Supplementary Information: AiiDA 1.0, a scalable computational infrastructure for
automated reproducible workflows and data provenance

A. Architecture differences with earlier AiiDA
versions

While the ADES model and the overall goals of AiiDA
have remained the same as those originally published in
Ref. [S1], AiiDA now comes with many new features over
the 0.x series, with the first public release in Feb 2015 and
including 9 major releases and 20 releases in total (ai-
ida.net/download); most of the code has been completely
redesigned. Improvements aimed towards making AiiDA
scalable, and able to support high-throughput compu-
tational loads consisting of high-performance computing
(HPC) jobs of various size, making it more flexible by
simplifying the protocols by which it can be extended,
and providing tools and interfaces to facilitate its use. A
schematic overview of the architecture is shown in Fig. 1
of the main paper.

The engine, the component responsible for running
all calculations and workflows, is described in detail in
“The engine” section of the main paper. In a nutshell,
the switch from a polling-based design to an event-based
one allows the engine to react instantaneously to state
changes, making it much more responsive. In addition,
the new engine is made scalable by allowing an arbitrary
number of independent workers to operate in parallel,
supporting now sustained throughputs of more than tens
of thousands of processes per hour. Communication be-
tween and with the workers is provided by the RabbitMQ
message broker (rabbitmgq.com) through the pika client
library (pypi.org/project/pika).

In addition to increased efficiency, the engine has also
been made more robust and now comes with built-in er-
ror handling for transient problems, such as connection
issues or computational clusters going offline unexpect-
edly. Failed executions are automatically rescheduled
and, if repeated consecutive failures occur, the calcula-
tions are paused such that the problem can be inves-
tigated by the user. The new engine also comes with
improvements in terms of usability. The new workflow
language is much more expressive and enables the writ-
ing of auto-documenting and reusable workflows.

The two different concepts of calculations and work-
flows, which behaved and were implemented differently in
earlier versions of AiiDA, have now been fully integrated
with a homogenised interface, while the entire provenance
graph is still stored in PostgreSQL (postgresql.org), a
Relational Database Management System (RDMS). As
part of the integration of calculations and workflows, the
latter are now also fully part of the provenance graph,
with the links between them explicitly represented. For
this reason the ontology of the AiiDA provenance graph
has been revisited and rigorously defined as described
in “The provenance model” section of the main paper.

The extended provenance graph provides more valuable
information to the user, while giving them full control
over the level of detail with which to inspect it. To fa-
cilitate efficient queries of data and provenance, a dedi-
cated tool has been developed, the QueryBuilder, allowing
users to write advanced graph queries directly in the fa-
miliar Python syntax. The queries are translated to SQL
using SQLAlchemy (sqlalchemy.org), a powerful object-
relational mapping (ORM) library, which has also been
used as a fully-fledged ORM implementation in addition
to the original one using Django (djangoproject.com). To
allow different ORMs in AiiDA, the original implementa-
tion, initially tightly coupled to Django, was decoupled
and an abstract AiiDA frontend ORM was constructed.
This new ORM interface provides a stable API for the
user, independent of the backend implementation and
makes it easy to implement other backend solutions.

A completely new way of accessing the AiiDA prove-
nance graph is provided by a REST API server (see “The
REST API” section in the main paper) that allows one to
retrieve data over HTTP(S) requests. This new compo-
nent enables users to browse the provenance graph pro-
grammatically, and implement custom interfaces like the
graphical one provided by the Materials Cloud [S2] web
platform.

One of the original methods of interacting with
AiiDA, the command line interface (CLI) verdi has
been significantly improved. The management of
command-line input has been replaced with the mature
Click (click.palletsprojects.com) library. This guarantees
an interface that behaves consistently across all com-
mands and makes it easy to reuse components for ad-
ditional CLIs that can be distributed through plugins.

Finally, plugins to extend AiiDA’s core functionality
are now easier to write, share and install thanks to a
new flexible plugin system (see “The plugin system” sec-
tion in the main paper). Although the original version of
AiiDA already allowed its functionality to be extended
through plugins, the code had to be placed in the source
tree of AiiDA itself, tightly coupling the development cy-
cle of the core code and of the plugins. The new sys-
tem allows plugins to be developed independently and
to be installed with a single command. A plugin reg-
istry (aiidateam.github.io/aiida-registry/) has been de-
ployed, serving as a central place where users can discover
existing plugins.

