0.002
τK 0.668 ± 0.003 0.740 ± 0.001 0.758 ± 0.003 0.794 ± 0.003 0.815 ± 0.001

Cookpad – Greece

∆〈ks〉 0.002 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.002 ± 0.001 0.000 ± 0.000
∆D 0.110 ± 0.003 0.113 ± 0.007 0.129 ± 0.003 0.016 ± 0.006 0.004 ± 0.003
J 0.846 ± 0.003 0.865 ± 0.003 0.892 ± 0.004 0.941 ± 0.002 0.964 ± 0.002
τK 0.850 ± 0.001 0.871 ± 0.001 0.894 ± 0.001 0.943 ± 0.002 0.968 ± 0.004

Cookpad – Spain

∆〈ks〉 0.002 ± 0.000 0.005 ± 0.000 0.005 ± 0.000 0.002 ± 0.000 0.002 ± 0.000
∆D 0.240 ± 0.006 0.346 ± 0.006 0.362 ± 0.005 0.238 ± 0.005 0.234 ± 0.006
J 0.762 ± 0.006 0.872 ± 0.004 0.903 ± 0.003 0.760 ± 0.005 0.762 ± 0.006
τK 0.837 ± 0.001 0.890 ± 0.001 0.907 ± 0.000 0.837 ± 0.001 0.837 ± 0.001

Cookpad – UK

∆〈ks〉 0.001 ± 0.001 0.005 ± 0.001 0.012 ± 0.001 0.001 ± 0.001 0.001 ± 0.000
∆D 0.030 ± 0.014 0.027 ± 0.016 0.085 ± 0.012 0.076 ± 0.015 0.012 ± 0.015
J 0.754 ± 0.010 0.781 ± 0.007 0.827 ± 0.005 0.835 ± 0.003 0.886 ± 0.006
τK 0.826 ± 0.003 0.852 ± 0.003 0.893 ± 0.002 0.886 ± 0.002 0.922 ± 0.002

Supplementary Table S1: Average and standard deviation of the four indicators characterising the k-core decom-
position. In the cells with missing values, the shuffling method did not converge.
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Supplementary Figure S2: Graphical summary of the values reported in Supplementary Table S1. For each pair of
an empirical network and indicator, we show the value of the indicator for each shuffling method. The error bars
represent the standard deviation.
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2 Effects of changing the resolution of the Louvain method

A pitfall of the Louvain method is its propensity to merge small communities due to the existence of a lower bound
in the size of the communities (i.e., the modularity’s resolution limit) [1, 2]. However, communities of empirical
networks may not have a typical size, and small communities coexist with large ones in general. A method for
mitigating the resolution limit is to introduce a resolution parameter r ∈ (0, 1] into the Louvain algorithm [3]. By
tuning r, it is possible to vary the resolution scale of the detected communities, spanning from large (i.e., r ∼ 1)
to small (i.e., r ∼ 0) communities. We denote the Louvain method using a different resolution r by LvnR.

Figure 2 in the main text shows that commB combined with the communities found by the SBM reproduces
the tail of P≥(ks) of the empirical networks most accurately. Table 1 indicates that SBM tends to find more
communities than Lvn, although there are exceptions. To understand whether the different number of communities
found by SBM and Lvn is the reason behind their different performances, we extracted the communities using
LvnR with r ∈ {0.1, 0.3, 0.5}. For the sake of brevity, we only discuss the results for r = 0.3 in the following
text. However, we have verified that the results for the other values of r are similar.

In Supplementary Table S2 we show, for all the data sets considered, the number of communities, Nc, and
the modularity, Q, corresponding to the community structure found using Lvn, SBM, and LvnR with r = 0.3.
With LvnR, the number of communities is similar or even larger than that obtained with SBM. Supplementary
Figures S3 and S4 show P≥(ks) plotted against ks and the four indicators used for comparing the innermost k-
shells, respectively, including the results obtained with LvnR. These figures indicate that using r = 0.3 as opposed
to r = 1 improves the ability of the Louvain algorithm to mimic the structure of the k-shell. In Supplementary
Fig. S5 we summarise the performances of the different shuffling methods including LvnR.

