
iScience, Volume 23
Supplemental Information
Kinetic Trans-omic Analysis Reveals Key

Regulatory Mechanisms for Insulin-Regulated

Glucose Metabolism in Adipocytes

Satoshi Ohno, Lake-Ee Quek, James R. Krycer, Katsuyuki Yugi, Akiyoshi
Hirayama, Satsuki Ikeda, Futaba Shoji, Kumi Suzuki, Tomoyoshi Soga, David E.
James, and Shinya Kuroda



DA

B
1 time interval

time

fl
u

x

2 time intervals

time

fl
u

x

3 time intervals

time

fl
u

x

Flux estimation under 

1 time interval

Flux estimation under 

2 time intervals

C

Shared confidence intervals 

not at all time points

Shared confidence intervals

at all time points

2 time intervals 1 time intervals

Flux estimation under reaction-

dependent number of time intervals

E

Initialize parameters (𝜃 ∈ 𝜃𝑀𝑂, 𝜃𝑄𝑃 )

Solve QP problem to fit 𝜃𝑄𝑃 to measured 

metabolite levels under the given 𝜃𝑀𝑂

Evaluate wRSS between measured 

and estimated metabolite levels

and mass isotopomer fractions

Perform local 

optimization of 𝜃

Stopping criteria 

satisfied?
(e.g. max. # of evaluation)

Perturb 𝜃𝑀𝑂

Yes

No

Metaheuristic 

optimization

Estimated 

parameter 𝜃𝑜𝑝𝑡

F

Network stoichiometry

Carbon atom transition

# of time intervals

ODE model based on 

mass-balance

𝑑𝒄

𝑑𝑡
= 𝑺𝒗 𝑡

𝑑𝒙

𝑑𝑡
= 𝑨 𝒗 𝒙 + 𝑩 𝒗 𝒚

Metabolite concentrations and 

mass isotopomer fractions 

using 13C-glucose
(this study and Krycer et al, 2017) 

Fluxes changes and the 

confidence intervals

Metabolites Mass isotopomers

# of time 
intervals

z-score to 
determine # of 
time intervals

# of 
parameters RSS AIC

1 - 212 4991 2112

2 - 335 2199 1415

3 - 458 1906 1497

4.00 231 3929 1875

3.00 249 3325 1719

2.00 266 2857 1579

1.50 273 2693 1525

1.00 281 2678 1534

0.75 294 2546 1502

0.60 315 2242 1397

0.50 329 2212 1410

0.40 346 2128 1400

0.30 377 2081 1436

fl
u

x

fl
u

x

fl
u

x

time time

𝑡1 𝑡1 𝑡2

time

reaction 

dependent



Figure S1. Procedures of estimation of flux changes under non-steady-state conditions. Related to Figures 2 and 3.

(A) Overview of estimation of flux changes under non-steady-state conditions. 

(B) Flux described as a piecewise linear function in the time domain with switch times (times when the slope of flux 

changes). The switch times are represented as t1 under 2 time intervals, and as t1 and t2 under 3 time intervals.

(C) Determination of reaction-dependent number of time intervals (see Transparent Methods).

(D) AIC of the models with the same number of time intervals among all reactions and the model with reaction-dependent 

number of time intervals. AIC is defined as N log(wRSS/N) + 2p, where N is the number of residuals and p is the number of 

parameters. 

(E) Optimization procedure of parameters using quadratic programming (QP) (see Transparent Methods). 

(F) Convergence profiles of metaheuristic optimization with or without use of QP under one time interval. The same number 

of time intervals was set among all reactions. The lines connect the median values among 30 independent optimizations. 

The box encompasses the 25th to 75th percentiles, and the whiskers indicate the maximum and minimum values. The 

medians of the wRSS were compared between optimizations with and without use of QP using Wilcoxon rank-sum test with 

the Bonferroni multiple testing correction. P values < 0.01 were considered statistically significant and are indicated with an 

asterisk (*). Metaheuristic optimization without use of QP under two and three time intervals was not able to be performed 

under our optimization condition because initial parameters in the optimization were not updated even after one week.
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Figure S2. All measured and estimated metabolite concentrations and mass isotopomer fractions. Related to 

Figure 2.

(A) All measured and estimated metabolite concentrations and mass isotopomer fractions. The circles and the error bars 

indicate the mean and the standard deviations of the measurements from 3 separate experiments (Krycer et al., 2017). The 

lines and the shaded areas indicate optimal estimates with the 90% confidence intervals. M+i indicates mass isotopomer 

with i carbons labelled with 13C. The numbers next to the metabolite names indicates R2 values between measured and 

estimated concentrations or mass isotopomer fractions. Note that media were exchanged at 0 min in both the conditions. 

The optimal estimates can be outside the confidence intervals due to sampling from a truncated multivariate normal 

distribution and the curse of dimensionality (Verleysen and François, 2005). Abbreviations of metabolites are defined in 

Table S1, and the data of estimated concentrations are shown in Table S2.

(B) Scatter plots of all measured and estimated metabolite concentrations and mass isotopomer fractions. Measured and 

estimated metabolite concentrations are shown as fold changes to measured concentrations at 1 min. 
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Figure S3. All estimated flux changes. Related to Figure 3.

The lines and the shaded areas indicate optimal estimates (Table S2) with the 90% confidence intervals. Error bars indicate 

the 90% confidence intervals at switch times (times when the slope of flux changes), as well as 0 and 60 min. Number of 

time intervals (and switch times) were set among reactions (see Transparent Methods). The confidence intervals were 

calculated from 200 sets of sampled parameters under constraints based on the covariance matrix of the estimated 

parameters (see Transparent Methods). Note that the optimal estimates can be outside the confidence intervals due to 

sampling from a truncated multivariate normal distribution and the curse of dimensionality (Verleysen and François, 2005). 

Abbreviations of reactions are defined in Table S1, and the data of estimated fluxes are shown in Table S2.
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Figure S4. Time courses of regulation coefficients and comparison of Michaelis-Menten constants estimated in this 

study with those experimentally measured. Related to Figure 5.

(A) Time courses of regulation coefficients of enzyme phosphorylation (ρP), allosteric effectors (ρA), substrates and products 

(ρS), and unaccounted regulators (ρU). The regulation coefficients were calculated at 1, 5, 10, 20, and 60 min. The lines 

indicate regulation coefficients calculated from optimal estimates of parameters in our metabolic flux analysis. Error bars 

indicate the 90% confidence intervals. The confidence intervals were calculated from 200 sets of sampled parameters (see 

Transparent Methods). Abbreviations of reactions are defined in Table S1.

