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SUMMARY
Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular
groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups
and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependy-
momas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo
impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favor-
able groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for
undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival
and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal
a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.
INTRODUCTION

Ependymomas (EPNs) are central nervous system (CNS) tumors

encompassing highly aggressive as well as more benign tumors
Significance

Despite extensively growing knowledge on the molecular biolo
aggressive subtypes. By applying single-cell RNA sequencing
ependymoma spanning undifferentiated and differentiated tu
only refines the concept of these established molecular group
capacity of aggressive ependymomas for late recurrence an
sented here also are prognostic within established high-risk
currently approved compounds. Consequently, the character
targets and biomarkers for clinical trials.
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(Pajtler et al., 2015). The discovery of ninemainmolecular groups

based on genome-wide DNA-methylation patterns has facili-

tated more precise diagnosis and risk stratification of EPN pa-

tients (Pajtler et al., 2015, 2017, 2018; Ramaswamy et al.,
gy of ependymoma, effective treatments are still lacking for
, we comprehensively identify the cellular hierarchy within

mor cell states across all major molecular groups. This not
s but also provides a biological context for the well-known
d treatment resistance. The transcriptomic signatures pre-
ependymoma groups and provide druggable targets for

ized cell states could serve as promising future therapeutic

ed by Elsevier Inc.
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2016; Cavalli et al., 2018). Posterior fossa (PF) group A (PF-A)

EPN, characterized by H3K27 hypomethylation, overexpression

of EZHIP, or infrequent H3K27M mutations (Panwalkar et al.,

2017; Hubner et al., 2019; Pajtler et al., 2018), and supratentorial

(ST) EPN with C11orf95-RELA-fusions (ST-RELA) have been

identified as the most aggressive molecular groups, occurring

predominantly in younger patients. In contrast, PF group B

(PF-B), ST-EPN with YAP1-fusions (ST-YAP1), and most spinal

EPNs exhibit a favorable prognosis (Pajtler et al., 2015; Parker

et al., 2014).

Cross-species genomic analyses have suggested deregu-

lated, regionally specific neural stem/radial glial cells in the

developing brain as putative EPN cells of origin (Johnson et al.,

2010; Mohankumar et al., 2015; Taylor et al., 2005). However,

developmental origins and candidate driver genes of EPN have

been largely informed by mouse models or bulk RNA-

sequencing (RNA-seq) analyses, or were conducted in limited

subsets of EPN groups (Vladoiu et al., 2019; Pajtler et al.,

2015; Taylor et al., 2005; Mohankumar et al., 2015). We therefore

hypothesized that we could unravel distinct intratumoral sub-

populations and resolve the cellular programs orchestrating

key proliferation, ‘‘stemness", and chemoresistance traits in

EPN by using integrative single-cell transcriptomics of patients’

primary and recurrent tumors.

RESULTS

scRNA-Seq Profiling of Fresh and Frozen Patient EPN
Tissue and Corresponding Tumor Models Identifies
Malignant and Non-malignant Cells
Weaimed at generating single-cell transcriptomic data fromEPN

tissue comprising all major molecular groups and anatomical lo-

cations. We analyzed 20 fresh surgical tumor specimens from 18

EPN patients, eight patient-derived cell models, and two patient-

derived xenograft (PDX) models by full-length transcriptome sin-

gle-cell RNA-seq (scRNA-seq; Smart-seq2 [Picelli, 2019]) (Fig-

ure 1A and Table S1). Four of the cell models were matched to

fresh patient tumors (Table S1). Additionally, snap-frozen EPN

tissues (n = 14) were included for single-nucleus RNA-seq

(snRNA-seq) analysis (Smart-seq2 and/or 10X Genomics [Habib

et al., 2016]) (Figure 1A and Table S1). We performed molecular

group analysis by DNA methylation on each sample (Figure 1A
and Table S1). In total, 74,927 single tumor cells/nuclei were

analyzed: 5,232 cells profiled by scRNA-seq passed quality con-

trol, with a median of 4,652 genes detected per cell. snRNA-seq

yielded an additional 2,137/67,420 nuclei (Smart-seq2/10X Ge-

nomics), with a median of 3,072/3,089 genes detected per nu-

cleus, respectively.

To classify cells as malignant or non-malignant, we inferred

genome-wide copy-number alterations (CNAs) from scRNA-

seq/snRNA-seq data (Tirosh et al., 2016) (Figure 1B) and

compared CNA profiles with those of non-malignant controls

(Tirosh et al., 2016; Filbin et al., 2018). Large-scale CNAs were

detected in the majority of samples (n = 24/28) and matched

those derived independently from DNA-methylation data.

CNAs included the hallmark chromosome (Chr) 1q gain (PF-A,

ST-RELA) and other typical EPN-CNAs including Chr6q deletion

(PF-A, PF-B, ST-Midline), monosomy of Chr22 (all groups), and

Chr5p gain (PF-A and PF-B) (Pajtler et al., 2015). Next, we clus-

tered cells across all samples according to their transcriptional

profiles (Figure 1C). Several cell clusters lacked CNA and

showed high expression levels of marker genes specific to

normal cell types, including microglia (n = 296, e.g., CD14,

FCER1G, CSF1R), T cells (n = 111, e.g., CD3E, CD4, CD8A),

oligodendrocyte precursor cells (OPCs) (n = 101, e.g., OLIG1,

APOD, PDGFRA), oligodendrocytes (n = 149, e.g., MBP, PLP1,

MOG), and endothelial cells (n = 153, IFITM1, CAV1, TM4SF1).

Those cells were considered non-malignant and excluded from

downstream analyses.

Thus, the two approaches concordantly segregated cells into

malignant and normal subsets, overall classifying 87.8% of cells

across all tumor samples as malignant by Smart-seq2.

Posterior Fossa EPN Is Composed of Multiple
Differentiated as well as Undifferentiated Tumor
Cell Types
To characterize posterior fossa EPN (PF-EPN), we used 14 PF

patient samples as primary cohort and used an additional four

samples (WEPN1/Dia, WEPN1/Rec, WEPN20/Dia, WEPN20/

Rec) for validation and investigation of tumor evolution at recur-

rence (Figure 1A). Two samples (BT1313 and BT1334) mostly

included immune cells and thus were excluded from non-nega-

tive matrix factorization (NMF) analysis. We identified recurrent

transcriptional programs by NMF and merged them into nine
Cancer Cell 38, 44–59, July 13, 2020 45
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Figure 1. Classification of Human EPN Single-Cell Transcriptomes

(A) Clinical and molecular details of the human EPN dataset of fresh/frozen patient samples (n = 28), patient-derived cell models (n = 8), and PDXs (n = 2). scRNA-

seq technologies applied per sample are indicated. Matched pairs (n = 5) are indicated by superscript symbols.

(B) Inference of copy-number alterations (CNAs) from scRNA-seq (top) and snRNA-seq (bottom) data on the basis of average relative expression of sliding

windows of 100 genes. Each row corresponds to a cell, ordered by tumor and clustered within each tumor by CNA patterns.

(C) t-Distributed stochastic neighbor embedding (tSNE) of all cells derived from scRNA-seq and snRNA-seq. Cells are colored according to presence of CNAs

and similarity to expression signatures of non-malignant cell populations (T cells, oligodendroglial precursor cells [OPC], oligodendrocytes, microglia, endo-

thelial cells).

See also Table S1.
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metaprograms (Figures 2A, S1A, and S1B; Tables S2 and S3).

Moreover, we applied graph-based clustering as an indepen-

dent approach. Both methods yielded highly congruent clus-

tering, corroborating final gene signatures that define cell sub-

populations (Figures S1C and S1D). We examined gene

signatures for known cell-type-specificmarker genes, integrated

them with human and mouse reference atlas datasets of devel-

opmental and adult brain cell types (La Manno et al., 2016; Now-

akowski et al., 2017; Zeisel et al., 2018), and functionally anno-

tated them using Gene Ontology (GO) term enrichment

(Raudvere et al., 2019) (Figure S1E and Table S4). Two metapro-

grams were strongly associated with cell-cycle genes and were

consequently termed PF-S-Phase (e.g., TYMS, PCNA,MCM2/4/

5/7) and PF-G2M-Phase (e.g., CDC20, CCNB1, PLK1) (Table

S4). We interpreted cells scoring highly for these metaprograms
46 Cancer Cell 38, 44–59, July 13, 2020
as populations of cycling cells, which almost exclusively

occurred in PF-A samples (Figure S1F). Two additional metapro-

grams closely resembled more mature cell types: PF-Ependy-

mal-like cells expressed ciliogenesis markers (e.g., DNAAF1,

DNAI2, RSPH1) and shared global transcriptional programs

with differentiated ependymal cell types in murine reference da-

tasets (Table S4). PF-Astroependymal signature contained ca-

nonical marker genes for astrocytes (e.g., AQP4, ALDOC,

S100B, GFAP) and strongly correlated with astrocytes in both

human and mouse reference atlases. Three additional metapro-

grams resembled immature stem-like cells and neuronal or glial

lineage precursors. The PF-Neural-Stem-Cell-like program (PF-

NSC-like) was associated with transcriptional activity and stem-

ness (e.g., FOS, LGR5, ZFP36, EGR1, JUN). This program de-

picts a broadly immature cell type that might be further refined



Figure 2. Intratumoral Heterogeneity in PF-EPN

(A) Relative expression (color bar) across 2,772 malignant cells (columns) of the top 30 genes (rows) for each PF metaprogram.

(B) tSNE plot of all fresh PF tumor cells, colored on the basis of assigned PF metaprogram.

(C) Relative frequency of eachmetaprogram per sample, shown for PF-A, PF-B, and PF-SE. MUV021 versusMUV038: PF-Ependymal-like cells (p = 2.93 10�112,

Fisher’s exact test); PF-NSC-like cells (p = 3.1 3 10�123, Fisher’s exact test).

(D) Scoring of FOXJ1 target gene (Stauber et al., 2017) expression across PF-EPN metaprograms.

(E) Average relative activity of PF-EPN subpopulation-specific TF regulons by SCENIC.

(F) RNA in situ hybridization of PF-NSC-like (ATF3) and PF-Ependymal-like (CD36) markers in formalin-fixed, paraffin-embedded (FFPE) tissue sections matched

to scRNA-seq samples. Arrows and asterisks indicate representative cells positive for ATF3 or CD36, respectively. The scale bars indicate 20 mm.

See also Figure S1 and Tables S2–S5.
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in the future as more normal cell atlases become available. PF-

Neuronal-Precursor-like cells were characterized by genes

involved in neuronal fate (STMN1/2/4, SOX4/11, ELAVL4,

L1CAM), while the PF-Glial-Progenitor-like program was linked
to early glial lineage determination (FABP5, BCAN). Two more

metaprograms were identified that reflected distinct cellular

metabolic/immune-reactive states and contained genes that

were strongly associated with glycolytic (PF-Metabolic, e.g.,
Cancer Cell 38, 44–59, July 13, 2020 47



Figure 3. Malignant Cell Differentiation Trajectories and Their Prognostic and Therapeutic Relevance in PF-EPN

(A) RNA velocity estimate of PF metaprograms. Each dot represents a cell. Cells are colored according to corresponding metaprograms. Arrows represent

velocity that estimates extrapolated future cell states.

(B and C) Overall survival (OS) stratification of PF (B) and PF-A (C) EPN according to high or low relative expressions of top 30 genes for PF-Ependymal-like

metaprogram in bulk mRNA expression data. Significance levels were determined by log-rank test.

(D and E) Overall survival (OS) stratification of PF (D) and PF-A (E) EPN tumors according to high or low relative expression of top 30 genes for PF-Neuronal-

Precursor-like metaprogram in bulk mRNA expression data. Significance levels were determined by log-rank test.

