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Materials and Methods

Here, we provide the details about the model calibration, present the sensitivity analysis of
some key parameters, and describe the details of the importation sources estimation. We also
include an analysis of the empirical data, several indicators (air traffic, population, density), and
the data obtained via the model.

Global Epidemic and Mobility Model
We adopt the Global Epidemic and Mobility model (GLEAM), a stochastic, spatial, epidemic
model based on a metapopulation approach that has been used and published previously (7,
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8). In the model, the world is divided into over 3,200 geographic subpopulations constructed
using a Voronoi tessellation of the Earth’s surface. Subpopulations, centered around major
transportation hubs (e.g. airports), consist of cells with a resolution of 15 x 15 arc minutes
(approximately 25 x 25 kilometers). High resolution data are used to define the population
of each cell (50). Other attributes of individual subpopulations, such as age specific contact
patterns, health infrastructure, etc., are added according to available data (21).

GLEAM integrates a human mobility layer, represented as a network, using both short-range
(i.e. commuting) and long-range (i.e. flights) mobility data from the Offices of Statistics for
30 countries on 5 continents as well as the Official Aviation Guide (OAG) and IATA databases
(updated in 2019) (13,14). The air travel network consists of the daily passenger flows between
airport pairs (origin and destination) worldwide mapped to the corresponding subpopulations.
We define a worldwide homogeneous standard for GLEAM to overcome differences in the
spatial resolution of the commuting data across different countries. Where information is not
available, the short-range mobility layer is generated synthetically by relying on the “gravity
law” or the more recent “radiation law” both calibrated using the real data available (51). These
approaches assume more frequent travel to nearby or closer subpopulations and less frequent
travel to distant locations. In Fig. 1 we show a representation of the geographical resolution of
the model and the mobility network for the contiguous United States (US).

Initial conditions are set specifying the number and location of individuals capable of trans-
mitting the infection. GLEAM is then able to track over time the proportion of the population in
each disease compartment for all subpopulations. At the start of each simulated day, travelers
move to their destinations via the flight network. The probability of air travel changes from
day to day, varies by age group, and can consider the effects of location specific airline traffic
reductions. Short-range mobility (i.e. commuting) varies between workdays and weekends, by
age group, and by disease status. Each full day is simulated using 12 distinct time steps, and this
process is repeated for every simulated day. Individuals and their traveling patterns are tracked
as shown in the flow diagram for the GLEAM algorithm (Fig. 2).

The combined population structure and mobility network create a synthetic world that is
used to simulate the unfolding dynamics of the epidemic. The infection dynamics occur within
each subpopulation. We adopt a classic SLIR model in which individuals can be classified into
four compartments: susceptible, latent, infectious, or removed. Susceptible individuals become
latent through interactions with infectious individuals. During both the latent and infectious
stages we assume that individuals are able to travel. Following the infectious period, individu-
als then progress into the removed compartment where they are no longer able to infect others,
meaning they have either recovered, been hospitalized, isolated or have died. Individuals tran-
sition between compartments using stochastic binomial chain processes assuming parameter
values from available literature that define the natural history of disease. In Table. 1 we report
the parameter estimates used in the model.

Interventions Timeline
In order to realistically depict the evolution of the epidemic, a comprehensive set of policy in-
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Fig. S1: Schematic representation of GLEAM. (A) The subpopulation structure of the US.
Subpopulations are geographic regions, formed from the Voronoi tessellation, that are centered
around airports. They are comprised of census cells that are approximately 25km x 25km. (B)
Diagram of the origin destination airport network (long range mobility network) in the US.
(C) Diagram of the commuting network (short-range mobility network) in the US. (C) The
population layer of GLEAM showing the population size of census cells.

Parameters Range Ref.
Latent period (mean) [4, 7] days (52)

Infectious period (mean) [2, 4] days (16)

Days until recovery [10, 14] days (16, 22)

Generation time [6, 8] days
Reproductive number [1.6, 3.3] in steps of 0.01
Starting date [2019-11-15, 2019-12-01] (20, 23–26)

Table S1: Summary of parameter ranges explored in the sensitivity analysis of the model. Re-
productive number and starting date are uniform prior for the model’s calibration. Reference
parameters are reported in the main text.
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terventions is applied to modify disease transmissibility and population mobility. On January
15, partial international travel reductions (from 10% to 40%) are applied for individuals trav-
eling to/from China. Between January 23 and 28, flight and commuting reductions are applied
to Wuhan and other subpopulations in the Hubei province to enforce government-mandated
quarantines.