(B) Comparison of Michaelis-Menten constants estimated in this study with those reported in the BRENDA database for all 

reaction (left) and for only reaction with the time averaged ρU smaller than 0.5 (right). The dots represent the geometric 

mean of the measured KM values versus estimated KS or KP values using optimal flux estimates in the metabolic flux 

analysis. The error bars of measured values represent the geometric standard deviations and the error bars of estimated 

values represent 90% confidence intervals, calculated from 200 sets of sampled parameters. N represents the number of 
dots. The regression lines of the dots, Pearson’s correlation coefficients (R), and the p-values are shown.
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Figure S5. Time-averaged regulation coefficients and comparison of 13C-metabolic fluxes with kinetic fluxes for all 

reactions. Related to Figure 6.

(A) Time-averaged regulation coefficients of enzyme phosphorylation (ρP), allosteric effectors (ρA), substrates and products 

(ρS), and unaccounted regulators (ρU). Error bars indicate the 90% confidence intervals. The confidence intervals were 

calculated from 200 sets of sampled parameters (see Transparent Methods). Note that the optimal estimates can be outside 

the confidence intervals due to sampling from a truncated multivariate normal distribution and the curse of dimensionality 

(Verleysen and François, 2005).

(B) Comparison of 13C-metabolic fluxes (𝑣), estimated by metabolic flux analysis under non-steady state conditions, with 

kinetic fluxes (𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐) for all reactions. Abbreviations of reactions are defined in Table S1.

Ins, 13C-metabolic flux (𝑣)

Ctrl, 13C-metabolic flux  (𝑣)

Ins, kinetic flux (𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐)
Ctrl, kinetic flux (𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐)
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Figure S6. Comparison of fluxes between this study and Quek et al, 2020. Related to Figure 3.

(A-B) All of estimated flux changes in this study and Quek et al, 2020 in the Ins (A) and Ctrl (B) conditions. In this study, the 

optimal estimates and the 90% confidence intervals are shown. In Quek et al., the median values of fluxes among Monte-

Carlo sampling and the 90% confidence intervals are shown. Abbreviations of reactions are defined in Data S1F. 
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Figure S7. Scatter plots of estimated fluxes from this study and Quek et al, 2020. Related to Figure 3.

(A) Estimated fluxes through all reactions at all of 1, 5, 10, 20, 40, and 60 min. In this study, the optimal estimates and the 

90% confidence intervals are shown. In Quek et al., 2020, the median values of fluxes among Monte-Carlo sampling and 

the 90% confidence intervals are shown. Pearson’s correlation coefficients are shown in parentheses. Note that the optimal 

estimates in this study can be outside the confidence intervals due to sampling from a truncated multivariate normal 

distribution and the curse of dimensionality (Verleysen and François, 2005).

(B) Estimated fluxes through all reactions at each time point (1, 5, 10, 20, 40, and 60 min). 

(C) Estimated fluxes through each reaction at all time points (1, 5, 10, 20, 40, and 60 min). Abbreviations of reactions are 

defined in Data S1F. 
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Figure S8. The estimated flux through Pfk1 and the measured amounts of F6P, F1,6BP and F2,6BP. Related to 

Figure 5.

(A) The estimated flux through Pfk1, same as in Figures 3B and S3. 

(B) The measured amounts of F6P, F1,6BP and F2,6BP. The circles and the error bars indicate the mean and the standard 

deviations of the measurements from 3 separate experiments.



TRANSPARENT METHODS 

13C-metabolic flux analysis under non-steady-state conditions  

Metabolic network model  

A metabolic network model was constructed for metabolic flux analysis under non-steady-state 

conditions (Figures 3A and Table S1). The model consists of 26 internal metabolites and 41 

reactions (Table S1) and includes reactions of glycolysis, TCA cycle, PP pathway, anaplerotic 

reactions, glycogen synthesis and degradation, and TG synthesis and degradation. Although 

glucose production in adipocytes has not been reported (Cherrington, 1999), Pck2 was included in 

the model because Pck2 protein was expressed in adipocytes in our previous study (Humphrey et 

al., 2013).  

Because G6P and F6P are adjacent and their isotopic ratios were similar, these metabolites were 

considered to be in rapid equilibrium and were summed as one metabolite, G6P_F6P for simplicity 

(Figure 3A, Table S1). Similar to G6P and F6P, malate and fumarate were summed as one 

metabolite, Mal_Fum, and citrate, aconitate, and isocitrate were summed as one metabolite as 

Cit_Acon_Icit. Also, 3-phosphogluconate and 2-phoshogluconate, and F1,6BP and F2,6BP were 

summed as one metabolite, 3PG_2PG and FBP, respectively, because these metabolites were not 

separated by capillary electrophoresis-mass spectrometry (CE-MS) under our experimental 

conditions (Krycer et al., 2017). It should be noted that F1,6BP and F2,6BP were separated by ion 

chromatography-mass spectrometry (IC-MS) as described later, but we used the summed FBP in 

the metabolic network for metabolic flux analysis to use intracellular metabolome data obtained 

under the same measurement condition.  

In the PP pathway, ribose 5-phosphate, ribulose 5-phosphate, and xylulose 5-phosphate were 

summed as one metabolite as P5P because ribulose 5-phosphate and xylulose 5-phosphate were 

not measured in our previous study (Krycer et al., 2017). To simplify the network model, erythrose 

4-phosphate (E4P) and sedoheptulose 7-phosphate (S7P) were omitted in the PP pathway, and 

reactions associated with E4P and S7P were merged as one reaction (Table S1).  

In TG synthesis, one molecule of TG is synthesized from one molecule of glycerol 3-phosphate 

and three molecules of fatty acids through the Gpat reaction. Fatty acids are synthesized from 

citrate through a series of reactions, for which Acly reaction is the first and important step in fatty 

acid synthesis (Potapova et al., 2000). We assumed that adipocytes in this study have the same 

fatty acid composition of TG as adipocytes of rats in a previous study (Body, 1988), leading to 

average 17.1 carbon atoms in fatty acids in TG. Therefore, we defined TG synthesis reaction in the 

model as Gpat_Acly, where one molecule of TG is synthesised from one molecule of glycerol 3-



phosphate and 25.7 molecules of citrate. We did not include lipids other than TG in the model, 

because TG represents 90% of lipids in adipose tissue of animals (Body, 1988). Similar to TG 

synthesis, we described a reaction of TG degradation in which 25.8 molecules of acetyl-CoA are 

synthesized from one molecule of TG. ATP is not included in the model, because there are various 

reactions that consume ATP and including ATP would not affect overall fluxes in glucose 

metabolism. Compartmentation of reactions into cytoplasm and mitochondria was not considered 

and estimated fluxes using this model represents averaged fluxes, assuming a whole cell as a 

single compartment.  