Although LvnR mimics the k-shell features better than SBM for some data sets and indicators (approximately
around the 20% of the cases), SBM still attains the highest success ratio for each indicator, fX . The few cases for
which commB-LvnR does better than commB-SBM are the networks for which the difference between the empirical
P≥(ks) and P≥(ks) obtained from the deg shuffling apparently looks small, such as the Emails and Cookpad UK
networks. In these networks, the differences between the P≥(ks) of the networks obtained using commB-LvnR
and commB-SBM are also small. By contrast, other data sets such as Condensed Matter, Computer Science, and
Words show bigger differences between their P≥(ks) and that obtained using the deg method. In these data sets,
commB-SBM is much better than commB-LvnR, although commB-LvnR is better than commB-Lvn. Overall, these
results suggest that the increase in the number of communities enabled by a small r does not lead to reconstruction
of the k-shell structure with a better accuracy than SBM does.

Data set NLvn
c QLvn NSBM

c QSBM NLvnR
c QLvnR

Facebook 1 16 0.835 62 0.551 29 0.819
Facebook 2 19 0.419 198 0.158 67 0.348
Facebook 3 8 0.436 87 0.139 36 0.294
Facebook 4 10 0.438 274 0.193 72 0.381
Facebook 5 18 0.470 547 0.172 92 0.417
Twitter 73 0.808 510 0.511 136 0.779
Web-blogs 275 0.426 17 0.076 331 0.150
Emails 26 0.410 33 0.232 61 0.350
Cond. Matter 619 0.730 203 0.633 716 0.718
Comp. Science 209 0.822 676 0.726 438 0.812
Global airline 26 0.665 40 0.311 55 0.542
Words 378 0.759 548 0.583 523 0.747
Cookpad Greece 40 0.166 76 0.020 365 0.067
Cookpad Spain 262 0.270 90 0.035 501 0.164
Cookpad UK 199 0.350 8 0.114 320 0.314

Supplementary Table S2: Summary of the properties of the community structures of the data sets analysed using
different community detection methods. For each pair (network, method) we computed the number of commu-
nities, Nc, and the value of the modularity Q. Each pair of columns accounts for a different method, namely:
Louvain (Lvn), stochastic block model (SBM), and Louvain with a resolution parameter r = 0.3 (LvnR).
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Supplementary Figure S3: Survival function of the probability distribution of the k-shell index, P≥(ks), as a
function of ks for all the cases considered in Fig. 1 plus the cases in which we identify communities using the
Louvain method with a resolution parameter of r = 0.3. See the caption or Supplementary Fig. S1 for notations
and legends.
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Supplementary Figure S4: Graphical summary of the average and standard deviation of the four indicators charac-
terising the k-core decomposition. In addition to the information displayed in Supplementary Fig. S2, we consider
the community structure detected by the Louvain method with r = 0.3 (LvnR). See the caption or Supplementary
Fig. S2 for notations and legends.
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Supplementary Figure S5: Summary of the performances of the different shuffling methods in reproducing the
features of the k-shells according to four indicators. We report the fraction of data sets for which a given combina-
tion of the shuffling method and the community detection method yields an indicator’s value closest to that for the
original network. In addition to the methods considered in Fig. 2, we also consider the case of the communities
extracted using the Louvain method with r = 0.3. See the caption or Fig. 2 for notations and legends.
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To investigate which features of the SBM and Louvain algorithms are responsible for the difference in their
performances, we study the average of the size of the communities to which nodes of a certain k-shell belong,
〈sC〉, as a function of the k-shell index, ks. In Supplementary Fig. S6, we observe how 〈sC〉 of the communities
found by the Louvain method (Lvn) stays nearly constant across the entire range of ks values. By contrast, with
SBM, 〈sC〉 monotonically decreases as ks increases, such that nodes in inner k-shells tend to belong to smaller
communities. Although a high resolution (i.e., a small r value) in the Louvain method produces a large number
of communities (see Supplementary Table S2), the behaviour of 〈sC〉 for Lvn and LvnR is similar, with the major
difference that the value of 〈sC〉 is smaller for LvnR.