In addition, on January 25, commuting reductions are applied also to all other subpopula-
tions in mainland China. To do so, we collected daily travel data starting January 1, 2020 until
February 25, 2020 from the Baidu Qianxi platform (53), which provides three mobility indices
(inflow index, outflow index, and intra-city index). The indices are proxies for the number of
travelers moving in, out of, and inside a city, respectively. We extracted the mobility outflow
index of 27 provinces and 4 municipalities for the current year 2020 and the previous year (with
the same lunar date), and then mapped all provinces and municipalities to the metapopulation
structure of the model to estimate the travel flow changes during the epidemic where the travel
reduction can be estimated as 1 − Icur

Ipre
, where Icur and Ipre are the mobility outflow index of

current year 2020 and previous year on the same lunar date, respectively.
On February 1, due to the increasing amount of restrictions implemented by various coun-

tries and airlines (54–59), stronger travel reductions are applied between mainland China and
the rest of the world. We use actual worldwide (international and domestic) origin-destination
traffic data from the OAG database to quantify travel reductions. We also apply case detection
based on travel history and additional travel bans across pairs of countries according to the Ox-
ford COVID-19 Government Response Tracker (OxCGRT) (60). We account as well for the
intra-country mobility and contacts reduction in workplaces and social settings (46) using the
COVID-19 Community Mobility reports obtained from Google (61).

Starting in mid-March all around the world, countries started to close schools as a means
to slow the spread of COVID-19. We use the timeline of school closures provided by Ox-
CGRT (60). As our model considers contact matrices for different settings, namely households,
schools, workplaces and community contacts (21), we are able to quantify the decrease in con-
tacts that individuals have in each of these environments. To implement the school closure in
the United States we follow (62) where authors study the effects of school closure in the con-
text of seasonal influenza epidemics. According to the date when schools were closed in the
different states we consider a reduction of contacts in all individuals attending an educational
institution (60, 63). In the United States, this intervention was applied at state level. Following
the school closure, most states issued a “stay at home order”. In this case, we consider that only
contacts in the household and only essential workplaces remained open. Using the COVID-19
Community Mobility reports (61) we are able to compute the relative reduction on the num-
ber of contacts in workplaces, and community interaction as well the relative reduction in the
intra-country mobility. This data is available at the state level for United States, Italy and Spain
among other countries, starting on February 15, 2020. These reports are updated regularly and
the last date for the data used in this manuscript ends on July 31, 2020. For countries where we
do not have mobility reports available we assume that on the date that schools are closed there
is a reduction in mobility of 50%, and 80% reduction when there is ’stay at home order’. When
the interventions are relaxed the mobility reduction is relaxed accordingly.
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Global Model Calibration
The model described is stochastic and outputs an ensemble of possible epidemic outcomes for
each set of initial conditions. We seed the epidemic in Wuhan, China assuming a starting date
between 11/15/2019 and 12/1/2019 with 20 initial infections (26). Given the doubling time of
the epidemic this might corresponds to the epidemic starting from mid October to late Novem-
ber, 2019. We simulate epidemic scenarios sampling reproductive numbers (R0) from a uniform
prior in the range 1.6 to 3.3. We use an Approximate Bayesian Computation (ABC) Rejection
Algorithm. The ABC rejection algorithm samples a set of parameter points θ (for instance R0)
according to a prior distribution and simulates through the model the dataset E ′. A distance
measure s(E ′, E) determines the difference between E ′ and the evidence E based on a given
metric. If the generated E ′ is outside a tolerance from the evidence E (i.e. s(E ′, E) > ε) the
sampled parameter value is discarded. The sampled parameters that are accepted provide an
estimate of the likelihood with respect to the evidence E and allows us to calculate the posterior
distribution P (θ, E). As evidence, E, we considered the cumulative number of SARS-CoV-2
cases internationally imported from China during the time window January 12 to January 21,
2020. The distance measure is at each date the difference between the SARS-CoV-2 cumu-
lative imported cases generated by the model and the evidence with a tolerance provided by
the under-detection interval estimated in Ref. (29). We also account for a non detectable 40%
rate of asymptomatic individuals (sensitivity analysis ranging from 35% to 50%) (64, 65). The
rejection algorithm accepts only configurations that satisfy the distance measure each day. This
approach allows us to calibrate the model by incorporating both the growth rate of importations
and their magnitude, scaled according to the under-detection estimates. The detailed list of im-
portation events used is provided in Table S1 of the supplementary materials of Ref. (12). Using
the ABC calibration and the age-stratified contact matrices for the US, the obtained posterior
distribution P (R0 = x|E) for the basic reproductive number R0 in the US has a median 2.7
[95% CI 2.4-3.1] (Fig. 3). The median values for state level reproductive numbers range from
2.6-2.8, with doubling times Td in the range of 3.3− 3.6 days.