 

Flux change as a piecewise linear function of time 

To model flux changes (Figures 2, 3 and Figures S1, S2, S3), we needed to describe flux changes 

as a function of time. Similar to previous studies (Abate et al., 2012; Leighty and Antoniewicz, 

2011), flux changes were defined as a continuous piecewise linear function in the time domain with 

switch times (𝑡1, 𝑡2, .. 𝑡𝐾) between 𝑡0 (0 min) and 𝑡K+1 (60 min) (Figure S1B). Flux changes in a 

time interval between 𝑡𝑘 and 𝑡𝑘+1 were described by  

𝒗(𝑡) = 𝒗𝑘 +
𝒗𝑘+1 − 𝒗𝑘
𝑡𝑘+1 − 𝑡𝑘

(𝑡 − 𝑡𝑘),   𝑡k ≤ 𝑡 ≤ 𝑡𝑘+1, (1) 

where 𝒗 is a vector of flux changes, and 𝒗𝑘 is a vector of fluxes at 𝑡𝑘. All functions for flux 

changes have the same switch times. Reversible reactions were modelled as separate forward and 

backward fluxes. 

 

Equations for describing changes of metabolite concentrations over time under non-steady-state 

conditions 

The mass balance equation of metabolites for flux estimation can be described by 

𝑑𝒄

𝑑𝑡
= 𝑺𝒗, (2) 

where c is metabolite concentrations in the metabolic network, and S is the stoichiometric matrix of 

the metabolic network. The integration of Equation (2) can be described by 

𝒄(𝑡) = 𝒄0 + 𝑺∫ 𝒗𝑑𝑡
𝑡

0

. (3) 

Because 𝒗 is a vector of piecewise linear function of time, Equation (3) can be solved analytically. 

These equations were used to generate the graphs shown in Figure 2, Figure S2 and data in Table 

S2. 



 

Equations for describing changes of mass isotopomer fractions over time under non-steady-state 

conditions 

The elementary metabolite unit (EMU) framework (Antoniewicz et al., 2007; Young et al., 2008) was 

used to efficiently simulate mass isotopomer fractions (Figure 2, Figures S1 and S2). In EMU 

framework, a decomposition method is used to break isotopomers into EMUs to reduce 

computational burden. Each EMU includes a subset of metabolite atoms that are directly involved in 

precursor-product relationships. EMUs are organized into size blocks, for which size refers to the 

number of atoms included in the EMU. In EMU framework, mass isotopomer fractions of EMUs are 

sequentially simulated from smallest to largest size blocks.  

Metabolic flux analyses using the EMU framework have been applied to metabolism under 

steady-state conditions (Young et al., 2008). Here, we developed an EMU framework that can be 

applied to metabolism under non-steady-state conditions. The EMU balance equations for nth size 

block under non-steady-state conditions can be expressed by  

𝑑 diag(𝒄𝑛)𝒙𝑛
𝑑𝑡

= 𝑨𝑛𝒙𝑛 +𝑩𝑛𝒚𝑛, (4) 

where 𝒙𝑛 is a vector of mass isotopomer fractions of EMUs. 𝒄𝑛 is a vector of concentrations 

corresponding to EMUs in 𝒙𝑛, and diag(𝒄𝑛) is a diagonal matrix whose elements are 𝒄𝑛. 𝒚𝑛 is a 

vector of mass isotopomer fractions of EMUs that are previously simulated inputs to the nth size 

block. Each EMU that comprises the 𝒙𝑛 and 𝒚𝑛 vectors is defined by the metabolite name and the 

subset of atoms it includes. 𝑨𝒏 and 𝑩𝑛 are functions of flux (v) and defined as follows: 

𝑨𝑛(𝑖, 𝑗) = {
− sum of fluxes consuming 𝑖th EMU in 𝒙n, 𝑖 = 𝑗
flux to 𝑖th EMU in 𝒙 from 𝑗th EMU in 𝒙𝑛, 𝑖 ≠ 𝑗

 (5) 

𝑩𝑛(𝑖, 𝑗) = flux to 𝑖th EMU in 𝒙𝑛 from 𝑗th EMU in 𝒚𝑛. (6) 

Here, mass balance of metabolite concentrations corresponding to EMUs in 𝒙𝑛 can be described 

as follows:  

𝑑𝒄𝑛
𝑑𝑡

= 𝑺𝑛𝒗, (7) 

where 𝑺𝑛 is the stoichiometric matrix with each row representing the metabolite corresponding to 

EMUs in 𝒙𝑛. By combining Equations (4) and (7), we can rewrite EMU balance equations: 

𝑑𝒙𝑛
𝑑𝑡

= (diag(𝒄𝑛))
−1
((𝑨𝑛 − diag(𝑺𝑛𝒗))𝒙𝑛 + 𝑩𝑛𝒚𝑛). (8) 

We used Equation (8) to simulate mass isotopomer fractions of EMUs. Simulated mass isotopomer 



fractions of a metabolite were obtained from the corresponding EMU with a size that is the same as 

the number of skeletal carbon atoms in the metabolite. Equation (8) was solved numerically using 

MATLAB function ode15s with absolute tolerance of 5×10-4, relative tolerance of 5×10-4, maximum 

order of formula of 3, and specified Jacobian sparsity pattern. Extracellular glucose was the only 

carbon source that uniformly labelled with 13C and was assumed to have atomic purity of 99%.  