The combination of all these changes, which are dis-
cussed in detail in the following sections, aim to make
AiiDA 1.0 into a powerful and flexible workflow and data
management system ready to manage high-throughput
HPC jobs on future exascale machines.

http://www.aiida.net/download/
http://www.aiida.net/download/
https://www.rabbitmq.com
https://pypi.org/project/pika/
http://www.postgresql.org/
http://www.sqlalchemy.org/
http://www.djangoproject.com
https://click.palletsprojects.com/en/7.x/
https://aiidateam.github.io/aiida-registry//

B. Engine details

This section provides some more detail on the internal
design and functionality of the engine (for a complete
description, see Ref [S3]).

1. Process runners and the AitDA daemon

When a process is launched, an instance of the rele-
vant Process subclass is created and assigned to a pro-
cess runner (or simply runner), which runs it to com-
pletion. Each runner has an internal event loop, which
allows it to run multiple AiiDA processes concurrently in
a single thread using coroutines (i.e., functions that can
yield control during execution when they need to wait
for some long-running action to happen; the event loop
can then give control to other coroutines that had previ-
ously yielded and are ready to continue). Additionally,
each runner has access to a persister, which implements
the logic to serialise and store the state of a process as a
checkpoint (in the specific implementation of AiiDA, by
serialising the process instance to YAML format and stor-
ing it in the database as an attribute of the corresponding
node). This mechanism allows interrupted processes to
be restarted, eliminating the need to re-execute code that
was already run even if the runner is completely stopped.

The simplest implementation of the runner is the local
one, meaning that the process is executed in the current
Python interpreter and blocks it until all processes have
finished. However, this approach does not scale well for
large numbers of processes. AiiDA therefore implements
daemon runners, that operate exactly like local runners,
except that they are spawned in a separate system pro-
cess that is ran in the background. We stress here the
difference between an AiiDA process, i.e., an entity spe-
cific to AiiDA that has data as inputs and as outputs;
and a system process, e.g., a Windows or Unix process,
that represents the execution of an executable in a com-
puter operating system. Each daemon runner is fully
independent from the others and special care has been
devoted in the implementation to allow to run multiple
runners in parallel without concurrency issues when ac-
cessing the database. Given that the daemon runners
operate in separate system processes, a message broker
is employed to allow communication with and among the
runners, as discussed in the next section.

Daemon runners are spawned and controlled by a sin-
gle main daemonised process, implemented by the circus
library (circus.readthedocs.io). AiiDA’s verdi command
line interface provides easy commands to start and stop
the daemon, inspect the status of the daemon runners it
controls, and to increase or reduce the number of active
runners.

2. Process communication via the RabbitM(@Q message
broker

Communication with the runners and among run-
ners is provided by the RabbitMQ message broker (rab-
bitmgq.com). Each daemon runner subscribes to a special
task queue on the message broker to which newly sub-
mitted processes are added as tasks. The contents of
the task queue are persisted to disk by the broker, so
that even after an interruption (for example a machine
restart), uncompleted tasks can be reloaded and resent
to the runners. The combination of queue persistence,
together with the automatic checkpointing of AiiDA pro-
cesses performed by the engine, ensures that interrupted
processes can continue from the last checkpoint, reducing
the loss of computational time to the minimum.

The implementation of RabbitMQ and the configura-
tion of the task queue guarantee that each task is only
sent to exactly one runner at a time and will eventually
be executed. A task is kept in the queue until it is ex-
plicitly acknowledged as completed by the runner that
received it. The broker monitors subscribed runners by
sending a periodic “heartbeat” call. If the runner fails
to respond within a certain interval twice consecutively,
the runner is considered unreachable and tasks assigned
to it are redistributed. To prevent runners from missing
the heartbeat call while the main thread is under heavy
load, all communication with the broker is performed on
a separate thread. In order to avoid race conditions in
database updates, the communication thread has no ac-
cess to the database but only schedules callbacks on the
event loop of the main thread, and forwards broadcasts
to the broker.