Sensitivity Analysis
In the main text we report the results of the model calibrated only on importation data from
mainland China before the implementation of any travel restrictions. Here we show the results
using the same compartmental model and parameters, however we calibrate the model using
both the international importation events as well as an additional constraint on the weekly in-
cidence of deaths reported in the US from March 21 to March 28, 2020. The deaths recorded
in this period are most likely from infections that occurred before local interventions were im-
plemented. The additional calibration further selects the simulation results that more closely
match the evolution of the outbreak in the US. The average reproductive number R0 for the
individual states ranges 2.6 − 2.8 with an average doubling time of 3.7 [90%CI 3.3-4.2] days.
Both calibrations produce similar results and do not alter the conclusions of the main analysis.
In Fig. 4 we show the distribution of the first dates when each continental state observed at least
10 locally generated transmission events per day. Model differences between the median date
estimates between this calibration and the one in the main text are at most 1 day.
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Fig. S3: The posterior distribution of the reproductive number for the US. The median value
and the 95% reference range are shown.

Epidemic surveillance data
The data of officially confirmed cases and deaths for each state is taken from John Hopkins Uni-
versity Coronavirus resource centre (36). The data used in the analysis has been downloaded
on May 23 and contains data up to that date.

Importation networks
The importation networks are obtained as follows. As a first step, we track the importations
by air transportation (considering both individuals in the latent and infectious compartments) in
any census areas of the US in all the runs selected using the ABC calibration. We then compute
the day, in each run, in which the number of daily transitions from S to L is at least 10 in each
state. In order words, we evaluate the date, in each run, when the state experienced the first local
outbreak. We then track, in each run, the arrivals of latent and infectious individuals before or
at the time of the local outbreak. In doing so, we aggregate the observations from census areas
to states. Then in each build, for each state, we construct a directed and weighted network in
which importation sources link the target states. The width of the link is the number of infections
imported. By considering the observations in all the runs selected during the calibration phase,
we build the chord diagram shown in the manuscript. To make them comparable, as the number
of importations is a function of the source-target pair, we normalized the incoming flows for
each target such that the sum of all incoming links is one. Furthermore, to help the readability
of the plots, we aggregated sources considering macro areas such as Europe and Asia. We keep
US (to isolate the national importations) and mainland China (as the epicenter of the pandemic)
separate. All the other sources are grouped together and labeled “Others”. More specifically,
source countries of importations in the USA are grouped as:

• Asia: Afghanistan, Armenia, Azerbaijan, Bahrain, Bangladesh, Brunei, Cambodia, Cyprus,
India, Indonesia, Iran, Iraq, Israel, Japan, Jordan, Kazakhstan, Korea, Kuwait, Kyrgyzs-
tan, Lao PDR, Lebanon, Malaysia, Maldives, Mongolia, Myanmar, Nepal, Oman, Pak-
istan, Philippines, Qatar, Saudi Arabia, Singapore, Sri Lanka, Taiwan, Tajikistan, Thai-
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land, Turkey, United Arab Emirates, Uzbekistan, Vietnam, Yemen

• China: mainland China

• Europe: Albania, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croa-
tia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Gibraltar, Greece,
Hungary, Iceland, Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Lithuania, Luxem-
bourg, Macedonia, Malta, Moldova, Montenegro, Netherlands, Norway, Poland, Portu-
gal, Romania, Russian Federation, Serbia, Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Ukraine, United Kingdom

