# Supplementary information for

## Environmental-Social-Economic Footprints of Consumption and

### Trade in the Asia-Pacific Region

Yang et al.

## Table of contents

| Supplementary Methods    | 3  |
|--------------------------|----|
| Supplementary Figures    | 4  |
| Supplementary Figure 1   | 4  |
| Supplementary Figure 2   | 5  |
| Supplementary Figure 3   | 6  |
| Supplementary Figure 4   | 7  |
| Supplementary Figure 5   | 8  |
| Supplementary Tables.    | 9  |
| Supplementary Table 1    | 9  |
| Supplementary Table 2    | 12 |
| Supplementary Table 3    | 13 |
| Supplementary References | 14 |

#### **Supplementary Methods**

**Panel data regression.** We investigate the relationship between affluence and the four footprint indicators using a fixed effect panel regression model (Eq.1).

$$EP_pp_{it} = \alpha_i + \beta a f f luence_{it} + \varepsilon_{it}$$
(1)

Where  $EP_pp_{it}$  is the per capita footprint of country *i* in the year *t*, *affluence<sub>it</sub>* is the average income of country *i* in the year *t*, calculated as per capita GDP adjusted by purchasing power parity (PPP)<sup>1</sup>  $\alpha_i$  is the country fixed effect, representing a country's time-invariant characteristics.  $\varepsilon_{it}$  is the idiosyncratic error term.  $EP_pp_{it}$  is calculated using Eq. 1 and EXIOBASE. GDP PPP data are estimated by the World Bank.

We further include the quadratic form of affluence to test the environmental Kuznets Curve (EKC) hypothesis, that environmental pollution first rises and then falls as economic development proceeds, following refs<sup>2,3</sup>

$$EF_pp_{it} = \alpha_i + \beta_1 affluence_{it} + \beta_2 affluence_{it}^2 + \varepsilon_{it}$$
(2)

The turning point of the inverted U curve is calculated as  $-\beta_1/2\beta_2$ . Results of the regression analysis are shown in Supplementary Table 2, Supplementary Fig. 1 and Supplementary Fig. 2.

### **Supplementary Figures**



**Supplementary Figure 1. Regression plots of per capita footprint associated with the APAC region (six major economies).** Panels **a**, **b**, **c**, and **d** correspond to four environmental footprint indicators. Affluence in x-axis equals per capita GDP adjusted by purchasing power parity (PPP) and inflation from the World Bank. AU= Australia, CN=China, IN= India, ID =Indonesia, JP=Japan, KR= South Korea. See the time series data (1995-2015) in source data file.



Supplementary Figure 2. Regression plots of per capita footprint associated with individual APAC country. Panels a, b, c, and d correspond to four environmental footprint indicators (water, energy, GHG, and  $PM_{2.5}$ ) of individual APAC country. Affluence in x-axis equals per capita GDP adjusted by purchasing power parity (PPP). 2011 is taken as the constant price according to the World Bank. Source data are provided as a Source Data file.



Supplementary Figure 3. Final consumption hotspots in 1995 and 2015. Panels a, b, c, and d correspond to four environmental footprint indicators. The bars of two years for the same country/ region are placed adjacently. GHG (including CO<sub>2</sub>, N<sub>2</sub>O and CH<sub>4</sub>) was measured in CO<sub>2</sub> equivalent according to Global Warming Potential. Shelter" refers to the operation and maintenance of residences; "Construction" of buildings is mostly allocated to investments, together with the construction of infrastructure; "Household" refers to the direct emissions that are derived from fuel use by households, which belongs to  $F_hh^4$ . Source data are provided as a Source Data file.



**Supplementary Figure 4. Net environmental-social-economic virtual flows of the intra-APAC trade in 1995.** The footprint indicators fall into three categories and are presented in (a) natural resources, (b) local and global environmental threats, and (c) socio-economic effects. The width of the arrows in each panel represents the magnitude of the net flow within the APAC region. The background colors indicate the specific net footprint (import-export) per capita of each region/country. The negative net footprint indicates net displacements (of resource use, emissions, labors, and economic value added) to other APAC countries/regions. Valued-added has been adjusted by inflation to make it comparable with Fig.2. Source data are provided in Source Data file.