(F) Pie chart of candidate genes for therapeutic targeting, analyzed by integrating signature genes of PF-Neuronal-Precursor-likemetaprogramwith DGIdb. Gene

hits in the ‘‘Druggable genome’’ and ‘‘Clinically actionable’’ references are shown.

(G) Network maps of significantly enriched GO terms (p = 0.01, g:SCS Threshold) derived fromG-Profiler pathway enrichment analysis of DGIdb gene hits for PF-

Neuronal-Precursor-like and PF-NSC-like metaprograms.

(H) Pie chart of candidate genes for therapeutic targeting, analyzed by integrating signature genes of PF-NSC-like metaprogram with DGIdb. Gene hits in the

‘‘Druggable genome’’ and ‘‘Clinically actionable’’ references are shown.

(legend continued on next page)
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PGK1, GAPDH, PFKP) and immune-effector processes (PF-Im-

mune-Reactive, e.g., IFITM3, HLA-C, C4B). Within the PF-Meta-

bolic program, several enriched GO terms also indicated hypox-

ia response (Table S4).

To further validate the robustness of our metaprograms, we

generated small nuclear RNA-seq (snRNA-seq) data by an alter-

native scRNA-seq technology (10X Genomics) from three frozen

PF-A samples matching analyzed fresh samples and uncovered

similar gene programs (Figure S1G). Furthermore, metapro-

grams were also partially recapitulated in PF-A PDXs and

in vitro cell models. However, PDX models most closely resem-

bled primitive cell states identified from fresh patient tissue

(Figure S1H).

We next compared scRNA-seq profiles among all PF tumors

(Figures 2A and 2B). We found that the more aggressive molec-

ular group of PF-A tumors encompassed a high complexity of

metaprograms per tumor and was enriched for less differenti-

ated cell states (p < 0.001, Fisher’s exact test) (Figures 2C and

S1I). Interestingly, proliferating cells were restricted to the three

undifferentiated PF-NSC-like, PF-Neuronal-Precursor-like, and

PF-Glial-Progenitor-like subpopulations (Figure S1J). In

contrast, samples of the more benign molecular groups PF-B

and PF-subependymoma (PF-SE) were exclusively composed

of less proliferative, more differentiated cell populations ex-

pressing PF-Ependymal-like and PF-Astroependymal-like pro-

grams (Figures 2C, S1I, and S1J).

We next investigated potential transcription factors (TFs) regu-

lating these programs. We found FOXJ1 target genes (Stauber

et al., 2017) to be preferentially expressed in the PF-Ependy-

mal-like subpopulation of cells (p < 0.001, Wilcoxon’s rank-

sum test), which is as such not exclusive to PF-B but rather a

marker of ciliogenic programs (Mack et al., 2018), and ependy-

mal differentiation was also observed in a subset of PF-A tumors

(Figures 2C, 2D, and S1K).

In addition, we comprehensively inferred TF regulatory net-

works by single-cell regulatory network inference and clustering

(SCENIC) analysis (Aibar et al., 2017) (Table S5).More than half of

the highly active TF regulons identified in our dataset (shared and

subtype-specific) had also been described in a previous study

(Mack et al., 2018). In addition, SCENIC suggested additional

TF regulons within the PF-Ependymal-like metaprogram,

including RFX2 and TP73, both of which are implicated in cilio-

genesis (Figure 2E) (Nemajerova et al., 2016; Wildung et al.,

2019; Chung et al., 2014). TF signatures of PF-NSC-like cells

included JUN, FOS, and ATF3, all of which are also top signature

genes of this subpopulation (Figure 2E). Other TF regulons with

high activity in PF-NSC-like cells were SRF and JDP2, both of

which are implicated in repression of cell differentiation and plu-

ripotency induction (Figure 2E) (Wang et al., 2019a; Ikeda et al.,

2018). The PF-Neuronal-Precursor-like program also showed a

selective TF signature including NEUROG1/2 and ARID3A (Fig-

ure 2E), described to regulate neurogenesis (Han et al., 2018)

and promote oncogenic stemness (Dausinas et al., 2020). Lastly,

PF-Glial-Progenitor-like cells exhibited TF signatures including
(I) Log-transformed expression of LGR5 across PF-EPN metaprograms.

(J) Relative sphere area at 48 h and 72 h post transfection of the PF-EPN cell mo

siLGR5 KD is depicted relative to respective siScr controls.

***p < 0.001, two-tailed Student’s t test. Data are presented as mean ± SEM of t
OLIG2, compatible with early glial fate determination, supporting

the progenitor-like state of this metaprogram (Chen et al., 2012)

(Figure 2E).

We next aimed at confirming metaprogram expression in

intact tumor tissue by using RNA in situ hybridization (RNA-

ISH) in PF-A samples. In PF-A tumor slides, analysis of top signa-

ture genes demonstrated mutually exclusive expression of PF-

Ependymal-like (CD36) and PF-NSC-like (ATF3) markers, and

some extent of spatial clustering of cells expressing the corre-

sponding programs (Figure 2F). Validating scRNA-seq data on

our matched tumor pair, we also found an increase of cells ex-

pressing the PF-NSC-like signature and reduced expression of

the PF-Ependymal-like program in metastatic recurrent PF-A tu-

mor tissue MUV038 as compared with its matched preceding

local recurrence MUV021 by RNA-ISH (Figure 2F).

Taken together, scRNA-seq analysis of PF-EPN cells reveals

diverse tumor cell subpopulations driven by specific TF regulato-

ry circuits. Undifferentiated NSC-like and early neuronal-precur-

sor-like tumor cell types are enriched in aggressive PF-A tumors,

whereas more differentiated, ependymal-like cell types are pre-

dominantly observed in favorable prognostic group PF-B and

PF-SE tumors.

Malignant Differentiation Trajectories Have Prognostic
Impact and Can Be Therapeutically Targeted
We next sought to dissect potential cellular differentiation trajec-

tories of PF-EPN cancer cells by RNA velocity (La Manno et al.,

2018). Our PF scRNA-seq dataset revealed a cellular hierarchy

that was initiated in PF-NSC-like cells and followed three main

trajectories: The majority of cells differentiated along the astroe-

pendymal lineage toward an ependymal-like cell type (Figure 3A).

A second axis occurred toward glial progenitor-like cells, which

expressed genes characteristic for certain radial glial cells and

early glial lineage markers (Miller et al., 2019). A third but minor

cell population was composed of PF-Neuronal-Precursor-like

cells expressing genes of early neuronal fate. This putative

developmental trajectory was consistent across all PF tumors

(Figure S2A).

We next evaluated the prognostic impact of transcriptional

signatures in an extensive bulk RNA expression cohort of 131

PF-EPN cases annotated for survival. Segregation by high

versus low PF-Ependymal-like signature revealed that tumors

expressing high levels of this programwere either PF-B or a sub-

set of PF-Awith distinctly favorable clinical outcome (Figures 3B,

S2B, and S2C). In support of this finding, the PF-Ependymal-like

signature significantly stratified patient overall survival (OS) and

progression-free survival (PFS) across all PF tumors, but also

within PF-A patients alone (Figures 3C, S2D, and S2E). This

was supported by multivariate Cox regression analysis confirm-

ing the PF-Ependymal-like signature as an independent predic-

tor of both OS and PFS (Table S6). Moreover, PF-A cases with

low levels of the PF-Ependymal-like signature exhibited a 7.3-

fold increased risk of death (hazard ratio 7.3, p < 0.05, Table

S6). With respect to the PF-Neuronal-Precursor-like signature,
del VBT96 with siLGR5 or non-targeting siRNA (siScr). Sphere formation upon

riplicate values. See also Figures S2 and S3; Tables S6 and S7.
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PF-B tumors clustered exclusively to the ‘‘low’’ cohort, while PF-

A tumors again segregated into both ‘‘high’’ and ‘‘low’’ clusters

(Figure S2F). EPNs with high expression levels for this PF-

Neuronal-Precursor-like program conferred significantly worse

OS compared with tumors with a low score, even when including

only PF-A patients (Figures 3D, 3E, S2F, and S2G). Conversely,

all remaining programs, despite clustering patient cohorts into

‘‘high’’ and ‘‘low’’ expressing populations, did not correlate

with patient outcome (data not shown).

In addition, we found a positive correlation between ependy-

mal differentiation and higher age of EPN patients (Figure S3A),

while an inverse correlation was evident between PF-Neuronal-

Precursor-specific/PF-NSC-specific markers and age (Figures

S3B and S3C).

We further tested whether tumor samples with 1q-gain, a well-

described predictor of poor outcome (Gojo et al., 2017; Pajtler

et al., 2017), are enriched for undifferentiated programs. While

we observed a trend toward lower numbers of differentiated

PF-Astroependymal-like cells and increased amounts of stem-

like PF-Glial-Progenitor-like cells in 1q-gained samples, the po-

wer of this analysis was limited due to small sample size (n = 7)

and high interpatient heterogeneity (Figure S3D).

As tumor recurrence represents the major clinical problem in

EPN management, we also investigated three matched PF-A

pairs (one tumor pair in the discovery cohort, two additional tu-

mor pairs in the validation cohort) of diagnostic/early-recurrence

versus late-recurrence samples. We observed a shift from pre-

dominantly differentiated PF-Ependymal-like and PF-Astroe-

pendymal cells at diagnosis to undifferentiated PF-NSC-like,

PF-Glial-Progenitor-like, and proliferating cells at recurrence

(Figure S3E).

To inform improved future therapeutic approaches, we inves-

tigated potentially targetable pathways and biomarkers specific

to the identified expression signatures. We integrated cell-popu-

lation-specific genes with the Drug Gene Interaction database

(DGIdb) (Cotto et al., 2018), prioritizing for target genes for which

pharmacological intervention might be available. For the PF-

Neuronal-Precursor-like subpopulation, these analyses indi-

cated druggable vulnerabilities including the epigenetic regula-

tors HDAC2, DNMT3A, and BRD3, signaling-associated genes

PIK3R3, MAP4K4, and MAPK6, microtubule-associated genes

TUBA1A, TUBB, TUBB2A, TUBB2B, and TUBB3, and activin re-

ceptor genes ACVR2A and ACVR2B (Figure 3F and Table S7).

PF-Neuronal-Precursor-like cells also expressed ABCC5, a

poorly described ABC transporter expressed at the blood-brain

barrier with the ability to export several anticancer agents (As-

saraf, 2006). Functional network maps of significantly enriched

GO terms derived from DGIdb hits of the PF-Neuronal-Precur-

sor-like program showed enrichment of kinase activity-related

mechanisms as well as L1CAM-orchestrated signaling impli-

cated in neuronal development (Figure 3G and Table S7). As a

first proof of principle for functional validation, we inhibited

HDAC2 by panobinostat in two PF-A cell models expressing

this gene (Figure S3F). Indeed, we observed a significant reduc-

tion of cell viability (Figure S3G) as well as inhibition of secondary

sphere formation (Figure S3H).

Hits for the PF-NSC-like program included Wnt-signaling

regulator LGR5 and the anti-apoptotic gene MCL1, as well as

the cancer stemness-associated genes as potential druggable
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vulnerabilities (Xu et al., 2019) (Figure 3H and Table S7). Func-

tional network maps of the PF-NSC-like subpopulation sup-

ported these findings and equally showed enrichment for path-

ways converging on LGR5 signaling, FOS/FOSB/JUN/JUNB-

mediated transcription factor activity, and MCL1-dependent

antiapoptotic mechanisms, as well as cell-cycle regulation, likely

reflecting a high proportion of actively proliferating cells within

this subpopulation (Figure 3G and Table S7). Indeed, LGR5

was significantly upregulated in PF-NSC-like cells (Figure 3I),

and small interfering RNA (siRNA)-mediated LGR5 knockdown

(KD) experiments significantly inhibited sphere formation in the

LGR5-expressing patient-derived PF-A model, VBT96 (Figures

3J and S3I).

