A Concise Silylamine Approach to 2-Amino-3-hydroxy-indoles with Potent in vivo Antimalaria Activity

Sameer Urgaonkar,^a Joseph F. Cortese,^a Robert H. Barker,^b Mandy Cromwell,^b Adelfa E. Serrano,^c Dyann F. Wirth,^{a,d} Jon Clardy,^{a,e} and Ralph Mazitschek^{a,f*}

^a Infectious Disease Initiative Program, The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA

^b Drug Discovery and Development, Genzyme Corporation, Waltham, MA 02451, USA

^c Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, P.R. 00936-5067

^dDepartment of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA

^eDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA

^fCenter for Systems Biology, Massachusetts General Hospital, Boston, MA 02115, USA

ralph@broadinstitute.org

SUPPORTING INFORMATION

TABLE OF CONTENTS

Contents	Page Numbers
1. General Considerations	S2
2. Experimental Section	S2-S3
3. Spectroscopic Data	S4-S11
4. Chiral SFC Chromatogram	S12
5. X-ray Structure of 1a	S13

General Considerations:

¹H NMR spectra and proton-decoupled ¹³C NMR spectra were obtained on a Bruker 300 spectrometer (300 MHz) or a Varian Unity Inova 500 spectrometer (500 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent (CD₃SOCD₃, δ 2.50). Multiplicities are given as: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), m (multiplet), br s (broad singlet) and so on. ¹³C chemical shifts are reported relative to CD_3SOCD_3 (septet, δ 39.50). Tandem high performance liquid chromatography/mass spectral (LC/MS) analyses were performed on a Micromass Platform LCZ mass spectrometer or a Micromass Platform LCT mass spectrometer in atmospheric pressure chemical ionization (APCI) mode after separation performed on a Waters Alliance 2690 separations module. The actual separations were performed on a Waters Symmetry® C₁₈ 3.5 µm, 2.1 x 50 mm column with a flow rate of 0.4 mL/min and a 12 min gradient of 15-100% CH₃CN in H₂O, with a constant 0.1% formic acid buffer using a Waters 996 photodiode array detector. The enantiomeric excess (ee) was determined using either chiral SFC OD-H column (20% MeOH, for racemic and chiral 3a) or chiral SFC AD-H column (20% MeOH containing 0.5% Et₃N for *racemic* and chiral **1a**). High resolution mass spectrometry measurements were performed at the MIT Department of Chemistry Instrument Facility.

Flash column chromatography was performed using a Biotage SP4 instrument with pre-packed silica cartridges. Analytical TLC was performed on glass plates coated with 0.25 mm silica gel and visualized by ultraviolet light. Manipulations under an inert atmosphere were carried out using standard Schlenk line techniques. Microwave reactions were performed using EmrysTM Optimizer (Biotage, formerly Personal Chemistry) in a septa capped 20 mL (or 5 mL) SmithTM process vial with stirring. Unless otherwise specified, all commercially available reagents were used as received.

Experimental Section:

Preparation of TBDMS-NH₂ Reagent

Ammonia gas was bubbled (for 2-3 minutes) through a solution of TBDMSCl (5g) in 20 mL anhydrous THF at 0 °C, which immediately resulted in the precipitate formation of NH₄Cl. The cold bath was removed and the reaction mixture was then purged through an argon gas for 15-30 min to completely remove the unreacted ammonia. The reaction mixture was filtered through a syringe-less filter and thoroughly washed with THF in such a way that that the final volume of the solution containing TBDMS-NH₂ is 24 mL (concentration ~ 1 M). This solution was stored at room temperature under an argon atmosphere and used without further purification.

General Procedure for the Synthesis of 3-Aryl(alkyl)-3-hydroxyoxindoles

A solution of Grignard reagent (3-4 equiv) in THF was added to an ice-cold suspension of isatin 2 (1 equiv) in anhydrous THF under an atmosphere of N_2 . The mixture was allowed to warm to room temperature and was stirred until isatin was consumed. The reaction mixture was diluted with EtOAc and then quenched with 1N HCl. The layers were separated and the aqueous layer was extracted with EtOAc, and the combined organic layers were washed with water followed by brine and dried over MgSO₄. After filtration and concentration, the residue obtained was recrystallized from acetone/hexanes or CH_2Cl_2 /hexanes to afford the desired product **3** which was used without further purification.