 

Parameter estimation 

Parameters θ including switch times (𝑡1, 𝑡2, .. 𝑡𝐾), fluxes (𝒗𝑘, 𝑘 ∈ {0,1, … , 𝐾 + 1}), and initial 

metabolite concentrations (𝒄0) were estimated by minimizing the variance-weighted residual sum of 

squared errors (wRSS) between measured and simulated metabolite concentrations and mass 

isotopomer fractions according to the following equation (Figures 2 and 3, Figures S1 and S3): 

Min.
𝜽

wRSS = (𝒄𝑚𝑒𝑠 − 𝒄)𝑇Σ𝑐
−1(𝒄𝑚𝑒𝑠 − 𝒄) + (𝒙𝑚𝑒𝑠 − 𝒙)𝑇Σ𝑥

−1(𝒙𝑚𝑒𝑠 − 𝒙),

s. t. 𝒄 ≥ 𝟎,                                                
𝒄0,Ins = 𝒄0,Ctrl,                                         

𝒗0,Ins = 𝒗0,Ctrl,                                         

𝜽LB ≤ 𝜽 ≤ 𝜽UB,                                        
𝑡𝑘+1 > 𝑡𝑘 + 𝜖,       𝑘 ∈ {0,1,… , 𝐾},                      

   (9) 

where 𝒄𝑚𝑒𝑠 and 𝒙𝑚𝑒𝑠 are vectors of the measured metabolite concentrations and mass 

isotopomer fractions, respectively (Data S1A). Σ𝑐 and Σ𝑥 are diagonal matrices containing 

measurement variances of metabolite concentrations and mass isotopomer fractions, respectively. 

To avoid overfitting of metabolite concentrations and mass isotopomer fractions that were 

associated with an unusually small standard deviation (SD), the minimum SD of the measured 

metabolite concentration was set at 1% and the minimum SD of the measured mass isotopomer 

fraction was set at 0.01. 𝒄0,Ins and 𝒄0,Ctrl are the initial metabolite concentrations in the Ins and Ctrl 

conditions, respectively, and set to be the same. Similarly, 𝒗0,Ins and 𝒗0,Ctrl are the initial fluxes in 

the Ins and Ctrl conditions, respectively, and set to be the same. 𝜽LB and 𝜽UB are lower and upper 

bounds of 𝜽, respectively (Data S1B). 𝜖 was set to 1.01 to avoid 𝑡𝑘 and 𝑡𝑘+1 getting too close. 

We obtained measured concentrations of mass isotopomers that were corrected for natural 

abundances from our previous paper (Krycer et al., 2017), and identified measured concentrations 

of mass isotopomers with amounts that were measured 2 or more times in 3 separate experiments. 

We calculated measured concentration of metabolite m (𝑐𝑚
𝑚𝑒𝑠) and measured fraction of mass 

isotopomer i of metabolite m (𝑥𝑚,𝑖
𝑚𝑒𝑠) as follows: 

𝑐𝑚
𝑚𝑒𝑠 =∑ 𝑑𝑚,𝑖

𝑚𝑒𝑠

𝑖
, (10) 



𝑥𝑚,𝑖
𝑚𝑒𝑠 =

𝑑𝑚,𝑖
𝑚𝑒𝑠

∑ 𝑑𝑚,𝑖
𝑚𝑒𝑠

𝑖

 , (11) 

where 𝑑𝑚,𝑖
𝑚𝑒𝑠 is the measured concentration of mass isotopomer i of metabolite m. We also 

measured extracellular lactate and used this value for calculation of wRSS. Metabolites and mass 

isotopes used for calculating wRSS are shown in Data S1A. In total, we obtained 131 metabolite 

concentrations and 463 mass isotopomer fractions for the Ins condition, and 132 metabolite 

concentrations and 424 mass isotopomer fractions for the Ctrl condition. 

The minimization problem of Equation (9) was numerically solved by a metaheuristic optimization 

of a covariance matrix adaptation evolution strategy (CMA-ES) with a negative update of the 

covariance matrix (Hansen and Kern, 2004) to approach the local minimum, followed by application 

of the interior point method to reach the local minimum using the MATLAB function fmincon. The 

initial population was sampled uniformly from the feasible region (Kaufman and Smith, 1998), and 

the mean and the covariance matrix were used as initial conditions for CMA-ES. The initial 

population size was set to 103 and the population size during the optimization was set to 50. The 

objective function of wRSS was evaluated at least 1.5×106. Parameter estimation was performed for 

30 times with each number of time intervals to obtain the best parameter sets with minimized 

wRSS. Parameters were optimised in a logarithmic scale for CMA-ES and in a linear scale for 

fmincon.  

 

Introduction of quadratic programming during the metaheuristic optimization in the parameter 

estimation 

Metabolic flux analysis under non-steady-state conditions requires more number of parameters and 

has a larger computation cost for optimization than metabolic flux analysis under steady-state 

conditions. We achieved faster optimization by introducing quadratic programming (QP) during the 

metaheuristic optimization (Figure S1E). Changes in metabolites concentrations can be described 

as piecewise quadratic functions as the integral of the piecewise linear functions of fluxes. 

Therefore, when independent parameters (𝜽𝑀𝑂) including switch times are given, wRSS associated 

with only metabolite concentrations (wRSSQP) can be minimized easily by QP where variables are 

the remaining parameters (𝜽𝑄𝑃): 

Min.
𝜽𝑸𝑷

wRSSQP = (𝒄𝑚𝑒𝑠 − 𝒄)𝑇Σ𝑐
−1(𝒄𝑚𝑒𝑠 − 𝒄),

s. t. 𝒄 ≥ 𝟎,                           

𝒄 = 𝑨QP(𝜽MO) ∙ 𝜽QP + 𝒃QP(𝜽MO),    

𝜽QP,LB ≤ 𝜽QP ≤ 𝜽QP,UB,             

   (12) 



where 𝑨QP and 𝒃QP are a matrix and a vector, respectively, with elements that are determined 

from 𝜽MO. We can identify which parameters are included in 𝜽MOfrom Equation (9) before 

metaheuristic optimization. When 𝒕𝑘 are given, all constraints in Equation (9) become linear. A 

basis for the row space of the coefficient matrix in the linear equality constraints corresponds to a 

parameter included in 𝜽QP, whereas a non-basis corresponds to a parameter included in 𝜽MO. Note 

that the initial metabolite concentrations (𝒄0) were set to always be included in 𝜽MO. During the 

metaheuristic optimization using CMA-ES, we iteratively perturbed the independent parameters 

𝜽MO, solved the QP problem in Equation (12) by the MATLAB function quadprog to obtain the other 

parameters 𝜽QP, and evaluated wRSS in Equation (9). By introducing QP problem, we obtained 

parameter sets with the smallest wRSS values within a small number of evaluations of wRSS 

(Figure S1F), possibly because of the reduction in search space from the entire solution space 

during metaheuristic optimization. 