We conclude that single-cell hierarchies in PF-EPN reflect

physiologically stalled differentiation trajectories, with cells

ranging from NSC-like tumor cell populations to neuronal pro-

genitor-like, immature glial-like, andmore differentiated ependy-

mal-like lineages. These transcriptional states serve as robust

risk prognosticators beyond established molecular groups and

suggest the first subpopulation-specific, targetable molecular

tumor dependencies for future therapeutic strategies.

ST-EPN Is Composed of Multiple, Molecular Group-
Specific Cancer Cell Types
We analyzed eight ST-EPN samples, covering ST-RELA (n = 5),

ST-YAP1 (n = 1), and two subsequent recurrent surgical samples

of a patient with ST-EPN (BT1030, CPDM0785) classified as PF-

A by methylation profiling despite clear supratentorial midline

location of the primary tumor (see Fukuoka et al., 2018) (Fig-

ure 1A). Thus, we decided to refer to these samples as ST

midline. Overall, we detected ten metaprograms across all pa-

tients defined by NMF and graph-based clustering (Figures

4A–4C, S4A, and S4D; Tables S2–S4). Two metaprograms

were again strongly associated with cell-cycle genes and were

consequently termed ST-S-Phase (e.g., KIAA0101, MCM2-7,

PCNA) and ST-G2M-Phase (NUSAP1, CDC20, CDK1) (Table

S4). Those cycling cells occurred almost exclusively in ST-

RELA tumors (Figure S4E). Importantly, a more differentiated

metaprogram, ST-Ependymal-like, was characterized by cilio-

genesis markers (e.g., SPAG6, LRRC48, DNAAF1), closely

resembling mature ependymal cells in reference datasets and

exhibiting strong transcriptional overlap with PF-Ependymal-

like cells (Table S4). Interestingly, the matched ST-Midline pair

exhibited a decrease of this differentiated subpopulation in the

later (CPDM0785) as compared with the earlier (BT1030) recur-

rence (Figure 4C, p = 4.4 3 10�28, Fisher’s exact test). ST-

RELA, but not ST-YAP1 tumor cells additionally expressed two

metaprograms that resembled undifferentiated progenitor cells.

One of the undifferentiated programs present in ST-RELA

strongly mapped to radial glial cells in both human and murine

reference atlases and was thus termed ST-Radial-Glia-like (Fig-

ure S4F). This metaprogram exhibited only limited overlap with

PF-NSC-like cells found in PF-EPNs (Tables S2–S4). A second

undifferentiated program in ST-EPN, ST-Neuronal-Precursor-

like, was characterized by genes implicated in early neuronal

fate determination (STMN2/4, ELAVL4, NEUROD1). Two more

programs were shared among ST-RELA tumors but not in ST-

YAP1 tumors, and were characterized by genes implicated

in interferon signaling (ST-Interferon-Response, e.g., ISG15,



Figure 4. Malignant Transcriptional Programs in ST-EPN

(A) Relative expression (color bar) across 1,296 malignant cells (columns) of the top 30 genes (rows) for each metaprogram.

(B) tSNE plot of all fresh ST tumor cells, colored on the basis of assigned ST metaprogram.

(C) Relative frequency of each metaprogram per sample, shown for ST-RELA, ST-Midline, and ST-YAP1 tumors.

(D) Average relative activity of ST-EPN subpopulation-specific TF regulons by SCENIC.

See also Figures S4 and S5; Tables S2–S5.
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IFI6/27/30, IFIT1/3) or strongly associated with glycolysis as well

as hypoxia (ST-Metabolic, e.g., LDHA, ENO2,PGK1) (Tables S2–

S4). Another program was exclusively found in one ST-RELA tu-

mor, MUV043, and was associated with connective tissue devel-

opment and extracellular matrix organization (e.g., DLK1, PCP4,

ACPT) (ST-RELA-variable, Figure 4C). ST-midline and ST-YAP1

tumors equally expressed specific and mutually exclusive meta-

programs, which were termed ST-Midline and ST-YAP1, respec-

tively. Analogous to PF tumors, additional snRNA-seq of

matched patient tissue by 10X Genomics partially recapitulated

expression signatures identified in fresh patient tissue by

scSmart-seq2 (Figure S4G). Moreover, metaprograms derived

from ST-RELA PDX and neurospheroid cell models more closely

resembled transcriptional programs found in patients compared

with adherent ST-RELA cell cultures (Figure S4H).

To identify potential downstream targets of C11orf95-RELA

fusion gene products, we first scored a combination of ‘‘wild-
type RelA’’ and ‘‘C11orf95-RelA fusion’’ target genes (Parker

et al., 2014; Ozawa et al., 2018) in all supratentorial EPN

subpopulations. These genes were expressed across all

ST-RELA subpopulations and only showed moderate enrich-

ment in ST-Metabolic, ST-Interferon-Response, and ST-

RELA-Variable programs (Figure S5A). Scoring genes

exclusively activated by the C11orf95-RELA fusion, but not

wild-type RELA (Parker et al., 2014), showed a similar expres-

sion pattern (Figure S5B).

As a second, independent approach, we performed SCENIC

analysis—informed by a more extensive RelA target gene list—

to test TF activities across subpopulations. This indicated high

RELA TF activity in all seven programs expressed in ST-RELA

tumors (Figure S5C), whereas in YAP1- and the ST-Midline-

specific programs the activation of RELA signaling was expect-

edly low. In addition, SCENIC analysis suggested distinct

TF signatures for ST-Ependymal-like, ST-Midline, ST-YAP1,
Cancer Cell 38, 44–59, July 13, 2020 51
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ST-RELA-Variable, and ST-Neuronal-Precursor-like subpopula-

tions (Figure 4D and Table S5), the latter one sharing NEUROG1

with PF-Neuronal-Precursor-like cells. In contrast, ST-Ependy-

mal-like cells were characterized by a TF network (RFX8, SRY,

CAT, PAX8, GATA1) that differed from that encountered in

the PF-Ependymal-like counterpart (Figure 2E), potentially re-

flecting regional specificity of TF activity. Together, these data

suggest an overarching role of RELA target gene expression

across all subpopulations in ST-RELA but indicate that transcrip-

tional diversification resulting in multiple cellular states is inde-

pendent of C11orf95-RELA activity.

Taken together, scRNA-seq of ST-EPN demonstrated that ST-

RELA tumors are characterized by highly proliferating, undiffer-

entiated radial glia-like or neuronal-precursor-like cell types

with only limited differentiation programs compared with PF-

EPN (Figures 4C and S5D). ST-Midline and ST-YAP1 EPN

groups exhibited even lower transcriptional complexity and

harbored considerably smaller fractions of undifferentiated

and proliferating cells, likely reflecting the milder disease course

of these molecular ST-EPN groups.

ST-EPNMetaprograms Predict Patient Survival and Can
Be Therapeutically Targeted
We again applied RNA velocity to estimate a putative differenti-

ation trajectory within ST-RELA tumors, which exhibited the

highest intra- and intertumor heterogeneity among ST-EPN

groups. As described above (Figures 4C and S5D), most cells

within ST-RELA tumors reflect poorly differentiated progenitor-

like cells, including radial glia-like and neuronal-precursor-like

cells, while only a minority of cells expressed differentiated

programs (e.g., ST-Ependymal-like). Consequently, RNA veloc-

ity did not support a clear developmental hierarchy within the

undifferentiated populations (ST-Radial-Glia-like, ST-Neuronal-

Precursor-like) (data not shown).

We next investigated the implications of ST-EPN metapro-

grams with respect to risk stratification by clustering a large

bulk RNA-seq patient cohort (n = 30) into high- and low-express-

ing groups. Even though the differentiated ST-Ependymal-like

signature was only present in a minority of our ST-EPN scRNA-

seq cohort, we found that several tumors in the bulk expression

dataset scored highly for this transcriptional program. Analo-

gous to PF-EPN, segregation according to high versus low ST-

Ependymal-like signatures demonstrated that tumors highly ex-

pressing this program exhibited a significantly favorable prog-

nosis compared with low-expressing tumors (Figures 5A and

S6A). We also confirmed this in ST-RELA tumors separately (Fig-

ures 5B and S6B).

To identify potentially druggable vulnerabilities in ST-RELA,

we next interrogated DGIdb with signature-specific genes and

found CCND2, HDAC2, and EFNA5 (ST-Neuronal-Precursor-

like, Figure 5C and Table S7), FGFR3, IGF2, and WNT7B (ST-

Radial-Glia-like, Figure 5D), and RPS6KB2 and EGFL7 as poten-

tially druggable targets (ST-RELA-variable, Figure 5E) (Hong

et al., 2018). Mapping of DGIdb hits in functional networks

demonstrated that ST-Radial-Glia-like cells were associated

with kinase activity-related processes, whereas ST-Neuronal-

Precursor-like genes were strongly implicated in signaling cir-

cuitries regulating axon guidance mechanisms (Figure 5F and

Table S7). The ST-RELA-variable program was characterized
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by mechanisms involving the major multidrug efflux transporter

gene ABCB1 (Figure 5F and Table S7).

As first-proof-of-principle functional validation experiments,

we found that transient, siRNA-mediated KD of the ST-Radial-

Glia-like program marker FGFR3 (Figure 5G) led to significantly

impaired sphere-formation capacity of FGFR3-expressing

VBT242 cells (Figures 5H and S6C). Treatment with the FGFR in-

hibitor dovitinib effectively inhibited cell viability in VBT242 cells

(Figure S6D). Likewise, ceritinib, a clinically approved ALK inhib-

itor that also inhibits the IGF2/IGF1R axis, another marker for ST-

Radial-Glia-like cells (Figure S6E), was effective in reducing cell

viability in thismodel (Figure S6F). Furthermore, simultaneous tar-

geting of the ST-Neuronal-Precursor-like and ST-Radial-Glia-like

programs (Figure S6E) with palbociclib (targeting the CDK4/6-

CCND2 module) and ceritinib (targeting the IGF2/IGF1R axis),

respectively, resulted in significantly reduced viability of

VBT242 cells (Figure 5I) despite the fact that palbociclib as a sin-

gle agent exerts predominantly cytostatic effects (Figure S6G).

Collectively, our data imply that the limited transition of undif-

ferentiated ST-RELA radial-glia-like tumor cells into more differ-

entiated, proliferatively inactive cell types might underlie the

aggressiveness of this EPN group. Moreover, certain delineated

transcriptomic signatures are of prognostic value and even

define molecular vulnerabilities which appear feasible for clinical

translation after first preclinical tests.

Myxopapillary EPN Is Composed of Ependymal-like
Cells and Undifferentiated Cells Resembling the PF-
NSC-like Subpopulation
Following analysis of intracranial EPN, we analyzed spinal myx-

opapillary EPN (SP-MPE) samples by scRNA-seq and detected

four shared subpopulations of tumor cells (Figures 1A, 6A, 6B,

S7A, and S7B; Table S2). SP-Ependymal-like cells mapped to

differentiated ependymal cell types in reference datasets and

closely resembled the PF-Ependymal-like as well as ST-Ependy-

mal-like programs. Interestingly, the undifferentiated SP-Pro-

genitor-like population shared many marker genes with PF-

NSC-like cells, suggesting a similar cell of origin for these tu-

mors. A third metaprogram, termed SP-Immune-Reactive, was

characterized by genes implicated in immunological processes

(e.g., HLA-DRA/DPA1/DRB1/DMA, CD74, CD14, B2M) and did

not confidently map to any developmental or adult brain cell

type. While most cells of SP-MPE tumor BT1678 expressed

this SP-Immune-Reactive program, SP-MPE tumor MUV068 ex-

hibited higher metaprogram diversity and expressed the undif-

ferentiated SP-Progenitor-like as well as the rather differentiated

SP-Ependymal-like signatures and a third signature that was not

found in BT1678, termed SP-variable (Figures 6C and S7A).