• Others: Algeria, Angola, Antigua and Barbuda, Argentina, Aruba, Australia, Bahamas,
Barbados, Belize, Bermuda, Bolivia, Botswana, Brazil, British Virgin Islands, Burundi,
Cameroon, Canada, Cape Verde, Caribbean Netherlands, Cayman Islands, Chile, Colom-
bia, Congo, Cook Islands, Costa Rica, Cuba, Curaçao, Côte d’Ivoire, Djibouti, Do-
minica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Ethiopia,
Fiji, French Guiana, French Polynesia, Gambia, Ghana, Greenland, Grenada, Guade-
loupe, Guatemala, Guinea, Guyana, Haiti, Honduras, Jamaica, Kenya, Liberia, Mada-
gascar, Martinique, Mauritius, Mexico, Morocco, Mozambique, Namibia, New Zealand,
Nicaragua, Nigeria, Palau, Panama, Paraguay, Peru, Rwanda, Samoa, Senegal, Sey-
chelles, Sierra Leone, Somalia, South Africa, South Sudan, St-Barthélemy, St. Kitts
and Nevis, St. Lucia, St. Maarten, St. Vincent and Grenadines, Sudan, Suriname, Tonga,
Trinidad and Tobago, Tunisia, Turks and Caicos Islands, Uganda, Uruguay, Vanuatu,
Venezuela, Zambia, Zanzibar, Zimbabwe

• USA: all the US states plus the US territories (American Samoa, Guam, Northern Mariana
Islands, Puerto Rico, U.S. Virgin Islands)

Following this procedure, in Table 2 we report the seeding share for the first 25 states that
experienced a local outbreak (same states as in the left column of Fig. 2 in the manuscript).

In Table 3 we report the seeding shares for the remaining states that experienced a local
outbreak (same states as in the right column of Fig. 2 in the manuscript).

In Table 4 we report the the share of introduction of SARS-Cov-2 infections for all the first
25 states that experienced a local outbreak (same states as in the left column of Fig. 2 in the
manuscript), considering, however, all the infections imported up to March 1, 2020. In other
words, we don’t constrain on the time of the start of the local outbreak (i.e. first daily 10 lo-
cal transmissions), but we consider a general cutoff date for all states. The flows are radically
different, especially for the first states, where the critical role of China before the travel restric-
tions of January 23, is replaced by a much larger internal flow. In fact, for all states the share of
domestic importations is above 50%.

In Table 5 we report the share of introduction of SARS-Cov-2 infections through March 1,
2020, for the remaining states that experienced a local outbreak (same states in the right column

9



State USA China Asia Europe Others
California 0.13 0.60 0.17 0.02 0.06
New York 0.27 0.24 0.25 0.14 0.10

New Jersey 0.33 0.12 0.26 0.16 0.13
Florida 0.59 0.02 0.11 0.13 0.15

Texas 0.60 0.04 0.19 0.07 0.11
Washington 0.60 0.04 0.22 0.05 0.10

Illinois 0.52 0.06 0.22 0.08 0.11
Massachusetts 0.53 0.04 0.16 0.15 0.12

Maryland 0.51 0.03 0.24 0.12 0.10
Nevada 0.63 0.01 0.14 0.07 0.16
Georgia 0.64 0.02 0.18 0.08 0.09
Arizona 0.71 0.01 0.09 0.04 0.15
Virginia 0.57 0.02 0.20 0.11 0.10

Colorado 0.73 <0.01 0.08 0.06 0.13
Pennsylvania 0.70 <0.01 0.09 0.09 0.12

Ohio 0.71 0.01 0.11 0.07 0.10
Michigan 0.65 0.02 0.14 0.08 0.11

Connecticut 0.49 0.02 0.19 0.16 0.14
North Carolina 0.70 0.01 0.11 0.08 0.10

Minnesota 0.67 <0.01 0.13 0.06 0.13
Indiana 0.67 0.01 0.13 0.08 0.11
Oregon 0.72 0.01 0.14 0.03 0.10

Utah 0.77 <0.01 0.08 0.04 0.10
New Hampshire 0.55 0.02 0.14 0.16 0.13

Tennessee 0.73 <0.01 0.09 0.06 0.12

Table S2: Importation of seeding events. Sources are listed from the second column on. Targets
are the states listed in the first column. This is the list of the first 25 states that experienced an
outbreak. Numbers are rounded to the second digit.
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State USA China Asia Europe Others
Missouri 0.76 <0.01 0.08 0.05 0.10