 

Estimation of confidence intervals of parameters 

Confidence intervals of parameters were estimated from the Jacobian matrix of the minimized 

wRSS. Assuming that the estimates of the minimization problem [Eq. (9)] converges to a global 

minimum, the Hessian matrix H can be approximated from the Jacobian matrix J as follows: 

𝑯 = 𝑱𝑇𝑱. (13) 

The Jacobian matrix includes the partial derivatives of wRSS with respect to the model parameters. 

We calculated the inverse of the Hessian, which gives the local estimate for the parameter 

covariance matrix 𝚺𝜽: 

𝚺𝜽 = 𝑯
−1. (14) 

When we estimated fluxes using models for which the same number of time intervals was set 

among all reactions, confidence intervals of parameters were estimated based on linearized 

statistics as previously described (Antoniewicz et al., 2006). The diagonal elements of 𝚺𝜽 are the 

variances of the estimated parameters, from which the approximated 90% confidence intervals (CI) 

can be calculated as  

CIi = 𝜃𝑖
∗ ± 𝑧√𝚺𝜽(𝑖,𝑖), (15) 

where 𝜽∗ is a vector of optimal estimates of the minimization problem [Eq. (9)], and z is the z-score 

for 90% confidence intervals (1.6449).  

When we estimated fluxes using models under reaction-dependent number of time intervals, we 

sampled parameters for 200 times from a truncated multivariate normal distribution (Robert, 1995). 

The mean of the distribution was the optimal estimates of the minimization problem [Eq. (9)] and the 



covariance matrix was 𝚺𝜽. The constrains of the distribution were the same as the minimization 

problem [Eq. (9)]. The sampled parameters are shown in Data S1C. The 90% confidence intervals 

of the parameters were calculated from the distribution of the sampled parameters. This calculation 

of the 90% confidence intervals accounts for constraints, such as the positive metabolite 

concentration, and for calculation of the confidence intervals of regulation coefficients, which are 

estimated in subsequent analyses. Because the confidence intervals were calculated from sampled 

parameters from a truncated multivariate normal distribution, the optimal estimates of parameters 

can be outside the confidence intervals due to the curse of dimensionality (Verleysen and François, 

2005).  

We understand that measured data are often perturbed by a Monte Carlo procedure to estimate 

confidence intervals of parameters in metabolic flux analysis (Hörl et al., 2013; Quek et al., 2020). 

However, applying a Monte Carlo procedure to our metabolic flux analysis would not be practical, 

because our metabolic flux analysis under non-steady-state conditions requires a large 

computational cost due to many number of parameters in optimization and many number of ODEs 

to be solved numerically. In our metabolic flux analysis, computational time of parameter estimation 

for one condition (e.g. experimental conditions and number of time intervals) was over 1.5 months 

on an AMD EPYC7501 processor on a Linux machine. Instead, we estimated confidence intervals 

of parameters from the inverse of the Hessian matrix of the minimized the variance-weighted 

residual sum of squared errors. The method we used is a general method to calculate confidence 

intervals in an approximate manner, and the computational cost is smaller than Monte Carlo 

procedures. We adopted appropriate methods of optimization and estimation of confidence intervals 

to match the complexity of our metabolic flux analysis under non-steady-state conditions. 

 

Determination of reaction-dependent number of time intervals 

Number of time intervals (or number of switch times) of fluxes should be selected for flux analysis 

under non-steady-state conditions (Figure 3, Figure S1). The number of time intervals cannot be 

selected by solving the optimization problem of Equation (9). More time intervals can potentially 

provide more accurate estimation of flux changes, which means smaller differences between 

measurements and estimates; however, more time intervals require more parameter numbers and 

less precise estimation, which means larger sensitivity to measurement errors.  

Here, we propose a method to determine reaction-dependent number of time intervals, in which 

the number of time interval in each reaction can be independently determined (Figure S1C, D). 

First, we developed models in which the same number of time intervals was set among all 



reactions, and estimated fluxes and their approximated confidence intervals as defined in Equation 

(15). The number of time intervals was either of one, two, or three. Next, we compared confidence 

intervals of each flux between models under one and two time interval(s). Because a higher number 

of time intervals may decrease estimation precision (as seen for Ogdh in Figure S1C), we selected 

the time interval of one for the reaction if confidence intervals for all time points were the same in 

models with one or two time intervals.  

If confidence intervals for any time points were not the same for models with one or two time 

intervals, we tentatively selected two time intervals for the reaction because the lower number of 

time intervals may provide a less accurate estimation of flux changes (as seen for Pfk1 in Figure 

S1C). Reactions for which two time intervals are tentatively selected, we compared the confidence 

intervals for models with two or three time intervals and selected the number of time intervals using 

the same criterion that were used to select between one and two time intervals.  

Because the confidence intervals used to determine the number of time intervals depend on z-

score (or percentage for the confidence intervals), we generated 10 models using different z-scores 

for the calculation of the confidence intervals. Smaller z-scores lead to narrower confidence 

intervals and result in models with a larger number of parameters. We performed metabolic flux 

analysis using each of the generated models and selected the model with the smallest AIC as the 

final model with a reaction-dependent number of time intervals. The AIC value of the final model is 

smaller than the any of the models with the same number of time intervals among all reactions 

(Figure S1D), indicating that the model with a reaction-dependent number of time intervals is 

statistically more appropriate than models with the same number of time intervals among all 

reactions. This method reduced computation cost compared to methods for selecting time intervals 

from all possible combinations of the number of time intervals. 

 

Estimation of glucose uptake, 14C-glycogen accumulation, 14C-fatty acid accumulation in TG and 

14C- CO2 secretion  

To validate the estimated flux from other experiments using natural glucose or 14C-glucose as a 

tracer (Figure 4), we estimated glucose uptake, 14C-glycogen accumulation, 14C-fatty acid 

accumulation in TG, and 14C-CO2 secretion using the model and the estimated fluxes. These 

estimates were calculated using the estimated flux v through reaction j from substrate k to product l 

and the estimated fractions of M+i mass isotopomer of a substrate k:  

−𝑛𝑘 ∙ 𝑆𝑘,𝑗 ∙ 𝑟𝑗,𝑘,𝑙∫ 𝑣𝑗(𝑡)
∑ 𝑖 ∙ 𝑥𝑘,𝑖(𝑡)
𝑛𝑘
𝑖=0

𝑛𝑘

60

0

𝑑𝑡, (16) 



where 𝑛𝑘 is the number of skeletal carbon atoms in substrate k. 𝑆𝑘,𝑗 is the stoichiometric 

coefficient of substrate k in reaction j and is a negative value. 𝑟𝑗,𝑘,𝑙 is the ratio of carbon atoms in 

substrate k that is transferred to product l through reaction j. 