We furthermore identified high expression of the previously

described transcription factor HOXB13 (Barton et al., 2010) to

be exclusive for SP-MPE (Figure 6D) and independent of age

(Figure 6E). We next performed RNA-ISH in SP-MPE tissue sec-

tions of MUV068 and confirmed expression of this marker in all

cancer cells, while only a small subpopulation of cells also

stained positive for the SP-Progenitor-like marker JUNB in an

interspersed manner (Figure 6F). Of note, spatial analysis of

HOXB13 expression in the developing mouse embryo showed

that expression is limited to the most caudal parts of the spinal

cord, the predominant locations for SP-MPE (Figure 6G).



Figure 5. Survival Implications and Potential Vulnerabilities of ST-EPN Subpopulations

(A and B) Overall survival (OS) stratification of ST (A) and ST-RELA (B) EPN tumors according to high or low relative expressions of top 30 genes for the ST-

Ependymal-like metaprogram in bulk RNA expression data. Significance levels were determined by log-rank test.

(C–E) Pie charts of candidate genes for therapeutic targeting, analyzed by integrating significantly differentially expressed genes of ST-Neuronal-Precursor-like

(C), ST-Radial-Glia-like (D), and ST-RELA-variable (E) metaprograms with DGIdb. Gene hits in the ‘‘Druggable genome’’ and ‘‘Clinically actionable’’ references

are shown.

(F) Network maps of significantly enriched GO terms (p = 0.01, g:SCS Threshold) derived from G-Profiler pathway enrichment analysis of DGIdb gene hits in ST-

Neuronal-Precursor-like, ST-Radial-Glia-like, and ST-RELA-variable metaprograms.

(G) Log-transformed expression of FGFR3 across ST-EPN metaprograms.

(H) Relative sphere area at 48 h and 72 h post transfection of the ST-EPN cell model VBT242 with siFGFR3 or non-targeting siRNA (siScr). Sphere formation upon

siFGFR3 KD is depicted relative to respective siScr controls. *p < 0.05, two-tailed Student’s t test. Data are presented as mean ± SEM of triplicate values.

(I) Viability of VBT242 cells upon 72-h combinatorial treatment with indicated concentrations ceritinib and palbociclib was determined by CellTiter-Glo assay.

***p < 0.001, two-way ANOVA, Tukey’s multiple comparisons test. Data are presented as mean ± SD of triplicate values. See also Figure S6 and Table S7.
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We conclude that SP-MPE aberrantly recapitulates develop-

mental processes spatially restricted to the caudal spinal region,

and that patients share common transcriptional programs irre-

spective of patient age.

Comparison of Metaprograms Reveals EPN-Specific as
well as Pan-Glioma Shared Signatures
We next assessed similarities and differences of transcriptional

programs across all EPN groups. We scored tumor-group-
specific metaprograms (n = 23) in all 4,401 malignant cells

from our fresh Smart-seq2 dataset, irrespective of molecular

group. Pairwise correlation of metaprogram expression scores

revealed five clusters of metaprograms that were highly corre-

lated and therefore similar across all EPN groups (Figure 7A):

Cell-cycle-related programs (S and G2M phase) showed high

similarity (average r = 0.98) between PF and ST samples. Like-

wise, the Ependymal-like programs identified in ST, PF,

and SP tumors exhibited high pairwise correlation (average
Cancer Cell 38, 44–59, July 13, 2020 53



Figure 6. Intratumoral Heterogeneity in SP-MPE

(A) Relative expression (color bar) across 333 malignant cells (columns) of the top 30 genes (row) for each SP metaprogram.

(B) tSNE plot of all MPE tumor cells, colored on the basis of assigned metaprogram.

(C) Relative frequency of each metaprogram per MPE sample.

(D) Log expression of HOXB13 RNA across all molecular EPN groups in bulk tumor cohort.

(E) Correlation of relative HOXB13 expression with SP-MPE patient age. Best-fit regression lines and 90% confidence bands are shown. Significance level was

determined by linear regression.

(F) RNA in situ hybridization of pan-MPE (HOXB13) and SP-Progenitor-like (JUNB) gene markers in FFPE tissue matched to scRNA-seq samples. Arrows and

asterisks indicate representative cells positive for HOXB13, and JUNB, respectively.

(G) Expression of Hoxb13 in the developing mouse embryo (embryonic day 13.5 [E13.5]). In situ hybridization data were obtained from the Allen Developing

Mouse Brain Atlas (Copyright Allen Institute for Brain Science, http://developingmouse.brain-map.org).

See also Figure S7.
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r = 0.92), indicating almost identical ependymal-like cell differ-

entiation programs in all anatomical locations. Within undiffer-

entiated cell populations, similar progenitor-like populations

were identified in both PF- and SP-EPN (r = 0.92), but were

different from stem-cell-like populations in ST-RELA or ST-

YAP tumors. Importantly, the two neuronal-precursor-like pop-

ulations found in PF-A and ST-RELA samples were highly

correlated (r = 0.89), indicating related neuronal-like tumor

cell trajectories in the two less favorable EPN groups. The
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metabolic populations in PF-A and ST-RELA were also highly

correlated (r = 0.72), suggesting a shared subpopulation active

in glycolysis and hypoxia-associated processes (LDHA, PGK1,

HK2, PGAM1). In summary, our findings highlight that imma-

ture cancer cell types found in PF-EPN and ST-EPN exhibit

very limited transcriptional overlap, pointing to a spatiotempo-

rally-specific EPN stem cell niche despite their potential to

give rise to very similar differentiated ependymal-like can-

cer cells.

http://developingmouse.brain-map.org


Figure 7. Intercorrelation of Metaprograms within EPN and across Other Glioma Types

(A) Pairwise correlation of expression score of EPN metaprograms defined in each compartment and applied across cells from all compartments.

(B) Pairwise correlation of expression score of metaprograms defined in EPN, DIPG, and GBM, and applied to cells from EPN.

(C) Malignant cells (dots) from EPN and GBM scored for the EPN-Neuronal-Precursor-like (x axis) versus GBM-NPC2 (y axis) programs. Correlation coefficients,

given as r values, are shown in the bottom right quadrants.

(D) Aggregated log2-transformed gene expression in EPN-Neuronal-Precursor-like/GBM-NPC2 cells from each tumor class (rows) for metaprogram genes from

either tumor (columns), with genes ordered into those common to EPN and GBM, or specific to either tumor type.

(E) Analysis as in (C) for the EPN-Metabolic-like (x axis) versus GBM-MES2(y axis) programs.

(F) Analysis as in (D) in EPN-Metabolic/GBM-MES2 cells.

(G) Analysis as in (C) for the PF-NSC-like (x axis) versus GBM-NPC1 (y axis) programs.

(H) Analysis as in (D) in PF-NSC-like/GBM-NPC1 cells.

(I) Analysis as in (C) for the PF-NSC-like (x axis) versus GBM-NPC2 (y axis) programs.

(J) Analysis as in (D) in PF-NSC-like/GBM-NPC2 cells.

See also Figure S7.
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As previous reports described a putative role of candidate

EPN oncogenes in the generation of high-grade glioma-like tu-

mors in murine models (Mohankumar et al., 2015; Johnson

et al., 2010; Taylor et al., 2005), we next aimed at comparing

developmental hierarchies of EPNwith other high-grade gliomas

using our primary, human tumor-derived scRNA-seq dataset.

We first correlated all EPN metaprograms with other high-grade

glioma metaprograms previously described in diffuse intrinsic

pontine glioma (DIPG) and glioblastoma (GBM) (Filbin et al.,

2018; Neftel et al., 2019) (Figures 7B, S7C, and S7D). Similarly,

we scored these programs in our fresh Smart-seq2 dataset

and analyzed pairwise correlation of metaprograms from

different tumor types (Figure 7B). Interestingly, we found that

the Neuronal-Precursor-like programs in EPN exhibited high

similarity to the neural-precursor-like cell (NPC) programs

described in GBM, suggesting similarly aberrant neuronal line-

age gene expression in both of these tumor types (Figures 7C

and 7D). In addition, the two metabolic programs in PF-EPN

and ST-EPN strongly correlated with the Mes-2 program

described in GBM (Figures 7E and 7F), indicating hypoxia-

related response as a shared feature of both tumor types. On

the contrary, the very immature PF-NSC-like signature found in

PF-EPN showed very small overlap with neither NPC1 (Figures

7G and 7H) nor NPC2 (Figures 7I and 7J) programs in GBM,

nor any program in DIPG, likely pointing toward different cells

of origin. Furthermore, ependymal-like programs found in EPN

did not resemble any mature program encountered in GBM,

highlighting this program as a unique transcriptional EPN

feature. In contrast, the intermediate PF-Astroependymal-like

program found in EPN was highly correlated with the two astro-

cyte-like programs from both DIPG and GBM, indicating a com-

mon astrocytic lineage implicated in these programs.

Collectively, these data demonstrate partially shared tran-

scriptional programs when comparing EPN signatures across

all molecular groups as well as with other high-grade gliomas,

but also indicate putatively different cells of origin and/or distinct

spatiotemporal time points during human CNS development

leading to these different classes of high-grade gliomas.

DISCUSSION

Our comprehensive single-cell analyses across all major mo-

lecular EPN groups, anatomical locations, and age groups

demonstrate that EPNs are composed of cellular subpopula-

tions that transcriptionally resemble normal brain cell develop-

ment. We show that these tumor cell types are stalled in

diverse differentiation states, and discover a trajectory origi-

nating from undifferentiated NSC-like or radial glia-like sub-

populations toward three lineages of impaired neuronal-glial

fate specification. Thus, our study supports the previously

described role of aberrant radial glia-like cells as potential

cells of origin for EPN (Johnson et al., 2010; Taylor et al.,

2005) and reveals an additional layer of cell fates arising

from these stem-like populations directly in human EPN

samples. We describe three differentiation trajectories,

including ependymal-like, glial-progenitor-like, and neuronal-

precursor-like cells. Of these, the ependymal-like programs

represent the most differentiated of all tumor cells and are

predominantly found in prognostically favorable molecular
56 Cancer Cell 38, 44–59, July 13, 2020
groups. The transcriptomic program underlying this differenti-

ation axis is characterized by TF networks (including FOXJ1)

underlying a strong ciliogenesis signature, in keeping with

previous work demonstrating high ciliogenic marker expres-

sion in ST-YAP1 and PF-B (Mack et al., 2018). In contrast,

prognostically poor tumors harbor more undifferentiated cell

populations.

Previous preclinical genome-wide analyses of human tu-

mors and animal models had already pinpointed the impor-

tance of stemness features in the biology of EPN (Johnson

et al., 2010; Ozawa et al., 2018; Taylor et al., 2005; Mack

et al., 2018). We here describe the presence of an NSC-like

cell at the root of PF-EPN and a radial-glia-like cell at the

root of ST-RELA EPN. Our signatures partially overlap with

programs identified in genetic mouse models of EPN (Mohan-

kumar et al., 2015), thereby validating their findings in human

tumors. Moreover, our analyses indicate a trend toward

enrichment of undifferentiated programs and loss of more

differentiated programs in recurrent tumors, potentially re-

flecting a selection process toward a more malignant tran-

scriptomic profile upon tumor progression. It is also worth

noting that we identify undifferentiated NSC-like programs in

SP-MPEs, which—despite low tumor grade and a generally

good prognosis—are well known for their potency of leptome-

ningeal metastasis (Rezai et al., 1996) in younger patients.