These results altogether lead us to conclude that our method combined with the community structure identi-
fied using the Louvain method with a higher resolution does not outperform our method combined with SBM in
grasping the features of the k-core decomposition. This may be because SBM is capable of finding more universal
mesostructures than those found by the Louvain method [4–6].
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Supplementary Figure S6: Average size of the communities to which the nodes having k-shell index ks belong to,
〈sC〉, versus ks. We identify the community structure using either the Louvain (Lvn), the stochastic block model
(SBM), or the Louvain with higher resolution (LvnR) methods. The resolution parameter for (LvnR) is equal to
r = 0.3. Shaded areas denote the standard deviation. Each panel accounts for a different data set.
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3 The LFR model

The Lancichinetti-Fortunato-Radicchi (LFR) model generates networks where both the node’s degree and the size
of the communities (i.e., the number of nodes belonging to a community) follow power-law distributions [7]. Such
features are found in many empirical networks [8] and have led to the success of the LFR model as generator of
benchmark networks to test community detection algorithms [2]. A main finding presented in the main text is that
preserving the community structure of the original network in addition to the degree of each node improves the
ability of the shuffling methods to mimic the k-core decomposition of the original networks. Here, to test whether
or not the community structure and the degree of each node, but not a possible intricate association between the
two, is sufficient for mimicking the features of k-core decomposition observed for many empirical networks, we
generated networks using the LFR model and analysed their k-cores and those of the shuffled counterparts.

The LFR algorithm depends on the following parameters: the exponent, t1 ∈ [2, 3], of the degree distribution
P (k) ∝ k−t1 ; the exponent, t2 ∈ [1, 2], of the community’s size distribution P (Sc) ∝ Sc

−t2 ; the mixing param-
eter, µ ∈ [0, 1], specifying the fraction of intra-community edges for a node. A value of µ = 0 indicates that a
node is connected only with nodes belonging to communities different from its own. A value of µ = 1 indicates
that a node is connected exclusively with nodes belonging to its own community; either one of the following: the
average degree, 〈k〉, the minimum degree, kmin, or the minimum number of communities, minNc. This stochastic
algorithm may not produce a network fulfilling all the requirements in some realisations. Therefore, we have to
set the parameter values to ensure the algorithm’s convergence.

To encompass a good spectrum of networks, we consider four batches of parameter sets, which are summarised
in Supplementary Table S3, together with the properties of the generated networks. Each batch of parameter sets
consists of a value of t1, a value of t2, and seven values of µ ranging from 0.1 to 0.8. We assumed N = 10000
nodes and used the implementation of the LFR algorithm in the NetworkX Python package [9].

For each network generated, we extracted its k-core decomposition and calculated the four indicators. We
did the same for the shuffled counterparts generated using the deg, commA, and commB methods. In analogy to
Supplementary Fig. S1, in Supplementary Figs. S7–S10 we show the survival function of the probability distribu-
tion of the k-shell index, P≥(ks), for the original LFR networks and the shuffled counterparts, one figure per each
(t1, t2) pair. An eye inspection of Supplementary Figs. S7–S10 highlights the existence of three trends.

First, Supplementary Figs. S7 and S8 indicate that, in networks generated using the smaller t1 values (i.e.,
parameters batches 1 and 2 in Supplementary Table S3), the shuffled networks generated by deg, commA-Lvn,
and commB-Lvn attain a k-core decomposition with a degeneracy, D, considerably higher than the original one.
In contrast, Supplementary Figs. S9 and S10 indicate that, with the larger t1 values (i.e., parameter batches 3 and
4), we recover the same trend as that shown in Fig. 1. In other words, D for the original networks are larger than
that for the shuffled networks. The difference between the original D and its shuffled counterpart seems to be
influenced by the value of t1, but not t2 or µ.

Second, P≥(ks) for the original LFR networks mainly decreases smoothly as ks increases, without plateaus
or abrupt drops. Therefore, the k-core decomposition of LFR networks does not return any k-shell that is empty
or much more populated than its adjacent k-shells. This result is in stark contrast to that for various empirical
networks, e.g., the Facebook 1 data set (see Supplementary Fig. S1).

Third, regardless of the values of t1, t2, and µ, the commB-SBM shuffling method produces networks with the
P≥(ks) more akin to the original one than the other shuffling methods do. This result is consistent with that for the
empirical networks presented in the main text.

