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Supplementary Fig. 1. A flow-chart of transcriptome amalgamation, gene tree inference, and 

evolutionary characterization in this study.  
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Supplementary Fig. 2. Changes in number of reads, total nucleotide length, mean read length, 

and mapping rate by RNA-seq read filtering. Mapping rates were, in almost every case, improved 

by both read quality filtering and read filtering by mapping to miscellaneous genomic features. 

Box plot elements are defined as follows: center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5 × interquartile range; points, outliers.  
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Supplementary Fig. 3. A correlation analysis for the detection and removal of anomalous 

RNA-seq samples. Expression levels of all genes were compared between the sample and the organ 

averages. A sample was removed if any between-organ comparisons yielded a correlation coefficient 

higher than the within-organ comparison.  
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Supplementary Fig. 4. Characteristics of amalgamated transcriptome. (a) The number of RNA-
seq experiments, BioProjects, and detected surrogate variables in each species. The counts were 
derived from the final dataset. The numbers of surrogate variables (SV) are correlated with the 
numbers of RNA-seq samples and BioProjects. (b) Relationships of the number of SVs with log-
TPM and log-TMM-FPKM. Points correspond to species. (c–d) Correlation heatmaps of corrected 
transcriptomes. See Supplementary Data 1 for full descriptions including RNA-seq sample IDs and 
BioProject IDs. (e–f) Distinct distributions of Pearson’s correlation coefficients depending on 
whether a pair of RNA-seq samples are the same organ or whether they are from the same research 
project. (g–h) Predictor analysis of detected surrogate variables. The predictive power was analyzed 
by linear regression using different properties of RNA-seq experiments: organ (brain, heart, kidney, 
liver, ovary, and testis), BioProject (e.g., PRJNA176589), library selection (e.g., cDNA and polyA), 
library layout (single and paired), instrument (e.g., Illumina HiSeq 2500 and NextSeq 550), number 
of read (e.g., 91,641,467 reads), % lost, fastp (percentage of reads that are removed by fastp; e.g., 
5%), % lost, misc feature (percentage of reads that are mapped to non-nuclear-mRNA features and 
are removed from the analysis; e.g., 5%), minimum read length (e.g., 25 nt), average read length 
(e.g., 70 nt), maximum read length (e.g., 75 nt), and mapping rate (e.g., 80%). The predictors are 
summarized in Supplementary Data 1. (i–j) Multispecies correlation analysis of averaged organ 
expression. Corrected expression levels of 1,377 single-copy orthologs were used to calculate 
pairwise Pearson’s correlation coefficients. (k) A principal component analysis using expression 
levels of 1,377 single-copy orthologs from 21 species. Points correspond to RNA-seq samples. 
Curves show the estimated kernel density. Explained variations in percentages are indicated in each 
axis. (l) Estimated organ-wise expression levels of a housekeeping gene. Since data from relatively 
many BioProjects are available, glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH, 
ENSGALG00000014442) in Gallus gallus is shown. Points correspond to the average expression 
level calculated by a random subsampling. All data points and the median value (bar), rather than a 
box plot, are shown if the number of subsampled BioProject combinations is less than 10. 
Box plot elements are defined as follows: center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5 × interquartile range; points, outliers. A part of animal silhouettes were obtained from 
PhyloPic (http://phylopic.org). The silhouettes of Astyanax mexicanus and Oreochromis niloticus are 
licensed under CC BY-NC-SA 3.0 (https://creativecommons.org/licenses/by-nc-sa/3.0/) by Milton 
Tan (reproduced with permission), and those of Anolis carolinensis (by Sarah Werning), 
Ornithorhynchus anatinus (by Sarah Werning), and Rattus norvegicus (by Rebecca Groom; with 
modification) are licensed under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). 
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 4 (continued)  
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Supplementary Fig. 5. Expression of organ-specific marker genes in human and mouse. Marker 

genes were retrieved from PanglaoDB1, and its median expression values were obtained for each 

RNA-seq sample. A cell-type-wise analysis is provided in Supplementary Dataset2. Cell types in 

ovary and testis were not included in PanglaoDB (access date: April 1, 2020). 
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Supplementary Fig. 6. Comparison of SVA-log-FPKM and SVA-log-TPM in expression 

regime shift detection. (a) The numbers of expression regime shifts. Each point corresponds to a 

gene tree. The solid red lines show the upper limits in the regime shift search. The numbers of shifts 

detected with SVA-log-TMM-FPKM (left) and SVA-log-TMM (center) are well correlated (right). 