This is surprising, but is in line with previously observed

partially shared expression patterns between spinal, PF, and

ST NSC, as well as NSC-derived EPN mouse models (John-

son et al., 2010; Taylor et al., 2005).

Similar to other stem-like tumor cell populations, neuronal-

precursor-like cells are only identified in biologically aggres-

sive EPN groups. In line with these findings, we have previ-

ously described induction of aberrant neuronal development

processes by expression of the PF-A hallmark gene CXorf67

(EZHIP) (Hubner et al., 2019). This neuronal-precursor-like

program also exhibits a clear similarity to previously identified

NPC programs in pediatric and adult glioblastoma (Neftel

et al., 2019). This indicates that aggressive EPNs share

transcriptionally similar cellular subpopulations with GBM,

and validates previous reports that described candidate

EPN oncogenes generating GBM-like tumors in mouse

models (Mohankumar et al., 2015). However, despite the

presence of similar subpopulations, the putative cell (or tran-

scriptional state) of origin in EPN seems to be different from

that in GBM.

Of note, our RNA velocity analysis suggests a unidirectional

differentiation pattern within EPN, which parallels reports of simi-

larly unidirectional hierarchies in adult GBM (Wang et al., 2019b;

Fine, 2019). Further functional studies will need to determine

whether EPN hierarchies truly represent unidirectional differenti-

ation trajectories following aberrant NSC/radial glia-like develop-

ment or still allow for some plastic interconversion between

cellular states (Fine, 2019).

Our analysis also detects cell populations that validate prior

findings describing metabolic processes linked to glycolysis

and hypoxia, as well as immune regulatory mechanisms being

prominent transcriptional programs in EPN (Preusser et al.,

2005; Mack et al., 2015; Mohankumar et al., 2015). Whether

these signatures reflect aberrant developmental processes
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stalled in EPN stem-like cells or rather represent dynamic meta-

bolic/phenotypic changes in relation to the immune and non-im-

mune tumor microenvironment will be investigated in future

studies enriched for higher numbers of tumor-associated stro-

mal cells.

Notably, analysis of an EPN bulk RNA-seq expression refer-

ence dataset reveals a profound effect of differentiation states

on patient survival. We show that the observed biological and

clinical differences in EPN may be caused by the presence of

diverse differentiation states within tumors. Interestingly, our

finding that the relative abundance of stem cell signatures pre-

dicts the clinical course of EPN rather than the abundance of

cell-cycle activation also provides a possible explanation for

the widely accepted fact that a higher tumor grade is not a reli-

able prognostic factor for intracranial EPN (Ellison et al., 2011).

We therefore also reasoned that improved therapeutic strate-

gies for aggressive EPN groups should include inhibition of

signaling circuitries maintaining these undifferentiated cell states.

Our preliminary results of reducing stemness and cell viability by

targeting more aggressive tumor cell subpopulations in EPN

models show that this treatment strategy is promising, while

recognizing that these efforts have to be expanded in the future.

Taken together, our study provides insights into the landscape

of intratumoral heterogeneity and cellular hierarchies underlying

EPN biology across all major molecular groups. Our data sub-

stantiate the radial glia/NSC EPN stem cell paradigm by

providing whole transcriptome-scale insights into aberrant neu-

rodevelopmental pathways driving EPNs in humans. Deconvolu-

tion of heterogeneous EPN subpopulations pinpoints key malig-

nant transcriptomic signatures, which identify high-risk tumors

and subsequently inform the development of more effective

anti-EPN treatments.
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mariella

G. Filbin (mariella.filbin@childrens.harvard.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The accession number for the data reported in this paper is GEO: GSE141460.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects and Ethical Considerations
Patients with EPN and/or their legal representatives treated at Boston Children’s Hospital and at the Medical University of Vienna

gave preoperative informed consent to participate in the study in all cases. The study was approved by the local Institutional Review

Board (IRB) DFCI 10-417 (Boston Children’s Hospital and Dana-Farber Cancer Institute) and EK Nr. 1244/2016 (Medical University of

Vienna). Clinical characteristics are summarized in Table S1.

Primary Cell Cultures
Patient-derived primary cultures used in this study included the ST- RELA models VBT211 (corresponding to MUV43), VBT242 (cor-

responding to MUV56), EP1NS, and BT165, as well as the PF-A models VBT96 (corresponding to MUV51), EPD210FH, and BT214.

All cell models except for EPD210FHwere established from fresh patient tumor specimen. EPD210FH cells were obtained fromBrain

Tumor Resource Lab (www.btrl.org/). For patient characteristics of primary tumors for derivation of cell models, please see Table S1.

All cells were checked for Mycoplasma contamination on a regular basis in-house (Mycoplasma Stain kit, Sigma) and by a third-party

service provider (GATC Biotech). Adherent cultures (VBT211-adh, VBT242-adh, VBT96-adh) were grown in RPMI-1640 medium

(Sigma, R6504) supplemented with 10% fetal calf serum (FCS, Biowest) and 1% Penicillin/Streptomycin (GEHealthcare,

SV30010) in tissue culture-treated flasks. Spheroid cultures (VBT211-sph, VBT242-sph) were grown in ultra-low attachment flasks

(Corning, COR3815) in Neurobasal Medium (GIBCO, 21103-049) supplemented with 1X N2/B27 (GIBCO, 17502-048/17504-044),

1% Penicillin/Streptomycin, 2mM L-glutamine (Sigma, G8540), 20 ng/ml EGF (Sigma, E9644), and 20 ng/ml FGF2 (PeproTech,

100-18B). EPD210FH and BT214 cells were grown in NeuroCult NS-A Basal Medium (STEMCELL Technologies) supplemented

with NeuroCult Proliferation Supplement (STEMCELL Technologies), 2mM L-glutamine 1% Penicillin/Streptomycin, 75ng/ml bovine

serum albumin (BSA) and 20ng/ml of EGF (Peprotech) and FGF-basic (Peprotech). EP1NS cells were grown in Neurobasalmedium A

(Life Technologies) supplementedwith 1mg/ml of Heparin (Sigma), 2mML-Glutamine and 20ng/ml of EGF and FGF-basic. EPD210FH

and EP1NS cells were grown in T25, T75 and T150 tissue culture flasks (TPP). Flasks were additionally coated with Laminin (L2020,

Sigma) for EPD210FH cells. For EP1NS cells, flasks were coatedwith Geltrex (A1569601, Life Technologies). BT214 cells were grown

as spheroids in ultra-low attachment cell culture flasks (CLS3815, Corning). All cell models were grown at 37 �C with 5% CO2 and

were authenticated by methylation array.

Patient-derived Xenografts (PDXs)
PDX models of BT214 and BT165 were generated and obtained from a previous study (Brabetz et al., 2018).
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METHOD DETAILS

Tumor Tissue Collection and Dissociation
Live Cell Isolation from Fresh Tissue

Fresh tumor tissuewas collected at the time of surgery at BostonChildren’s Hospital andMedical University of Vienna and processed

immediately. Tumor tissue was dissociated mechanically followed by papain-based enzymatic digestion for 30 min at 37�C using a

Brain Tumor Dissociation Kit (Miltenyi Biotec). Single-cell suspensions were filtered through a 70 mm strainer, centrifuged at 500 g for

5 min, and re-suspended in phosphate-buffered saline (PBS) supplemented with 1% bovine serum albumin (BSA, Sigma, A8531).

Nuclei Isolation from Frozen Tissue

Nuclei from fresh, snap-frozen tumor tissue as well as from frozen PDX cell pellets (Brabetz et al., 2018) were isolated as previously

described (Slyper et al., 2019). Tissue was thawed briefly and immediately lysed on ice for 5 min under constant mechanical disso-

ciation using surgical scissors. Single-nuclei suspensions were filtered using a 40 mm strainer, centrifuged at 500 g for 5min, and re-

suspended in PBS supplemented with 1% BSA (Smart-seq2), or 0.05% BSA (10X Genomics).

Cell Models

EPN-derived spheroid and adherent cell models were dissociated to single-cell suspensions at the Medical University of Vienna and

DKFZ by accutase-based (Stemcell Technologies, 07922) enzymatic digestion.

FACS-Sorting
Live Cells

Single-cell suspensions derived from fresh tumor tissue as well as EPN-derived cell models were re-suspended in PBS + 1% BSA.

Tumor tissue-derived cell suspensions were stained with 0.2 mM calcein AM (Life Technologies, C3100MP) and 0.5 mM TO-PRO3

iodide (Life Technologies, T3605) for 10 min at room temperature in PBS + 1% BSA. Single-cell sorting was performed on a

SH700 sorter (Sony) using 488 nm (calcein AM, 530/30 emission filter) and 633 nm (TO-PRO3, 665/30 emission filter) lasers. Un-

stained and single-stained controls were included for all tumors. Viable tumor cells were selected by positive staining for calcein

AM as well as negative staining for TO-PRO3. Doublet discrimination was performed by stringent singlet-gating in the back scatter

area (BSC-A) versus back scatter width (BSC-W) setting. Singlet, viable tumor cells were sorted into 96-well plates (company, num-

ber) containing pre-chilled TCL buffer (Qiagen, 1031576), immediately snap frozen on dry ice and stored at -80�C until whole tran-

scriptome amplification, library preparation and sequencing.

Nuclei

Single-nuclei suspensions derived from frozen tumor tissue were re-suspended in PBS + 1% BSA and stained with 0.5 mM Vybrant

DyeCycle Ruby Stain (Life Technology, V10309) immediately before FACS sorting. Unstained controls were included for all samples.

Single-nucleus sorting was performed on a SH700 sorter using the 633 nm laser (Ruby Stain, 665/30 nm emission filter). Intact nuclei

were selected by positive staining for Ruby Stain. Doublet discrimination was performed by stringent singlet-gating in the Ruby Stain

area versus Ruby Stain width setting. Singlet nuclei were sorted into 96-well plates containing pre-chilled TCL buffer and 1% b-mer-

captoethanol, immediately snap frozen on dry ice and stored at -80�C until processed for whole transcriptome amplification, library

preparation and sequencing.

scRNA-seq and snRNA-seq Data Generation
Smart-seq2

Whole transcriptome amplification, library preparation, and sequencing of single cells and single nuclei was performed following the

Smart-seq2 modified protocol as previously described (Venteicher et al., 2017; Hovestadt et al., 2019; Neftel et al., 2019; Filbin et al.,

2018; Slyper et al., 2019).

After single-cell sorting, RNA was purified with Agencourt RNAClean XP beads (Beckman). Oligo-dT primed reverse transcription

was performed using Maxima H Minus reverse transcriptase (Life Technologies) and locked TSO oligonucleotide (Qiagen). This was

followed by 20 cycle PCR amplification using KAPA HiFi HotStart ReadyMix (KAPA Biosystems) and subsequent Agencourt AMPure

XP bead (Beckman) purification. Library tagmentation was performed using the Nextera XT Library Prep kit (Illumina). Libraries from

768 cells with unique barcodeswere combined and sequenced on aNextSeq 500 sequencer (Illumina) using aNextSeq 500/550High

Output Kit v2.5 (Illumina).

10X Genomics

Single nuclei were processed using the microfluidics-based 10X Chromium Single Cell 3’ Reagent Kits v3 (10X Genomics, PN-

1000092). Briefly, 10,000 nuclei were added to each chip channel and partitioned into Gel Beads-in-emulsion (GEMs) on the Chro-

mium Controller, followed by nuclei lysis and barcoded RNA reverse transcription. Library preparation was performed after breaking

of single-nuclei emulsions, and included cDNA amplification, fragmentation, ligation of sample index, as well as addition of Illumina

P5/P7 adapters.