Supplementary Figure 5. Trade intensity per gross output in Euro at country and region scales in 1995 and 2015. The panels (a), (b) and (c) represent for natural resources, local and global environmental threats, and socio-economic effects, respectively. The intensity calculation considers resource consumed, GHG and  $PM_{2.5}$  produced and value-added in bi-directional trade from footprint perspective. For instance, APAC-internal contains bi-directional trade that occurs within the APAC region; APAC-external represents the trade between the APAC region with non-APAC economies; CHN-external represents the trade between China and other economies. EU= The European Union, EIT = The Economy in transition, LAM = Latin America, AF = Africa, OECD = OECD north America. GER= Germany, JPN=Japan, CHN= China. Specifically, EIT contains Bulgaria, Cyprus, Czech Republic, Estonia, Croatia, Hungary, Lithuania, Latvia, Malta, Poland, Romania, Slovenia, Slovakia, and Rest of Europe (RoW Europe). Source data are provided as a Source Data file.

### **Supplementary Tables**

| Supplementary Table 1. A brief synthesis of existing footprint studies t | that touched upon APAC. |
|--------------------------------------------------------------------------|-------------------------|
|--------------------------------------------------------------------------|-------------------------|

| NO. | Title of the literature                                                                                                                                                         | Footprint<br>indicator | Spatial scope                                                      | Key findings related to APAC                                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | The employment footprints of nations: uncovering master-servant relationships                                                                                                   | Employment             | Global                                                             | Hong Kong, Singapore, the United Arab Emirates, and<br>Switzerland occupy the top-ranking positions of master<br>countries, whereas many African and Asian countries are<br>servants <sup>5</sup> .             |
| 2   | Drivers of the Growth in Global<br>Greenhouse Gas Emissions                                                                                                                     | GHG                    | Global<br>(containing<br>East Asia,<br>India and<br>Indonesia)     | 15% of all extra GHG emissions between 1995 and 2008 have<br>been emitted in emerging countries (Brazil, Russia, India,<br>Indonesia and China) but were caused by changes in other<br>countries <sup>6</sup> . |
| 3   | Comparison of bottom-up and top-<br>down approaches to calculating the<br>water footprints of nations                                                                           | Water                  | Selected<br>countries<br>(including<br>Australia,<br>China, Japan) | No specific discussion about APAC-related region/countries <sup>7</sup> .                                                                                                                                       |
| 4   | The emission cost of international<br>sourcing: Using Structural<br>Decomposition Analysis to calculate<br>the contribution of international<br>sourcing to CO2-emission growth | CO <sub>2</sub>        | Global                                                             | The increase in global production-related CO2-emissions has<br>mostly occurred in low-wage countries, in particular China and<br>to a lesser extent India <sup>8</sup> .                                        |