Wisconsin 0.82 <0.01 0.03 0.04 0.11
Louisiana 0.76 <0.01 0.06 0.06 0.11

South Carolina 0.75 <0.01 0.09 0.07 0.08
Kansas 0.78 <0.01 0.07 0.05 0.09

Oklahoma 0.77 <0.01 0.08 0.06 0.10
Kentucky 0.75 <0.01 0.08 0.07 0.10

Idaho 0.83 <0.01 0.06 0.03 0.08
Iowa 0.77 <0.01 0.06 0.05 0.12

New Mexico 0.84 <0.01 0.04 0.04 0.07
Alabama 0.74 <0.01 0.12 0.06 0.08

Alaska 0.75 <0.01 0.11 0.03 0.11
Maine 0.77 <0.01 0.06 0.08 0.09

Nebraska 0.79 <0.01 0.05 0.04 0.12
Rhode Island 0.85 <0.01 0.01 0.08 0.05

Montana 0.88 <0.01 0.01 0.03 0.08
Arkansas 0.81 <0.01 0.05 0.06 0.08
Delaware 0.70 <0.01 0.04 0.12 0.14

Mississippi 0.81 <0.01 0.04 0.07 0.08
Vermont 0.87 <0.01 0.04 0.04 0.05

Wyoming 0.81 <0.01 0.07 0.03 0.09
North Dakota 0.90 0. 0.01 0.01 0.08
West Virginia 0.84 <0.01 0.02 0.06 0.08
South Dakota 0.87 0. <0.01 0.03 0.09

Table S3: Importation of seeding events. Sources are listed from the second column on. Targets
are the states listed in the first column. This is the list of the last 24 states that experienced an
outbreak. Numbers are rounded to the second digit.
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State USA China Asia Europe Others
California 0.69 <0.01 0.13 0.05 0.13
New York 0.56 <0.01 0.13 0.17 0.14

New Jersey 0.57 <0.01 0.12 0.16 0.14
Florida 0.74 <0.01 0.03 0.08 0.15

Texas 0.82 <0.01 0.06 0.04 0.08
Washington 0.82 <0.01 0.07 0.03 0.07

Illinois 0.75 <0.01 0.08 0.06 0.11
Massachusetts 0.71 <0.01 0.06 0.11 0.11

Maryland 0.72 <0.01 0.10 0.09 0.09
Nevada 0.79 <0.01 0.04 0.04 0.13
Georgia 0.82 <0.01 0.06 0.05 0.07
Arizona 0.83 <0.01 0.02 0.02 0.13
Virginia 0.77 <0.01 0.08 0.07 0.08

Colorado 0.86 <0.01 0.03 0.03 0.08
Pennsylvania 0.83 <0.01 0.03 0.05 0.09

Ohio 0.85 <0.01 0.03 0.04 0.07
Michigan 0.82 <0.01 0.05 0.05 0.08

Connecticut 0.67 <0.01 0.09 0.12 0.13
North Carolina 0.84 <0.01 0.04 0.05 0.07

Minnesota 0.81 <0.01 0.05 0.03 0.10
Indiana 0.82 <0.01 0.05 0.04 0.08
Oregon 0.87 <0.01 0.04 0.02 0.07

Utah 0.89 <0.01 0.03 0.02 0.06
New Hampshire 0.70 <0.01 0.07 0.12 0.11

Tennessee 0.85 <0.01 0.03 0.03 0.08

Table S4: Introduction of SARS-Cov-2 infections thorugh March 1. Sources are listed from the
second column on. Targets are the states listed in the first column. This is the list of the first 25
states that experienced an outbreak. Numbers are rounded to the second digit.
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State USA China Asia Europe Others
Missouri 0.87 <0.01 0.03 0.03 0.08