General Procedure A for the Synthesis of 3-Aryl(alkyl)-3-hydroxy-2-aminoindoles

A microwave vial was charged with **3** (0.78 mmol, 1 equiv), TBDMS-NH₂ (1 M solution in THF, 3.12 mmol, 4 equiv), and *N*-Methyl morpholine (NMM, 3.12 mmol, 4 equiv) under N₂ atmosphere. To this mixture was carefully added SnCl₄ (1M in CH₂Cl₂, 1.56 mmol, 2 equiv). The vial was capped and microwaved at 120 °C for 1 h. After decapping the vial, the reaction mixture was diluted with CH₂Cl₂ and quenched by adding 1M aq. NaOH solution was added and the layers were separated. The aqueous layer was extracted twice with CH₂Cl₂/*i*-PrOH mixture (while saturating the aq. phase with NaCl). Charcoal and MgSO₄ was added to the combined organic extracts and stirred for 1 h. The residue obtained after filtration (over celite) and concentration, was dissolved in minimal amount of CH₂Cl₂ and loaded directly onto the Biotage column preloaded with silica-gel (0-10% MeOH/CH₂Cl₂). The fractions containing the desired product were combined and evaporated. The white solid obtained was either triturated or recrystallized from CH₂Cl₂/hexanes to afford pure **1**.

General Procedure B for the Synthesis of 3-Aryl(alkyl)-3-hydroxy-2-aminoindoles

A microwave vial was charged with **3** (0.78 mmol, 1 equiv), TBDMS-NH₂ (1 M solution in THF, 3.12 mmol, 4 equiv), and $Ti(O-iPr)_4$ (3.12 mmol, 4 equiv) under N₂ atmosphere. The vial was capped and microwaved at 120 °C for 1 h. After decapping the vial, the reaction mixture was diluted with CH₂Cl₂ and quenched by adding 1M aq. NaOH solution was added and the layers were separated. The aqueous layer was extracted twice with CH₂Cl₂/*i*-PrOH mixture (while saturating the aq. phase with NaCl). Charcoal and MgSO₄ was added to the combined organic extracts and stirred for 1 h. The residue obtained after filtration (over celite) and concentration, was dissolved in minimal amount of CH₂Cl₂ and loaded directly onto the Biotage column preloaded with silica-gel (0-10% MeOH/CH₂Cl₂). The fractions containing the desired product were combined and evaporated. The white solid obtained was either triturated or recrystallized from CH₂Cl₂/hexanes to afford pure **1**.

Spectroscopic Data:

Compound **1a** (Table 1, entry a): Following general procedure A, **1a** was obtained in 60% yield (121 mg), white solid. Following general procedure B, **1a** was obtained in 56% yield (113 mg). ¹H NMR (500 MHz, DMSO- d^6) δ 7.33 (d, J = 4.0 Hz, 4H), 7.27 (dd, J = 8.1, 3.9 Hz, 1H), 7.15 (d, J = 7.5 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.92 (s, 1H), 6.76 (bs, 1H). ¹³C NMR (125 MHz, DMSO- d^6) δ 178.3, 155.5, 142.6, 141.7, 128.6, 128.3, 127.4, 124.8, 124.3, 122.6, 116.6, 83.2. HRMS calcd for C₁₄H₁₁ClN₂O (M+H) 259.0633, found 259.0637. mp: 220-222 °C.

Compound **1b** (Table 1, entry b): Following general procedure A, **1b** was obtained in 64% yield (175 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.42 (dd, J = 8.1, 1.7 Hz, 1H), 7.35–7.24 (m, 5H), 7.13 (d, J = 1.6 Hz, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.59 (s, 1H). ¹³C NMR (125 MHz, DMSO- d^6) δ 177.8, 156.6, 143.5, 141.7, 137.4, 137.3, 130.7, 127.3, 124.7, 118.0, 82.8. HRMS calcd for C₁₄H₁₁IN₂O (M+H) 350.9989, found 350.9983. mp: 228-230 °C.