| 5  | A structural decomposition analysis of  | Energy            | Selected       | Most of the global sustainability growth was attributed to                 |
|----|-----------------------------------------|-------------------|----------------|----------------------------------------------------------------------------|
|    | global energy footprints                |                   | countries      | Western Europe, Asia and Japan <sup>9</sup> .                              |
| 6  | International trade of scarce water     | Water             | Global         | Net exporters are almost exclusively developing, relatively                |
|    |                                         |                   |                | water-scarce countries, however more Middle-Eastern and                    |
|    |                                         |                   |                | Central Asian countries rank high after scarcity weighting <sup>10</sup> . |
| 7  | The role of outsourcing in driving      | CO <sub>2</sub>   | Global         | Carbon leakage is predominantly occurring with trading                     |
|    | global carbon emissions                 |                   |                | partners such as China and India, where input restructuring                |
|    |                                         |                   |                | has led to an increase in emissions <sup>11</sup> .                        |
| 8  | Trends in global greenhouse gas         | GHG               | Global         | Improvements in technology are more than out-run by the                    |
|    | emissions from 1990 to 2010             |                   | (including     | combined effect of affluence and population in many                        |
|    |                                         |                   | India, China,  | countries. Interestingly, this is particularly true for China              |
|    |                                         |                   | Australia,     | where affluence has resulted in an almost 8-fold increase in               |
|    |                                         |                   | Japan)         | emissions between 1990 and $2010^{12}$ .                                   |
| 9  | Affluent countries inflict inequitable  | PM <sub>2.5</sub> | US, China,     | Five affluent nations (the US, China, Japan, Germany and the               |
|    | mortality and economic loss on Asia     |                   | Japan,         | UK) with the highest GDP and import values caused over 1                   |
|    | via PM <sub>2.5</sub> emissions         |                   | Germany and    | million people to die prematurely in Asia in 2010 as a result of           |
|    |                                         |                   | the UK         | their induced PM2.5 emissions <sup>13</sup> .                              |
| 10 | The "Bad Labor" Footprint:              | Labor             | Global         | Exports from Asia constitute the largest global trade flow                 |
|    | Quantifying the Social Impacts of       |                   | (including     | measured in the amount bad labor <sup>14</sup> .                           |
|    | Globalization                           |                   | seven regions) |                                                                            |
| 11 | Socioeconomic drivers of global blue    | Blue water        | Global         | Demographic changes had considerable accelerating effects                  |
|    | water use                               |                   |                | on blue water use trends (in particular in the Middle East and             |
|    |                                         |                   |                | North Africa region and in South Asia) <sup>15</sup> .                     |
| 12 | International trade linked with disease | Airborne          | Global         | Most of the world's PM is emitted outside of Asia, but more                |
|    | burden from airborne particulate        | disease           |                | than half of the global airborne disease burden occurs in just             |
|    | pollution.                              |                   |                | two countries: China and India <sup>16</sup> .                             |

| 13        | A structural decomposition analysis of the emissions embodied in trade                                                                                                             | CO <sub>2</sub>                          | Forty countries | For the growth of emission embodied in exports, the 7 Asian countries take approximately 53% of the world's total <sup>17</sup> .                                                     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14        | Tele-connecting local consumption to global land use                                                                                                                               | Land                                     | Global          | Based on our analysis, 27–67% of forestland in South-East Asia, China, Russia, Africa and Brazil are displaced for consumption in rich countries <sup>18</sup> .                      |
| 15        | Transboundary health impacts of transported global air pollution and international trade                                                                                           | PM <sub>2.5</sub>                        | Global          | 30,900 deaths in the 'rest of east Asia' region (which includes Japan and South Korea) were related to emissions in China <sup>19</sup> .                                             |
| <u>16</u> | Measuring the environmental<br>sustainability performance of global<br>supply chains: A multi-regional input-<br>output analysis for carbon, sulphur<br>oxide and water footprints | Carbon,<br>sulphur<br>oxide and<br>water | Global          | High water use intensity in China and India in the electricity industry is exacerbated by a national-level ranking of High-Water Stress Risk by the WRI <sup>20</sup> .               |
| <u>17</u> | International trade drives global<br>resource use: a structural<br>decomposition analysis of raw<br>material consumption from 1990–<br>2010                                        | Material                                 | Global          | Changes in the input structure of the economy tended to increase raw material consumption in many East & South Asian countries (including China, India, and Japan) <sup>21</sup> .    |
| <u>18</u> | Trade in occupational safety and<br>health: Tracing the embodied human<br>and economic harm in labour along<br>the global supply chain                                             | Labor                                    | Global          | Most African countries and developing countries from southern Asia are the world's top net exporters of accident cases <sup>22</sup> .                                                |
| <u>19</u> | Affluence drives the global displacement of land use                                                                                                                               | Land                                     | Global          | The economies of Europe, Japan, and Korea caused the largest net demand on foreign land mainly to medium-income countries in Latin America, China, and Southeast Asia <sup>23</sup> . |