DNA Methylation Profiling
All patient tumor samples that were processed for single-cell and single-nuclei sequencing, were also characterized by Infinium

Methylation EPIC BeadChip array (Illumina) according to the manufacturer’s instructions. Methylation data for each patient sample

were generated from corresponding formalin-fixed, paraffin-embedded tissue. EPN groups were predicted using a web-platform for
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DNA methylation-based classification of tumors of the central nervous system (www.molecularneuropathology.org, version 3.1.5)

(Capper et al., 2018). Resulting assignment of samples to SP-MPE, ST-RELA, ST-YAP1, PF-A, PF-B EPN groups, as well as to further

PF-A and PF-B groups were used as reference for all downstream analyses. CNA analysis from methylation profiling data was per-

formed using the conumee Bioconductor package and compared to those predicted from the single-cell data.

RNA In Situ Hybridization
FFPE tissue sections (4 mm) from SP-MPE (MUV68) and PF-A (MUV013, MUV021, MUV038) tumors were obtained from the Institute

of Neurology, Medical University of Vienna. Sections were mounted on Superfrost Plus glass slides (Fisher Scientific, 12-550-15) and

stored at -80�C. Sections were stained using RNAscope 2.5 HD Duplex Detection Kit (Advanced Cell Diagnostics (ACD), 322430)

according to the manufacturer’s instructions and as described previously (Neftel et al., 2019). Sides were baked at 60�C for 1 h

and deparaffinized with xylene and ethanol. Dehydrated tissue was pretreated with RNAscope Hydrogen Peroxide (ACD, 322335)

for 10 min at room temperature. Target retrieval was performed with RNAscope 1X Target Retrieval Reagent (ACD, 322000) in a

steamer (Braun, FS20) at 99�C for 15 min, followed by treatment with RNAscope Protease Plus (ACD, 322331) at 40�C for 30 min.

Hybridization probe combinations were prepared by diluting C2 probe (red, alkaline phosphatase) 1:50 into C1 probe (green, horse-

radish peroxidase). ACDRNAscope probes used includedHs-HOXB13 (ACD, 400781), Hs-JUNB (ACD, 534031-C2), Hs-CD36 (ACD,

536631-C2), and Hs-ATF3 (ACD, 470861). Probes were added to the tissue sections and hybridized for 2 h at 40�C. Ten amplification

steps were performed following the instructions provided in the RNAscope 2.5 HD Duplex Detection Kit protocol. Red signal and

green signal were detected after amplification steps 6 and 10, respectively. Tissue was counterstained with Gill’s Hematoxylin I (Stat-

lab, HXGHE1LT) for 30 s at room temperature followed by bluing with 0.02% ammonia water and mounting with Vectamount Per-

manent Mounting Medium (Vector Laboratories, H-5000). Microscopic images of stained tissue sections were taken on a DMi8

brightfield microscope (Leica Microsystems) using a 40X magnification lens and LAS-X software (Leica Microsystems). Images

were processed using ImageJ (version 2.0.0-rc-69/1.52p, RRID:SCR_003070).

siRNA Knockdown (KD) and Sphere Formation
VBT96 and VBT242 cells were transfected with siRNA targeting LGR5 (ON-TARGETplus SMARTpool siRNA, L-005577-00-0005,

Dharmacon, Lafayette, CO, USA) or FGFR3 (ON-TARGETplus SMARTpool siRNA, L-003133-00-0005, Dharmacon, Lafayette,

CO, USA) or non-targeting siRNA (Accell Green Non-targeting siRNA, D-001950-01-05, Dharmacon, Lafayette, CO, USA) ac-

cording to manufacturer’s instructions. Transfection rates were controlled via autoflourescence of the siRNA constructs and

rates over 99% were considered sufficient. Following incubation for 4 h, cells were washed and plated in technical quadrupli-

cates at a density of 103/well in 96-well ultra-low attachment plates (Corning, COS3474, NY, USA) in Neurobasal Medium

(GIBCO, 21103-049) supplemented with 1X N2/B27 (GIBCO, 17502-048/17504-044), 2mM L-glutamine (Sigma, G8540),

20 ng/ml EGF (Sigma, E9644), and 20 ng/ml FGF2 (PeproTech, 100-18B). Cells were then monitored by live cell imaging

with a Visitron Systems live cell microscope (Puchheim, Germany) for 72 h at 37�C with 5% CO2. At indicated timepoints

the size of neurospheres (area in 2D) was measured utilizing ImageJ-software (Ver 1.8.0) and compared to respective non-tar-

geting controls. Differences in sphere formation between non-targeting control and targeting siRNA at indicated timepoints

were tested for statistical significance by student’s t-test. The depicted graphs show a representative experiment of two bio-

logical replicates, performed in technical triplicates. Values are represented as mean ± standard error of the mean (SEM). For

statistical analysis, two-tailed student’s t-test was performed. Significance values are given as asterisks and signify * p<0.05, or

*** p<0.001. Groups compared are indicated as horizontal brackets.

Drug Sensitivity Experiments
In order to test sensitivity pf EPN ell models to inhibitors that target identified vulnerabilities, VBT96 and VBT242 were seeded at a

density of 4x103 cells/well in 96 well plates in the respective standard culture conditions indicated previously. After 24 h recovery

time, cells were treated in triplicates with indicated drug concentrations for 72 h. Cell viability was tested by CellTiter-Glo� Lumines-

cent Cell Viability Assay (Promega, G7573, Madison, WI, USA) according to manufacturer’s instructions and luminescence signals

were measured with a Tecan infinite 200Pro plate reader. Dose-response curves and IC50 values were determined using Graph Pad

Prism software (Version 8) based on a non-linear regression model of log (inhibitor) versus response for variable slope with four pa-

rameters. Sphere forming capacity was tested in VBT96 upon panobinostat incubation in in 24-well ultra-low attachment plates

(Corning, COS3474, NY, USA) in Neurobasal Medium (GIBCO, 21103-049) supplemented with 1X N2/B27 (GIBCO, 17502-048/

17504-044), 2mM L-glutamine (Sigma, G8540), 20 ng/ml EGF (Sigma, E9644), and 20 ng/ml FGF2 (PeproTech, 100-18B). Cells

were seeded at a density of 2x104 per well in duplicates and incubated with 50nM panobinostat after seeding. Sphere formation

was evaluated by light microscopy (NIKON 7200 and Nikon 105mm F2.8 Macro lens) after 96 h and sphere size was quantified uti-

lizing ImageJ-software (Ver 1.8.0) and compared to respective controls. Statistical differences between single and combinational

treatments were determined by student’s t-test. The depicted graphs show a representative experiment of two biological replicates,

performed in technical triplicates. For statistical analysis of combinatorial drug treatments, 2way ANOVA, Tukey’s multiple compar-

isons test was performed. Values are represented as mean ± standard deviation (SD). Significance values are given as asterisks and

signify *** p<0.001. Treatment conditions compared are indicated as horizontal brackets.
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scRNA-seq Data Processing
scRNA-seq data was pre-processed as previously described with some modifications (Neftel et al., 2019). Raw sequencing reads

were aligned to hg19 genome by bowtie, and gene counts were quantified using RSEM as transcript-per-million, or TPM (Li and

Dewey, 2011). Expression levels were calculated as Ei,j = log2(TPMi,j/10 + 1) for gene i in sample j. TPM values were divided by

10 for better approximation of the estimated complexity of single-cell libraries, which is in the order of 100,000 transcripts. To filter

out low-quality cells, we removed cells with less than 2,000 detected genes or an average housekeeping expression level below 2.5.

To filter out low-expressed genes, we removed genes with TPM greater than 10 in less than 10 cells. For the remaining cells and

genes, we calculated the aggregate expression of each gene as Ea(i) = log2(average(TPMi,1...n) + 1). In each anatomical location

(PF, ST, and SP), we defined relative expression as centered expression levels, Eri,j = Ei,j � average[Ei,1...n] for the remaining cells

and genes. On average, we detected �4,600 genes per cell.

Identification of CNAs in Single-Cell Data
Copy number alterations (CNAs) were estimated as previously described by computing a moving average of the relative expression

(Tirosh et al., 2016). Genes were sorted based on their chromosomal location and the mean relative expression of a sliding window of

100 genes within each chromosomewere quantified. The presence of CNAwas determined with hierarchical clustering of the single-

cell copy-number profiles within each sample with 190 copy-number profiles determined from two non-malignant cell types (micro-

glia/macrophages and tumor-associated oligodendrocytes) (Filbin et al., 2018). For the majority of tumors (16/20), most of the cells

exhibited clear evidences of CNAs and did not cluster with the spike-in non-malignant cells.

Identification of Non-malignant Cell Types
T-distributed stochastic neighbor embedding (tSNE) embedding was generated using Seurat’s implementation of principal compo-

nent analysis (PCA) and tSNE (Butler et al., 2018). Briefly, highly variable genes were selected based on overdispersion of genes in

each gene group binned with aggregate expressions. Then relative expression values of these highly variable genes were used for

PCA and top 18 principal components were selected for determining tSNE embeddings. Graph-based clustering implemented in

Seurat was used to cluster cells and these clusters were well separated in the tSNE embedding. The majority of clusters contained

cells from a single patient, but six clusters included cells from multiple patients. One of these clusters exhibited expression of cell-

cycle related genes (CDC20,CCND1, and TOP2A), indicating enrichment with proliferating cells. The other five clusters showed high

expression of marker genes for non-malignant cell types, including microglia (CD14, FCER1G, CSF1R), T cells (CD3E, CD4, CD8A),

OPCs (OLIG1, APOD, PDGFRA), oligodendrocytes (MBP, PLP1, MOG), and endothelial cells (IFITM1, CAV1, TM4SF1). These cells

were also classified not to possess CNAs.

Integrated Definition of Malignant Cells
We combined CNA classification with transcriptomic-based clustering and expression of non-malignant marker gene to identify ma-

lignant and non-malignant cells. Non-malignant cells showed high expression of specific marker genes (see gene list in the previous

section) as well as no apparent CNAs. Malignant cells included those which were not part of the clusters with high expression of

markers for non-malignant cell types and were classified to harbor CNAs. Cells with discordant classifications by marker gene

expression and CNA detection were excluded from downstream analysis except for cells in MUV006 and MUV018. Most cells in

MUV006 exhibited no apparent CNA, but were not part of non-malignant cell populations, so these cells were treated as malignant

cells. Although cells in MUV018 showed no apparent CNAs, they closely clustered with cells from MUV014, which exhibited clear

CNAs. In addition, cells in MUV018 were not part of non-malignant cell populations, so the majority of cells in MUV018 were also

treated as malignant cells.

NMF Programs and Cellular Hierarchies
Non-negative matrix factorization (NMF) was utilized to derive transcriptional programs from relative expression data (with negative

values converted to zero) as previously described (Hovestadt et al., 2019; Filbin et al., 2018). NMF programs were determined for

malignant cells from each sample individually. The top 10,000 over-dispersed genes, as determined by PAGODA2 (Fan et al.,

2016), were used in the NMF analysis. The number of factors were set to 10 for both PF and ST samples and 4 and 6 for BT1678

and MUV068. A relatively large number of factors were selected to avoid omitting major NMF factors. Since redundant NMF pro-

gramsweremerged into a single metaprogram, the final metaprogramwas also not sensitive to the initially chosen number of factors.

