

Repurposing Fragile X Drugs to Inhibit SARS-CoV-2 Viral Reproduction

Cara J. Westmark^{1*}, Maki Kiso², Peter J. Halfmann³, Pamela R. Westmark¹, Yoshihiro Kawaoka^{2,3,4}

 ¹Department of Neurology, University of Wisconsin, Madison, WI, USA
²Department of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
³Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
⁴Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan

* Correspondence: Cara Westmark westmark@facstaff.wisc.edu

Supplementary Data

Supplementary Figure 1: FMRP is predicted to bind to multiple regions of SARS-CoV-2 RNA. The catRAPID Global Score algorithm with weighted fragmentation predicts multiple FMRP binding sites in both positive (A) and negative (B) sense SARS-CoV-2 RNA. The top 20 interactions are displayed with RNA sequence positions on the x-axis versus interaction score on the y-axis. RNA coordinates are reported relative the NCBI database.