|                        | pp_water  | pp_energy   | pp_GHG     | pp_PM <sub>2.5</sub> | pp_water     | pp_energy    | pp_GHG       | pp_PM <sub>2.5</sub> |
|------------------------|-----------|-------------|------------|----------------------|--------------|--------------|--------------|----------------------|
| affluence              | -1.9E-03* | 5.48E-03*** | 2.5E-04*** | 7.13E-05***          | 1.44E-02***  | 9.22E-03***  | 4.75E-04***  | 3.83E-05             |
|                        | (-1.98)   | (11.23)     | (10.43)    | (5.50)               | (7.75)       | (7.71)       | (8.26)       | (1.15)               |
|                        |           |             |            |                      |              |              |              |                      |
| affluence <sup>2</sup> |           |             |            |                      | -2.94e-07*** | -6.77e-08*** | -4.06e-09*** | 5.98E-10             |
|                        |           |             |            |                      | (-9.53)      | (-3.40)      | (-4.24)      | (1.08)               |
|                        |           |             |            |                      |              |              |              |                      |
|                        | (14.24)   | (8.70)      | (9.98)     | (14.50)              | (7.12)       | (4.24)       | (4.82)       | (11.27)              |
| turning point          |           |             |            |                      |              |              |              |                      |
| (2011                  |           |             |            |                      | 24489.796    | 68094.530    | 58497.540    | -32023.400           |
| US\$ PPP)              |           |             |            |                      |              |              |              |                      |
| $\mathbb{R}^2$         | 0.032     | 0.514       | 0.478      | 0.203                | 0.453        | 0.558        | 0.547        | 0.211                |
| Ν                      | 126       | 126         | 126        | 126                  | 126          | 126          | 126          | 126                  |

Supplementary Table 2. Fixed-effect regression results of panel data

t statistics in parentheses

\* *p* < 0.1, \*\* *p* < 0.05, \*\*\* *p* < 0.01

The columns two-five provide the linear regression of the per capita footprint of blue water, energy, GHG and  $PM_{2.5}$ , and the last four columns are quadratic polynomial regression results of these four footprint indicators by considering the square of affluence. The sample size (N=126) contains data for six major APAC countries: Australia, China, India, Indonesia, Japan, and South Korea from 1995 to 2015.

| Indicator              | Year | Export of the poor group | Export of the rich group | Net export ratio of the poor group | variation |  |
|------------------------|------|--------------------------|--------------------------|------------------------------------|-----------|--|
| water (Mar2)           | 1995 | 2.32E+04                 | 1.74E+03                 | 86%                                | 10/       |  |
| water (Mm3)            | 2015 | 2.16E+04                 | 1.47E+03                 | 87%                                | 1 %       |  |
| oporgy (TI)            | 1995 | 4.29E+06                 | 3.42E+06                 | 11%                                | 50/       |  |
| energy (IJ)            | 2015 | 8.53E+06                 | 6.13E+06                 | 16%                                | J %       |  |
| GHG (Ton)              | 1995 | 2.91E+11                 | 1.35E+11                 | 37%                                | 204       |  |
|                        | 2015 | 4.64E+11                 | 2.07E+11                 | 38%                                | 2%        |  |
| PM <sub>2.5</sub> (kg) | 1995 | 1.48E+08                 | 5.71E+07                 | 44%                                | 200/      |  |
|                        | 2015 | 3.91E+08                 | 5.81E+07                 | 74%                                | 30%       |  |
| employment             | 1995 | 5.13E+04                 | 3.60E+03                 | 87%                                | 10/       |  |
| (1000 people)          | 2015 | 6.09E+04                 | 3.84E+03                 | 88%                                | 1%        |  |
| value-added            | 1995 | 1.16E+05                 | 1.90E+05                 | rich group's share:38%             | 21%       |  |
| (M Euro)               | 2015 | 3.28E+05                 | 2.32E+05                 | rich group's share:59%             | 21/0      |  |

Supplementary Table 3. The disparity between the rich and poor groups of the APAC region

Note: The rich group contains four high-income economies (Australia, Japan, South Korea, and Taiwan), while the less affluent economies, China, India, Indonesia and RoAP are classified into the poorer group. 'export of the rich group' equals the export from rich to poor; 'net export ratio' equals (export of the poor-export of the rich)/(exoprt of the poor + export of the rich).