The black line is a quantile regression, and the dashed red line shows a slope of 1. (b) Expression 

properties. Each point corresponds to an expression regime shift which is consistently detected by 

SVA-log-TMM-FPKM and SVA-log-TPM. (c–d) The branch-wise numbers of detected shifts in the 

species tree. The shifts were categorized by primary-expressed organs (PEOs) in ancestral and 

derived states. The order of the species tree branches (y axis) corresponds to the total number of 

corresponding gene tree branches in the dataset. See Fig. 3a for branch IDs. 
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c     SVA-log-TMM-FPKM

Supplementary Fig. 6 (continued) 
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d     SVA-log-TPM

Supplementary Fig. 6 (continued) 
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Supplementary Fig. 7. The relationships between expression shifts and chromosomal location. 

The heatmap shows the frequency of expression shifts observed among the branches with or without 

a change in the chromosomal category (non-diagonal or diagonal, respectively). Chromosomal 

locations were categorized into autosomes (A), X chromosome (X) and Y chromosome (Y), and the 

ancestral locations were inferred by stochastic character mapping. 
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Supplementary Fig. 8. Evaluation of gene set completeness. BUSCO analysis was performed for 

gene sets from 21 species using 3,407 single-copy orthologs in the dataset “vertebrata_odb10”. The 

species tree is shown to visualize lineage-specific trends. 
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Supplementary Fig. 9. Alternative analysis supporting non-linear change in protein evolution 

rate in correlation with expression regime shifts. (a) Distribution of ω values. While the results 

from stochastic character mapping (mapdNdS) are reported in the main text, results from maximum-

likelihood estimation (HyPhy) are shown here. A plus (+) indicates branches with expression shifts, 

whereas minus (−) branches are sisters to the ‘plus’ branches. Statistical differences between pairs of 

distributions were tested using a two-sided Brunner–Munzel test3. Non-log-transformed median 

values are shown above the boxplots. For visualization purposes, extreme values exceeding ±10 

were clipped. Box plot elements are defined as follows: center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5 × interquartile range. (b) Relationships between protein evolution rate 

and change in expression properties. While SVA-log-TMM-FPKM-based analysis is reported in the 

main text, results from SVA-lot-TPM-based analysis is shown here. Stochastic character mapping 

was used to obtain branch-wise ω values. Points correspond to expression regime shifts (log ω ratio 

= 0). Dashed lines indicate no between-branch difference in protein evolution rate. Solid lines show 

a linear regression. Its slope and number of regime shifts are also provided. Regime shifts with 

negative and positive changes were separately analyzed for organ specificity (upper) and expression 

level (middle). P values indicate whether the slopes were significantly different from zero (two-

sided t tests). 
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Supplementary Fig. 10. The number of expressed genes does not explain the organ-wise 

abundance of PEO shifts. (a) The organ-wise numbers of expressed genes in the 21 species. In this 

analysis, expressed genes are defined as genes with >1 SVA-log-TMM-FPKM. (b) The PEO shift 

distributions corrected by the median numbers of expressed genes. The data in Fig. 5a were 

corrected as follows: 𝑆!"##$!%$& = 𝑆"#'(')*+ ÷ (𝑀*)!$,%#*+⁄𝑀&) ÷ (𝑀&$#'-$&⁄𝑀&). 𝑆"#'(')*+ corresponds 

to the numbers shown in Fig. 5a. 𝑀*)!$,%#*+ and 𝑀&$#'-$& are median numbers of expressed genes in 

ancestral and derived PEOs, respectively. 𝑀& indicates the across-organ average of expressed gene 

numbers. 
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Supplementary Fig. 11. Evolutionary dynamics of gene expression analyzed with conservative 

datasets. Both SVA-log-TPM and SVA-log-TMM FPKM values were analyzed. Organ-specific 

genes were examined by selecting PEO shifts with high ancestral and derived organ expression 

specificity (τ > 0.5). To examine the effect of inference errors in gene tree reconstruction, branches 

with high support values (ultrafast bootstrap percentage > 99) were analyzed. The panels a and b 

correspond to Fig. 5b and c, respectively. Box plot elements are defined as follows: center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range.  