For glucose uptake, the substrate is extracellular glucose, the product is intracellular glucose, and 

the reaction is Glut4. For 14C-glycogen accumulation, the substrate is UDP-glucose, the product is 

glycogen, and the reaction is Gys. For 14C-fatty acid accumulation in TG, the substrate is 

Cit_Acon_IsoCit, the product is TG, and the reaction is Gpat_Acly. For 14C-CO2 secretion, the 

substrate is the intracellular CO2, the product is the extracellular CO2, and the reaction is the CO2 

transporter (CO2t). 𝑟𝑗,𝑘,𝑙 is 0.33 for 14C-fatty acid accumulation in TG and 1 for the others. 

 

 

Identification of key regulatory mechanisms in the glucose metabolism in insulin-stimulated 

adipocytes  

An overview of the description of flux based on reaction kinetics is shown in Figure 5A. In addition 

to substrates and products, we included enzyme phosphorylation and allosteric effectors that can 

potentially regulate fluxes in addition to substrates and products. We obtained enzyme 

phosphorylation results that were classified as Class I (a phosphorylation site localization probability 

score derived from MaxQuant (Cox and Mann, 2008) > 0.75) in phosphoproteomic data (Humphrey 

et al., 2013). We obtained information of reported allosteric effectors for Mus musculus, Rattus 

norvegicus, and Homo sapiens in the BRENDA database using the Simple Object Access Protocol 

(SOAP) with Perl (Placzek et al., 2017). We obtained the amounts of phosphorylation and allosteric 

effectors from phosphoproteomic and metabolomics data in previous studies (Humphrey et al., 

2013; Krycer et al., 2017), respectively, and identified enzyme phosphorylation and allosteric 

effectors with amounts that were measured 2 or more times in 3 separate experiments. In total, 82 

phosphorylation sites (80 unique sites on 25 enzymes) and 170 allosteric effectors together with 

substrates and products were obtained as candidates of regulatory molecule (Table S3).  

 

Reaction kinetic equation 

We developed models for each reaction in which flux is described as a modular rate law 

(Liebermeister et al., 2010) (Figure 5A). We used common modular with complete activation or 

inhibition and we set all relevant regulation numbers to a value of one, assuming no cooperativity. In 

the model selection, we develop a model containing k1 and only a function of substrate and 

products, and we also develop models containing one or more functions of enzyme phosphorylation 



and allosteric effectors, as well as k1 and the function of substrates and products. For each reaction, 

flux 𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐 is defined as a product of kinetic constant k1 and functions of amounts of substrates 

and products, enzyme phosphorylation, and allosteric effectors: 

𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑘1 ∙ 𝑓S ∙ ∏ 𝑓P,𝑖
𝑖∈𝑈P

∙ ∏ 𝑓A,𝑗
𝑗∈𝑈A

 , (17) 

𝑓S =
∏(𝑐S/𝐾S) − 𝑘2∏(𝑐P/𝐾P)

∏(1 + 𝑐S/𝐾S) +∏(1 + 𝑐P/𝐾P) − 1
 , (18) 

𝑓P,𝑖 =

{
 
 

 
 

𝑃𝑖
𝐾PE,𝑖 + 𝑃𝑖

, if 𝑖-th enzyme phosphorylation is an activator,

𝐾PE,𝑖
𝐾PE,𝑖 + 𝑃𝑖

, if 𝑖-th enzyme phosphorylation is an inhibitor,

 (19) 

𝑓A,𝑗 =

{
 
 

 
 

𝐶A,𝑗

𝐾A,𝑗 + 𝐶A,𝑗
, if 𝑗-th allosteric effector is an activator,

𝐾A,𝑗

𝐾A,𝑗 + 𝐶A,𝑗
, if 𝑗-th allosteric effector is an inhibitor,

 (20) 

where 𝑓S is a function of substrate and products (generalized Michaelis-Menten kinetics). 𝑈P and 

𝑈A are the sets of candidate enzyme phosphorylation and allosteric effectors, respectively, that 

affect the flux as activators or inhibitors and the union of 𝑈P and 𝑈A is defined as U. 𝑓P,𝑖 is a 

function of i-th enzyme phosphorylation. Enzyme phosphorylation was considered for both cases of 

either an activator or an inhibitor. 𝑓A,𝑗 is a function of j-th allosteric effector. Allosteric effectors were 

considered as activators or inhibitors according to information in BREDNA database (Placzek et al., 

2017). 𝑐S, 𝑐P, and 𝑐A are amounts of the substrate, product, and allosteric effector, respectively, 

and their amounts were obtained from metabolomics data (Krycer et al., 2017) otherwise from 

estimated amounts of metabolites in our metabolic flux analysis. Note that summed metabolites in 

the metabolic flux analysis were separated in this analysis (for example, G6P_F6P was separated 

into G6P and F6P) and separated amounts were used for 𝑐S and 𝑐A. F1,6BP and F2,6P were 

summed as FBP in the metabolic flux analysis. Here, we measured F1,6BP and F2,6BP separately 

by IC-MS and the amount of each of F1,6BP and F2,6BP were used for 𝑐S and 𝑐A. 3PG and 2PG 

can not be separated by our measurement condition and only summed amounts (𝑐3PG_2PG) were 

available. We assumed 3PG and 2PG were close to equilibrium and we calculated separate 

amounts of 3PG (𝑐3PG) and 2PG (𝑐2PG) from 𝑐3PG + 𝑐2PG = 𝑐3PG_2PG and 𝑐2PG/𝑐3PG = 𝐾eq, where 𝐾eq 

is 5.38 at pH = 7.2 and ionic strength = 0.15 M (Haraldsdóttir et al., 2012) according to eQuilibrator 

(Noor et al., 2013). 𝑃𝑖 is an amount of i-th phosphorylation at a site of an enzyme. Amounts of 



enzyme phosphorylation in the Ins condition were obtained from phosphoproteomic data in 

adipocytes in our previous study (Humphrey et al., 2013), while amounts of enzyme 

phosphorylation in the Ctrl conditions were set equal to the amount of enzyme phosphorylation at 0 

min. k1 and k2 are kinetic constants. 𝐾S, 𝐾P, 𝐾PE and 𝐾A are affinity constants for the substrate, 

product, enzyme phosphorylation and allosteric effectors, respectively. We assumed that enzyme 

amounts remain constant and can be included in k1, because our carbon labelling experiments (60 

min) was much shorter than 31 hours of median half-life of proteins (Sandoval et al., 2013). 𝑐S, 𝑐P, 

𝑐A and P were normalized by the L2 norm before the following parameter estimation. 