When a runner receives a task to run a process, it
subscribes to a dedicated channel for that specific pro-
cess. In such a way, interaction with live processes (e.g.,
to pause, restart or kill them) is possible by sending re-
mote procedure calls (RPCs) over the appropriate chan-
nel. Conversely, processes can also emit state changes
through their runner’s communicator. These are broad-
cast to subscribed listeners (e.g., a parent workflow wait-
ing for all of its subworkflows to finish) that can then
respond with an appropriate action. This event-based
model makes the AiiDA engine able to reply almost in-
stantaneously to events, without the need to periodically
poll and check the process states, which would be much
more CPU-intensive and less reactive.

C. Query builder syntax example

To provide a concrete example of the query builder syn-
tax, as implemented in AiiDA’s QueryBuilder class, we
show in Fig. S1 a sample query together with a graphical
representation of its action and result. In this example,
we query for calculations run with a specific code to com-
pute the total energy of a crystal structure after having
relaxed it to within a certain threshold. The goal is to

https://circus.readthedocs.io/en/latest/
https://www.rabbitmq.com
https://www.rabbitmq.com

OO U W

= e
=W = O ©

gb = QueryBuilder ()

gb.append(CalcJobNode,
tag='calculation')

gb.append(Code,
filters={'label': 'my-code'},
with_outgoing="'calculation')

gb.append (Dict,
with_outgoing='calculation',
filters={'attributes.type': 'relax'},
project=['attributes.threshold'])

gb.append (Dict,
with_incoming='calculation',
edge_filters={'label': 'results'},
project=['attributes.energy'])

node type: Code O O node type: Dict
label: 'my-code’ type: 'relax’

node type:
CalcJobNode
Rl chreshoid |
ener
st
1E-4 -148.2937
1E-5. -287.9421

node type: Dict O

FIG. S1: Top: a query builder graph query to filter all
calculations that computed the energy of a structure
after relaxing it to within a certain threshold, using a

code labeled my-code. The result will be a pair of
values for each matching result, containing the
relaxation threshold (threshold) and the computed
total energy (energy), retrieved from the attributes of
the appropriate nodes. The details of the query syntax
are explained in the main text. Bottom: graphical
representation of the same query.

obtain the total energy of the structure as a function of
the relaxation threshold.

To run a new query, first a new query object gb is cre-
ated (line 1). Nodes to be matched are specified by using
the append method of the query object, in which also ad-
ditional filters can be declared together with the relation
to the other nodes in the query. Finally, “projections”
indicate which specific properties of the node should be
returned as query results.

To perform the query, we first instruct that we are
looking for CalcJobNodes (lines 2-3) that we tag as
calculation to be able to refer to it later when defin-
ing inter-node relationships. The calculation should have
a code (line 4) with label my-code (line 5) as an input
(line 6). Additionally, the calculation should have a Dict

input (line 7-8) containing an attribute type with value
relax (line 9). Instead of the entire input dictionary, we
request only the value of the threshold attribute to be
returned (line 10). Finally, the calculation needs to have
an output Dict node (lines 11-14) connected by a link
with label results (line 13), and we project the energy
attribute (line 14).

To evaluate the query, one can then simply run the
method gb.all() that returns a list of results, one for
each subgraph matching the query. Each result is an
ordered list of the values that were defined by the pro-
jections, in this case the two values (threshold, energy).
The final query result then has the form [(thresholdl,
energyl), (threshold2, energy2), ...].

D. Example of a work chain and calculation
function

To showcase the interface of AiiDA’s workflow lan-
guage described in the “The engine” section of the main
paper, we implement a simple Fibonacci number calcu-
lator. The Fibonacci sequence is defined as:

IN=[fNn-1+ fN-2 (S1)
where fo = 0 and f; = 1. Fig. S2(a) shows a possi-
ble implementation using a work chain and a calculation
function. The outline codifies the logical sequence of
the work chain. The first step initialize will set some
context variables, such as an iteration counter and the
initial Fibonacci numbers fy and f;, which correspond to
previous and current, respectively. The ctx member
of the work chain is a context that is persisted between
the logical steps and can be used to transfer information
between them. The while_ logical construct is used to
tell the workflow to iterate until NV — 1 iterations have
been performed. Each iteration consists of summing the
integers in the previous and current variables, which
directly corresponds to Eq. (S1). For this addition the
add calculation function is called such that the prove-
nance is kept. Finally, after N iterations, the current
value is returned as the requested Fibonacci number in
the results step.