In a nutshell, the analysis of the k-core decomposition of networks generated by the LFR model reveals that the
presence of communities is not enough to justify main properties of the k-shell structure observed in the empirical
networks.
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LFR parameters
L kmin 〈k〉 kmax 〈ks〉 D NLvn

c QLvn NSBM
c QSBM

t1, t2 µ
Parameter batch 1

t1 = 2.2
t2 = 1.5

0.1 120893 4 24.179 3470 12.541 16 10 0.673 29 0.041
0.2 116200 4 23.240 3380 12.201 14 4 0.497 16 -0.006
0.3 118260 4 23.652 3199 12.188 14 7 0.458 26 -0.002
0.4 118547 4 23.709 6309 12.287 14 7 0.234 19 -0.053
0.5 130304 4 26.061 4481 12.548 16 7 0.250 24 -0.038
0.6 126277 4 25.255 4607 12.967 15 10 0.164 8 -0.151
0.8 118032 4 23.606 4028 12.263 14 10 0.162 5 -0.156

Parameter batch 2

t1 = 2.6
t2 = 2.0

0.1 132920 8 26.584 2474 14.277 16 5 0.651 16 0.118
0.2 129069 8 25.814 1641 14.186 15 8 0.595 22 0.139
0.3 129024 8 25.805 1287 14.138 15 9 0.487 26 0.091
0.4 128606 8 25.721 3305 14.015 15 7 0.222 9 -0.020
0.5 127596 8 25.519 1504 14.105 15 8 0.227 20 0.041
0.6 131024 8 26.205 1287 14.165 15 7 0.178 5 -0.093
0.8 133017 8 26.603 4436 14.665 16 8 0.166 8 -0.087

Parameter batch 3

t1 = 2.9
t2 = 1.5

0.1 315105 24 63.012 4249 35.907 37 4 0.511 14 0.115
0.2 320836 24 64.167 2439 36.362 37 12 0.584 31 0.179
0.3 319482 24 63.896 3732 36.234 37 10 0.359 29 0.078
0.4 319070 24 63.814 2371 36.102 37 11 0.314 30 0.063
0.5 321222 24 64.244 2795 36.816 38 9 0.204 27 0.029
0.6 317738 24 63.548 2371 36.019 37 8 0.146 18 0.016
0.8 305945 24 61.189 2246 35.049 36 9 0.109 4 -0.052

Parameter batch 4

t1 = 3.0
t2 = 2.0

0.1 247311 20 49.462 2819 28.561 31 31 0.740 57 0.323
0.2 246506 20 49.301 1228 27.691 28 40 0.651 69 0.331
0.3 254822 20 50.964 1779 29.468 30 29 0.484 50 0.224
0.4 249528 20 49.906 1131 28.457 29 37 0.387 71 0.156
0.5 254371 20 50.874 2668 29.120 30 17 0.211 42 0.070
0.6 243746 20 48.749 1097 28.311 29 20 0.186 50 0.073
0.8 251094 20 50.219 3569 28.364 29 9 0.119 4 -0.053

Supplementary Table S3: Summary of the properties of the networks generated with the LFR model. For each
combination of parameters t1, t2, and µ we report the number of edges, L, minimum degree, kmin, average degree,
〈k〉, maximum degree, kmax, degeneracy, D, number of communities, Nc, and modularity, Q, for communities
extracted using either the Louvain (Lvn) or stochastic block model (SBM) method. All networks have N = 10000
nodes.

11



10 20 30
0.0

0.5

1.0

P≥(ks)

(a)

µ = 0.1

(a)

µ = 0.1

original

deg

commA-Lvn

commB-Lvn

commA-SBM

commB-SBM

10 20 30

ks

0.0

0.5

1.0

P≥(ks)

(b)

µ = 0.2

(b)

µ = 0.2

10 20 30

ks

0.0

0.5

1.0

(c)

µ = 0.3

(c)

µ = 0.3

10 20 30

ks

0.0

0.5

1.0

(d)

µ = 0.4

(d)

µ = 0.4

10 20 30

ks

0.0

0.5

1.0

P≥(ks)

(e)

µ = 0.5

(e)

µ = 0.5

10 20 30

ks

0.0

0.5

1.0

(f)

µ = 0.6

(f)

µ = 0.6

10 20 30

ks

0.0

0.5

1.0

(g)

µ = 0.8

(g)