Compound **1c** (Table 1, entry c): Following general procedure A, **1c** was obtained in 43% yield (97 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.84 (d, J = 7.5 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.16–6.96 (m, 2H), 6.94 – 6.80 (m, 2H), 6.67 (s, 1H), 6.47 (s, 1H), 3.39 (s, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 177.2, 156.0, 155.1, 141.0, 129.3, 129.0, 128.3, 127.0, 123.8, 121.8, 120.3, 115.4, 111.9, 80.2, 55.6, 39.5. HRMS calcd for C₁₅H₁₃ClN₂O₂ (M+H) 298.0738, found 298.0736. mp: 191-193 °C.

Compound **1d** (Table 1, entry d): Following general procedure A, **1d** was obtained in 45% yield (99 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.44 (dd, J = 7.6, 1.7 Hz, 2H), 7.41–7.35 (m, 3H), 7.33 (d, J = 2.2 Hz, 1H), 7.19 (dd, J = 8.2, 2.2 Hz, 1H), 6.97–6.83 (m, 2H). ¹³C NMR (125 MHz, DMSO- d^6) δ 174.3, 155.4, 139.2, 131.6, 129.3, 129.1, 128.7, 124.5, 122.5, 121.4, 116.8, 88.1, 84.0, 74.3. HRMS calcd for C₁₆H₁₁ClN₂O (M+H) 283.0633, found 283.0634. mp: 168-170 °C.

Compound **1e** (Table 1, entry e): Following general procedure A, **1e** was obtained in 58% yield (101 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.14 (dd, J = 8.1, 2.1 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 5.93 (s, 1H), 1.04–0.95 (m, 1H), 0.73 (td, J = 9.8, 5.2 Hz, 1H), 0.42 – 0.33 (m, 1H), 0.32–0.24 (m, 1H), 0.20 (td, J = 9.6, 5.3 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d^6) δ 178.8, 139.9, 128.4, 123.5, 122.3, 116.1, 79.8, 18.1, 0.4, -0.8. HRMS calcd for C₁₁H₁₁ClN₂O (M+H) 223.0633, found 223.0641. mp: 112-114 °C.

Compound **1f** (Table 1, entry f): Following general procedure A, **1f** was obtained in 52% yield (110 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.19 (d, J = 8.7 Hz, 2H), 6.96–6.82 (m, 4H), 6.72 (d, J = 8.4 Hz, 1H), 6.50 (s, 1H), 3.71 (s, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 177.9 (d, J = 2.5 Hz), 158.6 (d, J = 2.5 Hz), 156.7, 152.3, 142.3 (d, J = 7.5 Hz), 133.8, 126.1, 115.5 (d, J = 7.5 Hz), 114.6 (d, J = 22.5 Hz), 113.6, 110.2 (d, J = 23.7 Hz), 83.0 (d, J = 2.5 Hz), 55.1. HRMS calcd for C₁₅H₁₃FN₂O₂ (M+H) 273.1034, found 273.1033. mp: 182-184 °C.

Compound **1g** (Table 1, entry g): Following general procedure A, **1g** was obtained in 50% yield (93 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.58–6.95 (m, 4H), 6.82 (d, J = 7.7 Hz, 1H), 5.76 (s, 1H), 1.80 (qd, J = 13.3, 6.3 Hz, 2H), 1.23–1.03 (m, 1H), 0.75 (d, J = 6.4 Hz, 3H), 0.55 (d, J = 6.3 Hz, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 178.2, 155.4, 140.2, 128.4, 123.8, 122.3, 116.0, 81.5, 46.3, 23.8, 23.75, 23.71. HRMS calcd for C₁₂H₁₅ClN₂O (M+H) 239.0946, found 239.0949. mp: 183-185 °C.

Compound **1h** (Table 1, entry h): Following general procedure A, **1h** was obtained in 38% yield (94 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.88 (s, 2H), 7.51 (d, *J* = 17.2 Hz, 2H), 6.95 (dd, *J* = 106.0, 58.8 Hz, 4H), 3.83 (s, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 177.8, 166.1, 155.6, 155.59, 142.3, 129.7, 128.9, 128.89, 128.3, 125.3, 124.3, 122.5, 116.7, 82.9, 52.2. HRMS calcd for C₁₆H₁₃ClN₂O₃ (M+H) 317.0687, found 317.0683. mp: 171-173 °C.