### **Supplementary References**

- 1 World Bank, 2016. <u>https://microdata.worldbank.org/index.php/home</u>
- 2 Dinda, S. Environmental Kuznets curve hypothesis: a survey. *Ecological Economics* **49**, 431-455 (2004).
- 3 Grossman, G. M. & Krueger, A. B. Economic growth and the environment. *The Quarterly Journal of Economics* **110**, 353-377 (1995).
- 4 Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: A global, trade-linked analysis. *Environmental Science & Technology* **43**, 6414-6420 (2009).
- 5 Alsamawi, A., Murray, J. & Lenzen, M. The employment footprints of nations: Uncovering master-servant relationships. *Journal of Industrial Ecology* **18**, 59-70 (2014).
- 6 Arto, I. & Dietzenbacher, E. Drivers of the growth in global greenhouse gas emissions. *Environmental Science & Technology* **48**, 5388-5394 (2014).
- Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. *Economic Systems Research* 23, 371-385 (2011).
- 8 Hoekstra, R., Michel, B. & Suh, S. The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO2-emission growth. *Economic Systems Research* **28**, 151-167 (2016).
- 2 Lan, J., Malik, A., Lenzen, M., McBain, D. & Kanemoto, K. A structural decomposition analysis of global energy footprints. *Applied Energy* **163**, 436-451 (2016).
- 10 Lenzen, M. *et al.* International trade of scarce water. *Ecological Economics* **94**, 78-85 (2013).
- 11 Malik, A. & Lan, J. The role of outsourcing in driving global carbon emissions. *Economic Systems Research* **28**, 168-182 (2016).
- 12 Malik, A., Lan, J. & Lenzen, M. Trends in global greenhouse gas emissions from 1990 to 2010. *Environmental Science & Technology* **50**, 4722-4730 (2016).
- 13 Nansai, K. *et al.* Affluent countries inflict inequitable mortality and economic loss on Asia via PM2. 5 emissions. *Environment International* **134**, 105238 (2020).
- 14 Simas, M., Golsteijn, L., Huijbregts, M., Wood, R. & Hertwich, E. The "bad labor" footprint: Quantifying the social impacts of globalization. *Sustainability* **6**, 7514-7540 (2014).
- 15 Soligno, I., Malik, A. & Lenzen, M. Socioeconomic Drivers of Global Blue Water Use. *Water Resources Research* **55**, 5650-5664 (2019).
- 16 Xiao, Y., Murray, J. & Lenzen, M. International trade linked with disease burden from airborne particulate pollution. *Resources, Conservation and Recycling* **129**, 1-11 (2018).
- 17 Xu, Y. & Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. *Ecological Economics* **101**, 10-20 (2014).
- 18 Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. *Global Environmental Change* **23**, 1178-1186 (2013).
- 19 Zhang, Q. *et al.* Transboundary health impacts of transported global air pollution and international trade. *Nature* **543**, 705-709 (2017).
- 20 Acquaye, A. *et al.* Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water

footprints. Journal of Environmental Management 187, 571-585 (2017).

- 21 Plank, B., Eisenmenger, N., Schaffartzik, A. & Wiedenhofer, D. International trade drives global resource use: A structural decomposition analysis of raw material consumption from 1990–2010. *Environmental Science & Technology* **52**, 4190-4198 (2018).
- Alsamawi, A., Murray, J., Lenzen, M. & Reyes, R. C. Trade in occupational safety and health: Tracing the embodied human and economic harm in labour along the global supply chain. *Journal of Cleaner Production* 147, 187-196 (2017).
- 23 Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K. & Galli, A. Affluence drives the global displacement of land use. *Global Environmental Change* **23**, 433-438 (2013).