Top 30 genes with the highest NMF weights from each resulting NMF factor were selected to represent that factor. All single cells

within each anatomical tumor compartment (PF, ST, and SP) were then scored for these NMF programs (top 30 genes). Within

each compartment, NMF programs were clustered with hierarchical clustering (distance metric: one minus Pearson correlation; link-

age:Ward’s linkage) on the scores for each program (Figures S1A and S4A). Only NMF programs clusters with an average correlation

coefficient greater than 0.5 were retained, while individual NMF programs that did not cluster with any other program were manually

inspected to keep those with strong association with known cell types or functional pathways. This revealed nine correlated sets of

programs for all PF samples, ten for ST samples and four for SP samples. These correlated programs were then merged into meta-

programs by selecting the top 30 genes with the highest average NMF weight within each correlated program set and resulted in a

total of 23 compartment-specific metaprograms (Table S2).
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Generation of Single-Cell Expression Scores
Single-cell expression scores were computed in a similar way as described previously (Hovestadt et al., 2019). Given a set of genes

(Gj) for a NMF program ormetaprogram, a score, SCj(i), which quantifies the relative expression ofGj for each cell i, was calculated as

the average relative expression (Er) of the genes in Gj, compared to the average relative expression of a control gene set Gcont: SC

(i) = average[Er(G , i)]�average[Er(Gcont, i)]. For each considered gene, the control gene set contains 100 genes with the most similar

aggregate expression level to that gene. Therefore, the control gene set represents a comparable distribution of expression levels to

that of the considered gene set, and the control gene set is 100-fold larger.

Single cells of each compartment were assigned to different cell subpopulations based on the maximum expression score for

respective compartment-specific metaprograms. Cells were grouped into cycling and non-cycling based on maximal scores of S

andG2Mprograms (larger and smaller than 1, respectively). For the pan-compartment analysis of all malignant EPN cells, expression

values were re-centered across all compartments and expression scores were computed for each of the 23metaprograms. The pair-

wise correlation of expression scores is shown in Figure 7A.

Cell Subpopulation-Specific Signature Genes
Signature genes were identified for each cell population that was assigned to a metaprogram using Wilcoxon rank sum test imple-

mented in Seurat. Briefly, one cell subpopulation was compared with all other cell subpopulations and log transformed uncentered

expression levels were used. For each cell subpopulation, genes that (1) showed Bonferroni-adjusted p value < 0.05, (2) showed at

least 2-fold mean difference, and (3) were expressed by at least half the number of cells in this cell subpopulation were selected as

signatures genes for that particular cell subpopulation (Table S3).

Characterization of Metaprograms
Besides manually inspecting underlying gene signatures of each metaprogram, we characterized the metaprograms by three com-

plementary approaches as previously described (Neftel et al., 2019). (1) First, we tested for enrichment of described gene sets (Gene

Ontology biological processes, molecular function, cellular component) in eachmetaprogram using a hypergeometric test (Table S4;

Yu et al., 2012). (2) Second, we determined single-cell expression scores of non-malignant cell types for each of the metaprogram.

We collected scRNA-seq data for non-malignant brain cells from multiple human and mouse brain atlas dataset (La Manno et al.,

2016; Nowakowski et al., 2017; Zeisel et al., 2018). For each source, we aggregated cells by their reported cell type annotation,

defined themedian expression profile of each cell type (or used the respective data from the original study) and quantified expression

score for cell types as described above. (3) Third, we characterized the expression similarities (Pearson correlations) between all non-

malignant cell types from each brain atlas reference dataset used in (2) and the median profiles of all malignant cells mapping to each

metaprogram. Only cell population specific genes (see earlier methods) were pooled and used for Pearson correlation calculation to

minimize background correlation. (Figures S1E and S4F).

Graph-Based Clustering with Data Harmonization
We adapted graph-based clustering with data integration as an independent identification of cellular clusters and gene signatures.

Highly variable genes were selected using Seurat (see earlier Methods). Then the relative expression values of these highly variable

genes were used for PCA analysis. To separate sample-specific biological differences (i.e. unique combination of genetic and epige-

netic alternations that are specific to each tumor) from cell type and state-specific biological variations, an efficient data harmoniza-

tion method named Harmony was applied to the first 100 principle components with default parameters for data integration from

multiple samples (Korsunsky et al., 2018; Korsunsky et al., 2019). Harmony learned and applied a linear adjustment function to

generate a corrected embedding that is robust to sample-specific effects. The first 20 Harmony corrected dimensions were selected

for quantifying tSNE embeddings. Cells were then grouped by expression of metaprograms (Figures 2B and 4B), and cells that were

from different samples or compartments, but expressed similar metaprogram, weremixed together (Figures S1C and S4C). A second

graph-based clustering approach implemented in Seurat was also utilized to group cells into subpopulations and the resulting clus-

tering of cells looked remarkably similar to metaprogram-assigned clusters (Figures 2B, 4B, S1D, and S4D).

RNA-Velocity Analysis
The raw reads of each sample were first aligned to hg38 genome using hisat2 (Kim et al., 2015). Velocyto.py command line tool was

applied to the resulting bam files to annotate spliced, unspliced and spanning reads based on gencode v27 gene annotation. Velocity

was estimated using R implementation of a gene-relative model that combines KNN pooling with the gamma fit on the basis of

extreme quantiles, with default parameters (LaManno et al., 2018). The resulting velocity estimate was projected onto the embedding

of first two principle components for visualization (Figure 3A).

Lineage and NSC Score in PF Tumors
Cells were first ordered by their NSC-scores, defined as expression score of the PF-NSC-like programminus themaximal expression

score of the two programs representing major differentiation trajectories (PF-Glial-Progenitor-like and PF-Ependymal-like program),

and non-NSC-like cells were further classified by a lineage score distinguishing the Glial-Progenitor-like from Ependymal-like line-

ages (Figure S2B).
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Gene Regulatory and TF Network Reconstruction
To characterize underlying gene regulatory network and transcription factor activities in our scRNA-seq dataset, the single-cell reg-

ulatory network inference and clustering (SCENIC) package was employed to identify gene regulatory modules and retain those with

a cis-regulatory binding motif for upstream regulators (Aibar et al., 2017). Coexpression modules between TFs and putative target

genes were estimated by GENIE3, followed by cis-regulatory motif analysis using RcisTarget and pruning of indirect targets lacking

motif binding site. The resulting regulatory module (regulons, modules of target genes co-expressed with TFs and enriched with mo-

tifs for correct upstream regulators) activities in each cell were then binarized by AUCell. For each cell subpopulation, average relative

activity of each TF regulon was also aggregated as proportions of cells with active regulon for that TF (Table S5). For each metapro-

gram, the most active TF regulons (average relative activity above 0.5) with average relative activity at least 50% greater than in any

other metaprogram were selected as top specific TFs for each metaprogram (Figures 2E and 4D; Table S5).

Integration of the 10X Genomics Data
A second dataset from frozen tumors MUV006, MUV013, MUV014, MUV043, MUV051, and MUV056 was generated by the 10X-Ge-

nomics platform. Raw reads were aligned to hg38 genome and Unique Molecular Identifier (UMIs) were counted by cellranger using

pre-mRNA gene annotation with intronic regions. Due to large variability in the number of cells collected from each sample, 3000 cells

were randomly selected from each sample and their gene counts were pooled to construct a single countmatrix (18,000 cells in total).

Two criteria were applied to filter out low quality or cells: (1) number of detected genes and (2) proportion of UMIs mapped to mito-

chondrial genes. Cells with either total number of genes less than half or greater than twice the mean number of genes detected

across cells or proportion of mitochondria UMIs greater than 5% were excluded from subsequent analysis. Relative expression

values of highly variable genes were used for determining PCA and tSNE (see earlier Methods). Top 19 principal components

were used for graph-based clustering, and expression of marker genes for normal cell types (see earlier Methods) were examined

in each cluster. Two clusters of cells that express microglia/macrophage marker genes were then excluded from subsequent anal-

ysis. About 20% of cells were excluded during pre-processing.

Comparison of 10x and Smart-seq2 Results
Malignant cells from 10X were separated into PF and ST compartments and analyzed similarly. Relative expression values for highly

variable genes were used for PCA, tSNE and graph-based clustering, with data integration by Harmony (see earlier Methods). Cells in

each population were aggregated and log2 transformed. Median expression profiles were quantified for each cell population in the

10X dataset. Pairwise expression similarities (Pearson correlation) between each cell population in 10X and each cell population in

Smart-seq2 (see earlier Methods) for pooled signature genes were determined in the PF and ST compartments. Each cell population

in 10X was assigned to one or two metaprograms based on high correlation, indicating that expression signatures derived from 10X

recapitulated metaprograms defined in the Smart-seq2 dataset.

Targetable Metaprogram-Specific Pathways
Significantly differentially expressed genes of identified EPN metaprograms were loaded into the g:GOSt profiling online tool of

G:Profiler (Raudvere et al., 2019) (RRID:SCR_006809) and queried for functional enrichment of terms derived from GO (molecular

function, cellular component, biological process), Kyoto Encyclopedia of Genes and Genomes (KEGG), and REACTOME databases.

Furthermore, significantly overexpressed genes were used to query the Washington University Drug Gene Interaction database

(DGIdb, v3.0.2, RRID:SCR_006608), focusing on expert-curated collections of druggable genes to identify metagene-specific candi-

date therapeutic targets (Cotto et al., 2018). DGIdb hits were again loaded into G:Profiler and queried for functional GO term enrich-

ment. Multiple testing correction was applied using the SCS Threshold algorithm with a significance cut-off of p<0.01. Significantly

enriched terms were imported into the EnrichmentMap plugin of Cytoscape (v3.7.2, RRID:SCR_003032) to generate functional

network maps.

Pan-Glioma Metaprogram Comparison
To enable a direct comparison among EPN, DIPG, and GBM, we scored all cells in the EPN study (all EPN groups combined) and

previous DIPG and GBM studies respectively for metaprograms identified from tumor types. Pairwise correlation of the resulting

expression scores was shown in Figures 6B, S7C, and S7D. Like the pan-compartment comparison of EPN metaprograms, we uti-

lized hierarchical clustering to group similar programs together, revealing commonality/specificity of expressions ofmetaprograms in

EPN, DIPG, and GBM (Figures 6B, S7C, and S7D). We first uncovered metaprograms with astrocytic expression features in all three

tumor types. We also identified the most similar expression programs expressed in both EPN and GBM, involving neuronal differen-

tiation and glycolysis/hypoxia-reaction. We then demonstrated specificity of less differentiated metaprogram (PF-NSC-like in EPN

and NPC1/2 in GBM) in either tumor, representing potentially distinct stem-like progenitors.

To further compare the expression programs between EPN and GBM, we defined tumor type-shared and -specific genes for the

similar programs (Neuronal-Precursor-like/NPC2 and Metabolic-like/MES2) as well as progenitor-like programs (PF-NSC-like and

NPC1/2) within each tumor. For top genes from pairs of these metaprograms, we aggregated their median expression in each

cell population within each tumor and compared their expression between EPN and GBM.We then defined common genes as those

with aggregated expression above 3 in both tumors, EPN-specific genes as those with aggregated expressions above 3 in EPN and

differences in expression above 2 between EPN and GBM, GBM-specific genes as those with aggregated expression above 3 in
Cancer Cell 38, 44–59.e1–e9, July 13, 2020 e8
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GBMand differences in expressions above 2 betweenGBMand EPN. The resulting comparison of expression profiles of these genes

were shown in Figures 6D, 6F, 6H, and 6J.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis
Statistical tests were performed using SPSS Statistics 25 (IBM), GraphPad Prism 8, or R. For computational as well as cell/molecular

biological methods, statistical analyses are described in detail in respective methods chapters as well as indicated in figure legends

and in corresponding results sections. Significance values are given in figures, figure legends, and/or the results section. Alterna-

tively, significance levels are indicated as asterisks, signifying as * p<0.05, *** p<0.001. Treatment conditions compared statistically

are indicated by horizontal brackets in figures above respective data points. Cell viability curves for the different inhibitors and siRNA

KD data were calculated from at least two independent experiments, performed as triplicates for each condition. Data points repre-

sent mean values ± SD or SEM, depending on the experiment performed and specified in figure legends and corresponding methods

sections. In boxplots, boxes show the median and interquartile range, whiskers show minimum and maximum values. For G-Profiler

pathway enrichment analysis of DGIdb gene hits, multiple testing correction was applied using the SCS Threshold algorithm with a

significance cut-off of p<0.01.