Fig. S2(b) shows the provenance graph that is pro-
duced by AiiDA when running the Fibonacci work
chain. Note that not only the work chain with the
initial input and the final answer is represented, but
also all individual additions performed along the way,
with their intermediate results. This implementation of
a Fibonacci sequence calculator, while clearly overengi-
neered, shows how arbitrary logic can be implemented in
AiiDA’s workflow language and how provenance is auto-
matically stored.

[S1] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and
B. Kozinsky, Computational Materials Science 111, 218

(2016).

http://dx.doi.org/ 10.1016/j.commatsci.2015.09.013
http://dx.doi.org/ 10.1016/j.commatsci.2015.09.013

38

Qcalcfunction
def add(x, y):
return x + y

class Fibonacci(WorkCha

Q@classmethod

def define(cls, spec)

in):

super (Fibonacci,
spec.input ('N',

cls).define (spec)
valid_type=orm.Int,

help='Compute the Nth Fibonacci number.'

)
spec.outline (
cls.initialize,

while_(cls.should_iterate)(

cls.iterate),
cls.results)
spec.output ('number

def initialize(self):
self.ctx.iteration
self .ctx.previous =
self.ctx.current =

def should_iterate(se

return self.ctx.iteration < self.inputs.N -

def iterate(self):
previous = self.ctx
self.ctx.current =
self.ctx.previous
self.ctx.previous =
self.ctx.iteration

def results(self):
self.out ('number',

number = run(Fibonacci,

', valid_type=orm.Int)

=0
orm.Int (0)
orm.Int (1)

1f):

.current

add (

, self.ctx.current)
previous

+= 1

self.ctx.current)

N=orm.Int (5))

1

ETURN

sum

\

1

Int (620£407¢)
value:
i
‘INPUT,WORK
l
I
v
i (L2 A7) Int (ae7929c4) Int (flc6befc)
State: finished value: 0 value: 1
Exit Code: 0 ue: ue:
N . CALL_CALC[INPUT_CALC /INPUT_CALC|
.. CALL X y
add (85ebf0a3)
State: finished
Exit Code: 0
" CALL_CALC ICREATE INPUT_CALC
. CALL result X
Int (1bdd5585)
value: 1
"CALL_CALC NPUT_CALC
.~ CALL ‘ y
4
add (4b9fe091)
State: finished
Exit Code: 0
:CALL7CALC INPUT_CALC [CREATE
+ CALL X result
Int (8d957¢57)
value: 2
INPUT_CALC|
. y
\J
add (c7bd196¢)
State: finished
Exit Code: 0
‘CREATE INPUT_CALC
: result X
. Int (6f87cb94)
N value: 3
. INPUT_CALC
y
1
add (0e50989)
State: finished

Exit Code: 0

‘CREATE
result

Int (7e3f4094)
value: 5

FIG. S2: (a) Example implementation to compute the N*" Fibonacci number using AiiDA’s workflow engine. The
Fibonacci work chain implements Eq. (S1) and leverages the add calculation function to perform the additions. (b)
Provenance graph of the execution of the Fibonacci work chain with V = 5 as input, executed with the last line of
panel (a) and returning f5 = 5 as a result.

[S2] L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich,
V. Granata, F. Gargiulo, M. Borelli, M. Uhrin, S. P.
Huber, S. Zoupanos, C. S. Adorf, C. W. Andersen,
O. Schiitt, C. A. Pignedoli, D. Passerone, J. VandeVon-

dele, T. C. Schulthess, B. Smit, G. Pizzi, and N. Marzari,
in preparation (2020).

[S3] M. Uhrin, S. P. Huber, J. Yu, N. Marzari, and G. Pizzi,
ArXiv e-prints (2020), 2007.10312.

https://arxiv.org/abs/2007.10312
http://arxiv.org/abs/2007.10312

	Supplementary Information: AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
	Architecture differences with earlier AiiDA versions
	Engine details
	Process runners and the AiiDA daemon
	Process communication via the RabbitMQ message broker

	Query builder syntax example
	Example of a work chain and calculation function

	References