Compound **1i** (Table 1, entry i): Following general procedure B, **1i** was obtained in 30% yield (70 mg), white solid. ¹H NMR (300 MHz, DMSO- d^6) δ 7.95–7.84 (m, 2H), 7.45 (dt, J = 15.3, 7.8 Hz, 2H), 7.15 (dd, J = 8.2, 2.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 6.81 (s, 1H), 2.57 (s, 3H). ¹³C NMR (75.5 MHz, DMSO- d^6) δ 197.8, 177.8, 155.6, 142.3, 142.26, 136.8, 129.6, 128.84, 128.8, 127.7, 124.3, 124.0, 122.5, 116.7, 82.9, 26.7. HRMS calcd for C₁₆H₁₃ClN₂O₂ (M+H) 301.0738, found 301.0738. mp: 163-165 °C.

Compound **1j** (Table 1, entry j): Following general procedure A, **1j** was obtained in 53% yield (118 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.53–6.95 (m, 7H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.25 (s, 1H), 5.98 (s, 1H), 3.22 (d, *J* = 13.8 Hz, 1H), 2.73 (d, *J* = 13.8 Hz, 1H), 1.86 (s, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 178.4, 154.7, 138.7, 137.0, 134.1, 129.6, 125.0, 123.2, 123.1, 123.0, 115.9, 81.6, 19.52, 19.50. HRMS calcd for C₁₆H₁₅ClN₂O (M+H) 287.0946, found 287.0953. mp: 188-190 °C.

Compound **1k** (Table 1, entry k): Following general procedure A, **1k** was obtained in 51% yield (126 mg), white solid. ¹H NMR (300 MHz, DMSO- d^6) δ 10.21 (s, 1H), 7.21-6.95 (m, 5H), 6.87 (s, 2H), 6.51 (d, J = 7.4 Hz, 1H), 6.24 (s, 1H), 3.63 (d, J = 12.4 Hz, 1H), 3.06 (d, J = 12.4 Hz, 1H). ¹³C NMR (75.5 MHz, DMSO- d^6) δ 177.7, 144.0, 134.5, 130.9, 129.3, 128.4, 127.7, 126.5, 125.4, 119.2, 108.7, 78.6, 40.3. HRMS calcd for C₁₅H₁₃BrN₂O (M+H) 317.0284, found 317.0292. mp: 283-285 °C.

Compound **11** (Table 1, entry 1): Following general procedure A, **11** was obtained in 49% yield (97 mg), white solid. Following general procedure B, **11** was obtained in 48% yield (95 mg). ¹H NMR (300 MHz, DMSO- d^6) δ 7.53–7.14 (m, 6H), 6.87 (d, J = 8.3 Hz, 1H), 6.69 (dd, J = 8.3, 2.6 Hz, 1H), 6.54 (d, J = 2.5 Hz, 2H), 3.62 (s, 3H). ¹³C NMR (75.5 MHz, DMSO- d^6) δ 176.4, 154.5, 148.8, 142.3, 141.5, 128.2, 127.2, 124.8, 115.3, 113.2, 109.8, 83.3, 55.4. HRMS calcd for C₁₅H₁₄N₂O₂ (M+H) 255.1128, found 255.1132. mp: 179-181 °C.

Compound **1m** (Table 1, entry m): Following general procedure A, **1m** was obtained in 53% yield (98 mg), white solid. ¹H NMR (300 MHz, DMSO- d^6) δ 7.99 (s, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.22–7.06 (m, 2H), 7.01 (d, *J* = 7.1 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H), 6.86–6.46 (m, 3H), 6.32 (s, 1H), 1.74 (s, 3H). ¹³C NMR (75.5 MHz, DMSO- d^6) δ 176.5, 157.4, 139.4, 138.5, 134.7, 130.9, 129.0, 127.2, 126.3, 125.4, 122.3, 120.4, 115.2, 81.7, 18.4. ES-MS calcd for C₁₅H₁₄N₂O (M-H) 237.10, found 237.13. mp: 201-203 °C.