µ = 0.8

Supplementary Figure S7: Survival function of the probability distribution, P≥(ks), of the k-shell index, ks, for the
LFR networks generated using parameter batch 1 (i.e., with t1 = 2.2 and t2 = 1.5; see Supplementary Table S3).
The dotted lines correspond to the original network. The solid lines correspond to shuffled networks. Each panel
corresponds to a value of µ. Shuffled results are averages over 10 realisations. The shaded area corresponds to the
standard deviation. All networks have N = 10000 nodes.
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Supplementary Figure S8: Survival function of the probability distribution, P≥(ks), of the k-shell index, ks, for the
LFR networks generated using parameter batch 2 (i.e., with t1 = 2.6 and t2 = 2.0; see Supplementary Table S3).
See the caption or Supplementary Fig. S7 for notations and legends.
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Supplementary Figure S9: Survival function of the probability distribution, P≥(ks), of the k-shell index, ks, for the
LFR networks generated using parameter batch 3 (i.e., with t1 = 2.9 and t2 = 1.5; see Supplementary Table S3).
See the caption or Supplementary Fig. S7 for notations and legends.
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Supplementary Figure S10: Survival function of the probability distribution, P≥(ks), of the k-shell index, ks,
for the LFR networks generated using parameter batch 4 (i.e., with t1 = 3.0 and t2 = 2.0; see Supplementary
Table S3). See the caption or Supplementary Fig. S7 for notations and legends.
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4 Relationship between community structure and k-core decomposition

In this section, we examine the number of communities to which the nodes in each k-shell belong, with the aim of
examining whether or not those nodes are concentrated into one or a small number of communities, particularly
for nodes in innermost k-shells. This analysis is similar to Supplementary Fig. S6, whereas in that case we focused
on the averaged community size. Supplementary Figure S11 shows the number of distinct communities to which
the nodes with a given ks value belong, denoted by nC(ks), for all the data sets. In agreement with Fig. 3, some
data sets show a strong concentration of the innermost k-shells (i.e., nodes with large ks values) into one or a few
communities.

Next, we ask whether or not the number of communities across which each k-shell is distributed is a byproduct
of random interactions. To answer this question, first, for each network, we extract communities using either Lvn
or SBM. Second, we compute nC(ks) for each ks. Third, we compute the same quantity for the case in which
we permute the association between the k-shell index of each node, ks(i), and the community membership of
the node, g(i), uniformly at random; in fact, it is sufficient to randomly permute either {ks(1), . . . , ks(N)} or
{g(1), . . . , g(N)}, not both. Fourth, we calculate the number of communities to which the set of nodes with a
given ks value belong after the permutation, which is denoted by nSC(ks). Fifth, using an approach similar to the
calculation of the rich-club coefficient [10], we compute

ϕ(ks) =
nSC(ks)

nC(ks)
(S1)

for each ks. A value of ϕ(ks) larger (smaller) than 1 indicates that the number of communities to which the
nodes having the ks value belong is smaller (larger) than in the case of the randomised association between the
nodes and communities. Therefore, ϕ(ks) larger than 1 implies that the nodes with the given k-shell index, ks, are
concentrated into a relatively small number of communities as compared to randomised counterparts.

In Supplementary Fig. S12 we plot ϕ(ks) against ks for all the data sets. We observe that, with the exception
of the Spanish and British Cookpad’s networks, ϕ(ks) tends to be larger than 1. This result implies that, on
average, nodes of a given k-shell tend to belong to less communities than the randomised case. We stress that
the permutation of either the k-shell index or the community membership sequences may return networks whose
k-shell and community structure are not physically plausible. For instance, if a node i receives a k-shell index
value of α upon randomisation and α is larger than ki (i.e., degree of node i), then the node cannot belong to the
corresponding k-shell.
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Supplementary Figure S11: Number of communities, nC(ks), to which the nodes having k-shell index ks belong.
The horizontal line is a guide to the eyes representing nC(ks) = 1. We identified the community structure using
either Lvn or SBM. Each panel accounts for a different data set.
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Supplementary Figure S12: Ratio, ϕ(ks), (see (S1)) plotted against the k-shell index, ks, for all the data sets. We
identified the community structure using either Lvn or SBM. Each panel accounts for a different data set. Results
are averaged over one hundred runs of randomisation between the association between the node’s k-shell index
and community label. The horizontal dashed lines represent ϕ(ks) = 1.
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