D
 b

ra
nc

h
R
 b

ra
nc

h
S 

br
an

ch

All shifts
SVA-log-TPM

Specificity cutoff
(τ>0.5)

SVA-log-TMM-FPKM

Specificity cutoff
(τ>0.5)

SVA-log-TPM

Branch support cutoff
(Bootstrap value>99)
SVA-log-TMM-FPKM

Branch support cutoff
(Bootstrap value>99)

SVA-log-TPM

S D R
branch

S D R
branch

0.0

0.2

0.4

0.6

0.8

1.0

PE
O

 s
hi

ft
 s

ym
m

et
ry

S D R
branch

S D R
branch

S D R
branch

0%0.5
%

2.5
%

97
.5%

99
.5%

10
0%

More frequent
than expected

Less frequent
than expected

Permutation-based percentile rank

a

N = 713

N = 6,617

N = 1,058

N = 149

N = 2,299

N = 1,142

N = 147

N = 2,440

N = 1,826

N = 408

N = 3,307

N = 1,799

N = 395

N = 3,122

N = 3,495

A B

A B

b



 23 

 
Supplementary Fig. 12. Effects of phylogeny reconciliation. (a) The numbers of detected shifts in 

non-reconciled and reconciled maximum-likelihood gene trees. (b) The relationship between shift 

number difference and tree topology difference measured by Robinson-Foulds distance 51. Trees 

with no detected shifts were removed from the analysis. (c–e) Reproduction of PEO shift 

distributions using reconciled gene trees. The panels c, d, and e correspond to Fig. 5a, Fig. 5b, and 

Fig. 5c, respectively. Box plot elements are defined as follows: center line, median; box limits, upper 

and lower quartiles; whiskers, 1.5 × interquartile range.  
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Supplementary Fig. 12 (continued)  
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Supplementary Fig. 13. Gene tree reconstruction. (a) Complexity of best-fit nucleotide 

substitution matrices. (b) Complexity of rate heterogeneity among nucleotide sites. Both discrete 

Gamma models4 and FreeRate models5,6 were included to count the number of categories for rate 

heterogeneity. (c) Selected rooting positions in reconciliation-assisted gene tree rooting. MAD, 

minimal ancestor deviation; NTG, ‘rooting mode’ of NOTUNG; MID, midpoint between the longest 

path. (d) Time-constrained nodes in tree dating. R, root node; S, speciation node; D, duplication 

node. All available constraints (RDS) are used in the first trial and then successively relaxed if 
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estimation fails. In the category ‘allS’, all nodes are speciation nodes and therefore no divergence 

time estimation was performed for the trees. (e) Reconciliation-assisted gene tree rooting. Rooting 

points were estimated with two different methods: the minimum ancestor deviation (MAD) method 

and midpoint rooting. If they were compatible with the event parsimony involving gene duplication 

and loss, the MAD- or midpoint-rooted tree was reported in sequence. If not, one of event parsimony 

trees was reported. (f) Reconciliation-assisted gene tree dating. Speciation nodes in the dated species 

tree were mapped onto the non-dated gene tree by phylogeny reconciliation. By using those nodes as 

calibration points, the other node ages were estimated using the penalized likelihood method.  
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Supplementary Fig. 14. Gene tree skimming in phylogenetic comparative analysis. Gene tree 

clades are collapsed if character states are highly correlated. Resultant trees contain a smaller 

number of leaves than the original trees while preserving drastic changes in character evolution. 

Note that, unlike this example, we used extremely stringent threshold in the analysis (Pearson’s 

correlation coefficient > 0.99). 
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