Compound **1n** (Table 1, entry n): Following general procedure A, **1n** was obtained in 67% yield (161 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 8.31 (d, J = 13.2 Hz, 1H), 8.16 (s, 1H), 7.90 (d, J = 7.3 Hz, 2H), 7.76–6.89 (m, 7H), 6.60 (s, 1H). ¹³C NMR (125 MHz, DMSO- d^6) \Box δ 178.6, 163.3, 156.0, 142.3, 135.1, 133.4, 129.3, 129.0, 128.8, 126.0, 125.3, 124.8, 124.1, 123.0, 122.2, 117.0, 81.5. HRMS calcd for C₁₈H₁₃ClN₂O (M+H) 309.0789, found 309.0787. mp: 234-236 °C.

Compound **10** (Table 1, entry o): Following general procedure B, **10** was obtained in 30% yield (63 mg), yellow solid. ¹H NMR (500 MHz, DMSO- d^6) δ 8.21 (s, 1H), 8.10 (d, J = 7.0 Hz, 1H), 7.67 (s, 1H), 7.56 (s, 1H), 7.33 (td, J = 14.8, 7.5 Hz, 5H), 7.07 (d, J = 8.6 Hz, 1H), 6.87 (s, 1H). ¹³C NMR (125 MHz, DMSO- d^6) δ 182.2, 164.9, 141.4, 140.9, 140.6, 128.5, 127.7, 126.9, 124.7, 117.7, 115.1, 82.3. HRMS calcd for C₁₄H₁₁N₃O₃ (M-H) 268.0728, found 268.0726. mp: 228-230 °C.

Compound **1p** (Table 1, entry p): Following general procedure B, **1p** was obtained in 40% yield (102 mg), white solid. ¹H NMR (500 MHz, DMSO- d^6) δ 10.92 (d, J = 1.7 Hz, 1H), 7.29 (t, J = 8.5 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.19 – 7.12 (m, 1H), 7.04 – 6.93 (m, 2H), 6.68 (dd, J = 8.8, 2.4 Hz, 1H), 6.49 (d, J = 2.2 Hz, 1H), 6.40 (s, 1H), 3.56 (s, 3H). ¹³C NMR (125 MHz, DMSO- d^6) δ 177.7, 154.6, 152.8, 141.6, 131.9, 128.5, 124.5, 124.1, 123.8, 122.6, 116.2, 114.7, 112.2, 110.7, 101.3, 80.5, 55.1. HRMS calcd for C₁₇H₁₄ClN₃O₂ (M+H) 328.0847, found 328.0849. mp: 149-151 °C.

Compound **1q** (Table 1, entry q): The product obtained following general procedure B was dissolved in a mixture of DCM and MeOH (2 mL, 1:1) and treated with HF/pyridine solution (0.3 mL) and stirred at room temperature for 30 minutes. The volatiles were removed *in vacuo*. The crude residue was purified by silica-gel column chromatography (0-20% MeOH/DCM) to obtain **1q** in 45% yield (118 mg) as a white solid. ¹H NMR (500 MHz, DMSO-*d*⁶) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.31 (s, 2H), 7.16 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.88 (d, *J* = 1.7 Hz, 1H), 6.84 (s, 1H). ¹³C NMR (125 MHz, DMSO-*d*⁶) δ 177.6, 155.4, 145.3, 143.1, 142.1, 129.0, 125.8, 125.3, 124.4, 122.6, 116.7, 82.9. HRMS calcd for C₁₄H₁₂ClN₃O₃S (M+H) 338.0361, found 338.0373. mp: 215-217 °C.

The structure of **3** (starting material) for entry r in Table 1 is

Compound **1r** (Table 1, entry r): grey solid. ¹H NMR (500 MHz, DMSO- d^6) δ 7.31 (s, 6H), 7.07 (dd, J = 37.0, 7.0 Hz, 2H), 6.90 (dd, J = 34.2, 27.6 Hz, 2H), 3.27 (s, 3H, peak overlaps with water peak from the NMR solvent). ¹³C NMR (125 MHz, DMSO- d^6) δ 173.5, 144.9, 142.7, 133.6, 127.6, 124.0, 121.5, 108.1, 78.6, 27.6. HRMS calcd for C₁₅H₁₄N₂O (M+H) 239.1179, found 239.1182. mp: 134-136 °C.