 

Parameter estimation 

Kinetic parameters 𝜽𝑘𝑖𝑛𝑒𝑡𝑖𝑐, including 𝑘1, 𝑘2, 𝐾S, 𝐾P, 𝐾PE and 𝐾A, were estimated for each reaction 

using each model by minimizing the residual sum of squared errors (RSS) between fluxes defined 

by the modular rate law and the fluxes estimated by metabolic flux analysis in a logarithmic scale 

(Figure 5A): 

Min.
𝜽𝑘𝑖𝑛𝑒𝑡𝑖𝑐

RSS = (log 𝒗′ − log 𝒗𝑘𝑖𝑛𝑒𝑡𝑖𝑐(𝜽𝑘𝑖𝑛𝑒𝑡𝑖𝑐))𝑇(log 𝒗′ − log𝒗𝑘𝑖𝑛𝑒𝑡𝑖𝑐(𝜽𝑘𝑖𝑛𝑒𝑡𝑖𝑐)), (21) 

where 𝒗′ is the fluxes estimated by metabolic flux analysis and is normalized by the L2 norm. RSS 

was calculated from data at 1, 5, 10, 20, and 60 min, which is the shared time points between 

metabolomic and phosphoproteomic data in the Ins and Ctrl conditions. The minimization problem 

of Equation (21) was numerically solved by CMA-ES with a negative update of the covariance 

matrix, followed by interior point method using MATLAB function fmincon as applied to our 

metabolic flux analysis. The population size and the maximum number of RSS evaluations in CMA-

ES was set to 30 and 104, respectively. Parameter estimation was performed five times to obtain 

the best parameter sets with minimized RSS for each reaction using each model. 

 

Model selection 

Because not all enzyme phosphorylation and allosteric effectors effectively change the enzymatic 

activity and regulate fluxes, we identified enzyme phosphorylation and allosteric effectors that, 

together with substrates and products, effectively regulated fluxes using model selection (Figure 

5A). We used AIC as the selection criterion for the model selection: 

AIC = 𝑁 log
RSS

𝑁
+ 2𝑝, (22) 

where N is the number of residuals and p is the number of kinetic parameters in the model. We 

performed model selection to determine U (=𝑈P ∪ 𝑈A) using a stepwise selection method based on 



AIC according to the following procedure (Yamashita et al., 2007): 

(i) Set the subset 𝑈 as an empty set, estimate the set of parameters that minimizes RSS, and 

calculate AIC. Here, 𝑈 is temporarily set as the subset that minimizes AIC. Hereafter, we denoted 

the complementary set of 𝑈 as 𝑈c, and the size of the subset 𝑈 as #𝑈. 

(ii) For each candidate regulatory molecule 𝑖 in 𝑈c, add the 𝑖 to 𝑈 (denoted as 𝑈𝑖), estimate the 

set of parameters that minimizes RSS, and calculate AIC [denoted as AIC(𝑈𝑖)]. 

(iii) Select 𝑈∗ = argmin
𝑈𝑖

AIC(𝑈𝑖) from #𝑈c candidates defined in step (ii). If AIC(𝑈) > AIC(𝑈∗), 

update 𝑈 with 𝑈∗. If AIC(𝑈) ≤ AIC(𝑈∗), go to step (vi). 

(iv) For each regulatory molecule 𝑗 in 𝑈, remove the 𝑗 from 𝑈 (denoted as 𝑈𝑗), estimate the set 

of parameters that minimizes RSS, and calculate AIC [denoted as AIC(𝑈𝑗)]. 

(v) Select 𝑈∗ = argmin
𝑈𝑗

AIC(𝑈𝑗) from #𝑈 candidates defined in step (iv). If AIC(𝑈) > AIC(𝑈∗), 

update 𝑈 with 𝑈∗, and go to step (iv). If AIC(𝑈) ≤ AIC(𝑈𝑗), go to step (ii). 

(vi) stop stepwise method. 

We qualitatively identified the regulatory molecules in the final 𝑈 with the smallest AIC. This model 

selection was performed for each reaction independently. The estimated parameters are shown in 

Data S1D.  

 

Calculation of regulation coefficients 

To quantify contributions of regulatory events by substrates, products, and the selected enzyme 

phosphorylation, or allosteric effectors, as well as unaccounted regulators to the estimated flux 

differences between the Ins and Ctrl conditions, we calculated a regulation coefficient ρ (Figure 5A). 

Similar approaches have been reported in previous studies (Gerosa et al., 2015; Hackett et al., 

2016; ter Kuile and Westerhoff, 2001). Using the estimated kinetic parameters, the normalized flux 

estimated by metabolic flux analysis can be described for each point in each reaction as follows: 

𝑣′ = 𝑘1 ∙ 𝑓S ∙∏𝑓P,𝑖
𝑖

∙∏𝑓A,𝑗
𝑗

∙ 𝑓U, (23) 

where 𝑓U is 𝑣′/𝑣𝑘𝑖𝑛𝑒𝑡𝑖𝑐, calculated from a residual in Equation (21). Variance of the fluxes in a 

logarithmic scale between the Ins and Ctrl conditions can be written as follows: 

𝜎log 𝑣
2 = (

𝜕 log 𝑣′

𝜕 log 𝒇
)

𝑇

Σlog 𝒇 (
𝜕 log 𝑣′

𝜕 log 𝒇
), (24) 



where 𝜎log 𝑣
2  is the variance of the fluxes at a logarithmic scale. 𝒇 is a vector of 𝑓S, 𝑓P, 𝑓A, and 𝑓U, 

and Σlog 𝒇 is the covariance matrix of log 𝒇 and the diagonal elements of Σlog 𝒇 is the variance of 

log 𝒇 (𝜎log 𝑓
2 ) between the Ins and Ctrl conditions. According to Equation (23), the partial derivative 

of log 𝑣′ with respect to each log 𝑓 equals to one. We made the simplifying assumption that 

covariance between log 𝑓 is negligible and therefore Σlog 𝒇 is diagonal: 

𝜎log 𝑣
2 ≈∑𝜎log 𝑓

2  . (25) 