Wisconsin 0.89 <0.01 0.01 0.02 0.08
Louisiana 0.87 <0.01 0.03 0.03 0.07

South Carolina 0.86 <0.01 0.04 0.04 0.06
Kansas 0.88 <0.01 0.03 0.03 0.07

Oklahoma 0.87 <0.01 0.03 0.03 0.07
Kentucky 0.86 <0.01 0.04 0.03 0.07

Idaho 0.91 <0.01 0.03 0.01 0.05
Iowa 0.86 <0.01 0.03 0.02 0.09

New Mexico 0.92 <0.01 0.02 0.02 0.04
Alabama 0.85 <0.01 0.07 0.03 0.05

Alaska 0.90 <0.01 0.05 0.01 0.05
Maine 0.85 <0.01 0.03 0.04 0.07

Nebraska 0.87 <0.01 0.02 0.02 0.09
Rhode Island 0.89 <0.01 0.01 0.06 0.04

Montana 0.94 <0.01 <0.01 0.01 0.05
Arkansas 0.89 <0.01 0.02 0.03 0.05
Delaware 0.80 <0.01 0.03 0.06 0.10

Mississippi 0.89 <0.01 0.03 0.03 0.05
Vermont 0.91 <0.01 0.03 0.02 0.04

Wyoming 0.86 <0.01 0.05 0.02 0.08
North Dakota 0.92 0. 0.01 0.01 0.06
West Virginia 0.90 <0.01 0.01 0.03 0.05
South Dakota 0.91 0. <0.01 0.01 0.08

Table S5: Importation of infection flows up to March 1. Sources are listed from the second
column on. Targets are the states listed in the first column. This is the list of the last 24 states
that experienced an outbreak. Numbers are rounded to the second digit.

of Fig. 2 in the manuscript).

In Figure 5 we provide a visual representation, via a chord plot, of the data shown in Ta-
bles 4 and 5.

Correlation analysis
As mentioned and shown in the main text, during the early phases of the spreading, mobility
plays a crucial role. In order to highlight this aspect, here we report the full correlation analysis
between the real data and the mobility indicators. In particular, we compute the order in which
states reached 100 cases/deaths in the real surveillance data and compare it with the order of
states according to their air traffic (considering both national and international travels). Note
how the correlation plot in the main text considered as a mobility indicator the sum of the two
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Fig. S5: Share of importations of infections in all continental states from US, China, Europe,
Asia and all other countries up to March 1, 2020. US states are ordered, clockwise, according
to the start of the local outbreak.
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Fig. S6: Correlation between the order in which states reached 100 confirmed cases (top row)
or deaths (bottom row) and their International (left) or National (right) air traffic. The size of
each state is assigned proportional to the population size

types of traffic. In Fig. 6 we show the result reporting also the value of the Kendall’s tau.
Overall the correlations, especially for the number of cases, are comparable with those shown
in the main text.

The states that were the first to experience the outbreak, besides being hubs in the air trans-
portation network, are also very populous. It is then natural to wonder how rankings based on
population compare with respect to those based on air traffic. In Figure 7 we show the compari-
son. In particular, we order states according to their population (left column) and density (right
column) and to the epidemic indicators from surveillance (cases and deaths). Not surprisingly,
we find high correlation levels across the board. However, it is interesting to note how those
reported considering air travels are comparable (0.67 when considering both national and inter-
national traffic). The correlation for the number of deaths (bottom row) is lower with respect
to the number of cases (top row). Furthermore, it is interesting to notice how the correlations
are even smaller when considering the population density (right column). In fact, they go down
to 0.38 when comparing them with the order in which a state surpassed the threshold of 100
deaths.

In Figure 8 we repeat the same analysis considering the model’s projections. The correla-
tions are comparable to the previous. Also in the model, population density is less correlated.
It is important to observe that air travel traffic, population and population densities are not in-
dependent indicators. Figure 9 highlights this observation. Particularly high is the correlation
between air traffic and population. Also, population and population densities are well correlated
while air traffic and density are not. This is due, in part, to the many states that, due to their
location, see lots of traffic but are not very dense.

The correlations between rankings reported above have been computed by using the Kendall’s
tau (66) as implemented by the scipy.stats library (67). The metric is designed to compare the
rankings obtained ordering items, states in our case, according to pairs of different quantities.
The Kendall’s tau is defined only in the case that the ranks have the same size. In case the two
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Fig. S7: Correlation between the order in which states reached 100 confirmed cases (top row)
or deaths (bottom row) and their population (left) or population density (right). The size of each
state is assigned proportional to the population size
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ranks have different size (i.e. some states did not yet go above a given threshold) the metric is
applied to the common subset of the two.
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