Survival Analyses
Survival estimates were analyzed with SPSS Statistics 25 (IBM) and GraphPad Prism 8 (GraphPad Prism Software;

RRID:SCR_002798). Univariate Models were calculated by the Kaplan-Meier Method and tested for significance by log-rank test.

For multivariate testing we used multivariable Cox models. We next established the effect of the biomarkers (Ependymal, Neuronal,

PFA-PFB-PF-SE) and clinical variables (Radiation therapy, Resection type) usingmultivariable Coxmodels and a two-step approach.

First, we estimated the hazard ratios for a complete multivariable Cox model (including PFA-PFB-PF-SE, Table S1), and then re-esti-

mated the hazard ratios with a multivariable Cox model excluding PFA-PFB-PF-SE (Table S5).

We did not observe relevant changes in the hazard ratios, despite there being only 6 events for the individuals with Ependymal

‘high’, 9 events for individuals with neuronal ‘high’, 5 events for individuals without radiotherapy and 12 events for individuals without

gross-total resection.

The corresponding confidence intervals as well as the p values were also stable between the twomodels. Moreover, we calculated

amultivariate Cox regressionmodel for PFS in the PF compartment (Table S5).We observed a significant decrease in the risk of death

for individuals with Ependymal biomarker ‘high’ (vs. individuals with Ependymal ‘low’), with p value <0.001. All the other effects were

indicative of an increased risk of death, even though not significant. From the Kaplan-Meier estimators for the PFA-PFB-PF_SE

group, we obtained a significant log rank test p value <0.001. Finally, we also calculated a multivariate Cox model for the PF-A group

only also including the well-described biomarker gain of Chr1q (Table S5).
e9 Cancer Cell 38, 44–59.e1–e9, July 13, 2020
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Figure S1, Related to Figure 2. Characterization of metaprograms identified in PF-EPN. A. 

Heatmap of pairwise correlations of expression scores of NMF programs from individual PF-EPN 

samples, applied to all PF-EPN cells. Groups of NMF programs (black box) were merged into 9 

metaprograms by hierarchical clustering (1. PF-NSC -like; 2. PF-Glial-Progenitor-like; 3. PF-

Neuronal-Precursor-like; 4. PF-S-Phase; 5. PF-G2M-Phase; 6. PF-Ependymal-like; 7. PF-

Astroependymal-like; 8. PF-Metabolic; 9. PF-Immune-Reactive). B. Gene expression score (color 

bar) of 2772 malignant cells (columns) for each of the PF metaprograms (row). C. tSNE plot of 

all fresh PF tumor cells, colored on the basis of individual tumor samples. D. tSNE plot of cells 

from all fresh PF-EPN samples colored by groupings from graph-based clustering. E. Expression 

score of aggregated non-malignant cell types for each PF metaprogram (color) and pairwise 

correlation between aggregated non-malignant cell types and EPN tumor subpopulation (circle 

size) in human cortex (left), and murine complete nervous system (right) reference datasets (see 

Methods). Black circles highlight top matches as defined by overlap of cell types between top 3 

with highest expression scores and top 3 with highest pairwise correlation for each metaprogram. 

F. Relative proportion of proliferating versus non-proliferating cells per sample in all PF tumors. 

PF-A samples showed higher proportion of proliferating cells than PF-B and PF-SE (p value = 

1.9E-21, Fisher’s exact test). G. Pairwise correlation of 10X Genomics snRNA-seq-derived cell 

subpopulations with those classified by metaprogram from the original sc/snSmart-seq2. H. 

Expression score (color bar) of cells (columns) from PF-EPN PDXs and in vitro cell models for 

PF metaprograms derived from original sc/snSmart-seq2 (rows). Side bar on the x-axis refers to 

samples. I. Relative proportion of cell subpopulation across molecular PF-EPN groups. Shannon 

entropy of complexity of cell subpopulation was computed for each subtype (PF-A: 1.96, PF-B: 

0.26, PF-SE: 0.71). J. Relative proportion of proliferating versus non-proliferating cells per 



subpopulation across all PF tumors. K. Log transformed expression of FOXJ1 across PF-EPN 

metaprograms. 

 



 

Figure S2, Related to Figure 3. Cellular hierarchies and survival implications of PF-EPN 

subpopulations. A. Plot of lineage- (x axis) and NSC (y axis) scores for malignant PF-EPN cells, 
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represented by dots. Cells are colored according to their corresponding metaprogram. B. PFS 

stratification of PF-EPN tumors according to high or low relative expression of top 30 genes for 

PF-Ependymal-like metaprogram in bulk RNA expression. Significance levels were determined 

by log-rank test. C. Heatmap of PF-EPN (PF-A, orange; PF-B, blue; PF-SE, cyan) bulk expression 

profiles clustered by K-Means on the basis of relative expression of top 30 genes for PF-

Ependymal-like. D. PFS stratification of PF-A EPN bulk tumors according to high or low relative 

expression of top 30 genes for PF-Ependymal-like metaprogram. Significance levels were 

determined by log-rank test. E. Heatmap of PF-A bulk expression profiles clustered by K-means 

on the basis of PF-Ependymal-like metaprogram scores. F, G. Heatmap of PF (F) and PF-A (G) 

bulk expression profiles clustered by K-means on the basis of relative expression of top 30 genes 

for PF-Neuronal-Precursor-like metaprogram scores (PF-A, orange; PF-B, blue; PF-SE, cyan). 

 



 
Figure S3, Related to Figure 3. Effect of Chr1q gain and tumor recurrence on cell 

subpopulation distribution, and targeting of subpopulation-specific vulnerabilities of PF-A. 

A-C. Correlation of average relative expression of top 30 genes for PF-Ependymal-like (A), PF-

Neuronal-Precursor-like (B), and PF-NSC-like (C) with pediatric PF-A patient age. Best-fit 

regression lines, correlation coefficients and p values are shown. D. Relative cell subpopulation 

distribution between chromosome 1q-gained versus non-1q-gained PF-A specimen. E. Relative 
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proportions of cell subpopulations in matched earlier versus later recurrent PF-A samples 

(MUV021 versus MUV038, respectively) and matched diagnostic versus recurrent PF-A samples 

(WEPN1Dia vs WEPN1Rec, and WEPN20Dia vs WEPN20Rec, respectively). F. Log transformed 

expression of HDAC2 across EPN cell models. G. Viability of VBT96 and BT214 cells upon 72 

h treatment with increasing concentrations of the the HDAC inhibitor panobinostat was determined 

by CellTiter-Glo assay. H. Relative sphere area of the PF-EPN cell model VBT96 after 72 h 

treatment with the HDAC inhibitor panobinostat. Values are given normalized to the untreated 

control. *p<0.05, two-tailed student’s t-test. Data are represented as mean ± SEM of triplicate 

values. I. Log transformed expression of LGR5 across EPN cell models. 
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Figure S4, Related to Figure 4. Characterization of metaprograms identified in ST-EPN. A. 

Heatmap of pairwise correlations of expression scores of NMF programs from individual ST-EPN 

samples, applied to all ST-EPN cells. Groups of NMF programs (black box) were merged into 10 

metaprograms by hierarchical clustering (1. ST-YAP1; 2. ST-Ependymal-like; 3. ST-Midline; 4. 

ST-Neuronal-Precursor-like; 5. ST-Interferon-Response; 6. ST-Radial-Glia-like; 7. ST-Metabolic; 

8. ST-RELA-Variable; 9. ST-S-Phase; 10. ST-G2M-Phase). B. Expression score (color bar) of 

1296 malignant cells (columns) for each of the ST metaprograms (row). C. tSNE plot of all fresh 

ST tumor cells, colored on the basis of individual tumor samples. D. tSNE plot of cells from all 

fresh ST-EPN samples colored by groupings from graph-based clustering. E. Relative proportion 

of proliferating versus non-proliferating cells per sample across all ST tumors. ST-RELA samples 

showed higher proportion of proliferating cells than ST-YAP1 and ST-Midline (p value = 1.4E-

36, Fisher’s exact test). F. Expression score of aggregated non-malignant cell types for each ST 

metaprogram (color) and pairwise correlation between aggregated non-malignant cell types and 

EPN tumor subpopulation (circle size) in human cortex (left) and murine complete nervous system 

(right), reference datasets (see Methods). Black circles highlight top matches as defined by overlap 

of cell types between top 3 with highest expression scores and top 3 with highest pairwise 

correlation for each metaprogram. G. Pairwise correlation of 10X Genomics snRNA-seq-derived 

cell populations with those classified by metaprogram from the original sc/snSmart-seq2. H. 

Expression score (color bar) of cells (columns) from ST-EPN PDX and in vitro cell model for ST 

metaprogram derived from original sc/snSmart-seq2 (row). Side bar on the x-axis refers to 

samples. 

 
 



 
Figure S5, Related to Figure 4. Subpopulation-specific TF activities and metaprogram 

distribution in ST-EPN. A. Single-cell expression scores of RELA wildtype and C11orf95-

RELA-regulated canonical and non-canonical NFkB target gene expression (Parker et al., 2014) 

across ST-EPN metaprograms. B. Single-cell expression scores of target genes regulated 

exclusively by C11orf95-RELA fusion (Parker et al., 2014) across ST-EPN metaprograms. C. 

Aggregated relative TF activity of RELA for each metaprogram inferred by SCENIC. D. Relative 

proportion of cell subpopulations across molecular ST-EPN groups. Shannon entropy of 

complexity of cell subpopulation was computed for each subtype (ST-RELA: 1.58, ST-YAP1: 

0.15, ST-Midline: 0.76). 
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Figure S6, Related to Figure 5. Subpopulation-specific patient stratification and in vitro 

targeting of vulnerabilities of ST-EPN. A, B. Heatmap of ST-EPN (A) and ST-RELA (B) bulk 

expression profiles clustered by K-means on the basis of relative expression of top 30 genes for 

ST-Ependymal-like metaprogram (ST-RELA, red; ST-YAP1, pink; ST-SE, olive). C. Log 
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transformed expression of FGFR3 across EPN cell models. D. Viability of VBT242 cells upon 72 

h treatment with increasing concentrations of the FGFR inhibitor dovitinib was determined by 

CellTiter-Glo assay. Data are represented as mean ± SD of triplicate values. E. Log transformed 

expression of IGF2, CDK4, CDK6, and CCND2, across ST-EPN metaprograms. F, G. Viability 

of VBT242 cells upon 72 h treatment with increasing concentrations of ceritinib (F) and 

palbociclib (G) was determined by CellTiter-Glo assay. Data are represented as mean ± SD of 

triplicate values. 
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Figure S7, Related to Figures 6 and 7. MPE metaprogram characterization and correlation 

of metaprograms within EPN and across other glioma types. A. Expression score (color bar) 

of 333 malignant cells (columns) for each of the SP metaprograms (row). B. tSNE plot of all MPE 

tumor cells, colored on the basis of individual tumor samples. C, D. Pairwise correlation of 

expression score of metaprograms defined in EPN, DIPG, and GBM and applied to cells from 

DIPG (C) and GBM (D) datasets. 
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