Compound 4a (Scheme 3): A microwave vial was charged with 3a (0.78 mmol, 1 equiv), allylamine (7.8 mmol, 10 equiv) under N_2 atmosphere. To this mixture was carefully added SnCl₄ (1M in CH₂Cl₂, 1.56 mmol, 2 equiv). The vial was capped and microwaved at 120 °C for 1 h. After decapping the vial, the reaction mixture was diluted with CH_2Cl_2 and quenched by adding 1M aq. NaOH solution was added and the layers were separated. The aqueous layer was extracted twice with CH₂Cl₂/*i*-PrOH mixture (while saturating the aq, phase with NaCl). Charcoal and MgSO₄ was added to the combined organic extracts and stirred for 1 h. The residue obtained after filtration (over celite) and concentration, was dissolved in minimal amount of CH₂Cl₂ and loaded directly onto the Biotage column preloaded with silica-gel (0-10% MeOH/CH₂Cl₂). The fractions containing the desired product were combined and evaporated. The white solid obtained was recrystallized from CH₂Cl₂/hexanes to afford 191 mg (82%) of **4a** as a white solid. ¹H NMR (300 MHz, DMSO- d^6) δ 7.49-7.31 (m, 6H), 7.15 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 7.9 Hz, 1H), 6.89 (s, 1H), 6.72 (s, 1H), 6.06–5.64 (m, 1H), 5.01 (dd, J = 26.2, 17.2 Hz, 2H), 3.92 (s, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*⁶) δ 176.7, 155.2, 142.9, 141.7, 134.8, 128.7, 128.3, 127.4, 124.6, 124.3, 122.5, 117.0, 115.1, 83.2, 44.0. HRMS calcd for C17H15CIN2O (M+H) 299.0946, found 299.0939. mp: 197-199 °C.

Compound **5** (Scheme 3): A microwave vial was charged with **3a** (0.78 mmol, 1 equiv), Ph_3SiNH_2 (1.56 mmol, 2 equiv), and *N*-Methyl morpholine (NMM, 3.12 mmol, 4 equiv) under N_2 atmosphere. To this mixture was carefully added SnCl₄ (1M in CH₂Cl₂, 1.56 mmol, 2 equiv). The vial was capped and microwaved at 120 °C for 1 h. After decapping the vial, the reaction mixture was diluted with CH₂Cl₂ and quenched by adding 1M aq. NaOH solution was added and the layers were separated. The aqueous layer was

extracted twice with CH₂Cl₂/*i*-PrOH mixture (while saturating the aq. phase with NaCl). Charcoal and MgSO₄ was added to the combined organic extracts and stirred for 1 h. The residue obtained after filtration (over celite) and concentration, was dissolved in minimal amount of CH₂Cl₂ and loaded directly onto the Biotage column preloaded with silica-gel (0-10% MeOH/CH₂Cl₂). The fractions containing the desired product were combined and evaporated. The white solid obtained was recrystallized from CH₂Cl₂/hexanes to afford 242 mg (60%) of **5** as a white solid. ¹H NMR (300 MHz, DMSO-*d*⁶) δ 7.37 (ddd, *J* = 20.4, 15.6, 7.3 Hz, 22H), 6.99 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.60 (d, *J* = 8.2 Hz, 1H), 6.17 (d, *J* = 2.1 Hz, 1H). ¹³C NMR (75.5 MHz, DMSO-*d*⁶) δ 176.2, 156.4, 141.2, 139.6, 135.1, 134.5, 133.9, 130.0, 129.3, 128.6, 127.7, 124.4, 124.2, 123.6, 116.7, 85.7. HRMS calcd for C₃₂H₂₅ClN₂OSi (M+H) 517.1497, found 517.1507. mp: 172-174 °C.

Chiral SFC Chromatogram:

X-Ray Structure of 1a