We defined a regulation coefficient ρ as the contribution of each of identified enzyme 

phosphorylation and allosteric effectors, substrates and products, and unaccounted regulators to 

the flux difference between the Ins and Ctrl conditions, which is calculated by normalizing 𝜎log 𝑓
2  at 

each time in Equation (25):  

𝜌 =
𝜎log 𝑓
2

∑𝜎log 𝑓
2  . (26) 

A regulation coefficient can take values from zero to one. Here, the variance between two 

conditions of Ins and Ctrl (𝜎log 𝑓
2 ) can be written by the difference between the two conditions 

(∆ log 𝑓):  

𝜎log 𝑓
2 = (

∆ log 𝑓

2
)
2

 . (27) 

By combining Equations (26) and (27), we can rewrite regulation coefficients:  

{
 
 
 
 

 
 
 
 𝜌P,𝑖 =

(∆ log 𝑓P,𝑖)
2

∑(∆ log 𝑓)2
 ,

𝜌A,𝑗 =
(∆ log 𝑓A,𝑗)

2

∑(∆ log 𝑓)2
 ,

𝜌S =
(∆ log 𝑓S)

2

∑(∆ log 𝑓)2
 ,

𝜌U =
(∆ log 𝑓U)

2

∑(∆ log 𝑓)2
 ,

 (28) 

where ρP,i stands for contribution of phosphorylation at site i to the flux difference between the Ins 

and Ctrl conditions and summation of ρP,i for each reaction at each time point is denoted as ρP. ρA,j 

stands for contribution of allosteric effector j, and summation of ρA,j is denoted as ρA. ρS, and ρU 

stand for contributions of substrates and products, and unaccounted regulators, respectively. We 

calculated regulation coefficients at 1, 5, 10, 20, and 60 min, which are the same as the time points 

used for the kinetic parameter estimation. We linearly interpolated the regulation coefficients 

between the time points, and calculated a time-averaged regulation coefficient by the following:  



time-averaged 𝜌 =
∫ 𝜌(𝑡)𝑑𝑡
60

1

∫ 𝑑𝑡
60

1

. (29) 

 

Estimation of confidence intervals of regulation coefficients 

To estimate confidence intervals of regulation coefficients (Figure 6A, Figures S4 and S5), we used 

the sampled parameters for the estimation of confidence intervals in the metabolic flux analysis 

(Data S1C). For each reaction in each sampling, we performed kinetic modelling with model 

selection and calculated the regulation coefficients. Amounts of enzyme phosphorylation were 

sampled from a normal distribution with a mean and a variance from the phosphoproteomic data 

(Humphrey et al., 2013). Amounts of allosteric effectors, substrates, and products were obtained 

from a normal distribution with a mean and a variance from the metabolomics data (Krycer et al., 

2017); otherwise the amounts were from the sampled parameters. We identified the regulatory 

molecules in the model finally selected (Table S3) and calculated regulation coefficients using each 

set of the sampled or obtained amounts of enzyme phosphorylation, allosteric effectors, substrates, 

and products, as well as the fluxes (Table S4). The 90% confidence intervals of regulation 

coefficients including ρP, ρA, ρS, and ρU were calculated from the distribution of the regulation 

coefficients. 

 

Determination of key regulatory molecules  

Reactions with the 90% confidence interval of time-averaged ρ above zero were further analysed to 

determine key regulatory molecules in glucose metabolism in insulin-stimulated adipocytes. We 

focused on how many time each regulatory molecule was selected among 200 model selections 

using sampled parameters, and regarded the most selected regulatory molecules for each reaction 

as the key regulatory molecule that represent flux through the reaction.  

 

Michaelis-Menten constants from the BRENDA database  

Michaelis-Menten constants were obtained from the BRENDA database (Placzek et al., 2017) 

based on EC numbers. The Perl implementation of the Simple Object Access Protocol (SOAP::Lite) 

was employed to extract the KM values in Mus musculus, Rattus norvegicus, Homo sapiens, Bos 

taurus, Sus scrofa, Canis lupus familiaris, and Mammalia. The exported data were further 

processed to remove entries for mutant enzymes. KM values with three or more reports for a 

substrate or a product of a reaction were selected (Data S1E), and the geometric mean and the 

geometric standard deviations were calculated and compared with estimated values (Figure S4B). 



 

 

Experimental methods 

Metabolomic and phosphoproteomic data in insulin-stimulated adipocytes 

For metabolic flux analysis and key regulatory mechanisms, we used metabolomic and 

phosphoproteomic data from insulin-stimulated adipocytes in our previous studies (Humphrey et al., 

2013; Krycer et al., 2017; Quek et al., 2020) and the experimental procedures of the previous 

studies are briefly described below. For metabolomic measurements (Krycer et al., 2017; Quek et 

al., 2020), differentiated 3T3-L1 adipocytes were labelled with [U-13C] glucose (25 mM, 99 atom % 

13C) and treated with 100 nM insulin or vehicle (PBS) for 1, 5, 10, 20, 40, or 60 min. Labelling with 

13C and the treatment with 100 nM insulin or vehicle were started at the same time. Cell lysates and 

the culture media were analysed by CE-MS and liquid chromatography-mass spectrometry (LC-

MS), respectively. For phosphoproteomic measurements (Humphrey et al., 2013), 3T3-L1 

fibroblasts were triple SILAC labelled, differentiated into adipocytes, and treated with 100 nM insulin 

or vehicle (PBS) for 15 s, 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, or 60 min. Proteins were 

acetone precipitated, resuspended in urea, reduced, alkylated, and digested with endoproteinase 

Lys-C followed by trypsin. Peptides were desalted and fractionated by strong cation exchange 

(SCX) and TiO2 for phosphopeptide analysis. Eluted peptides were analysed by quantitative mass 

spectrometry. 

 

Measurement of F1,6BP and F2,6BP by IC-MS 

We measured F1,6BP and F2,6BP in the same samples of our previous study (Krycer et al., 2017). 

Capillary IC-MS analysis was performed using a Dionex ICS-5000+ system equipped with a Q 

Exactive Orbitrap MS system (Thermo Fisher Scientific, San Jose, CA) (Hirayama et al., 2020). The 

IC system consisted of a capillary pump, an eluent generator with a capillary KOH cartridge, an 

anion capillary electrolytic suppressor (ACES 300), and a conductivity detector. Ultrapure water was 

used as both the eluent and regenerant in the suppressor. Sample injection was performed with a 

Dionex WPS-3000TBPL autosampler. An Agilent 1100 series capillary HPLC pump (Agilent 

Technologies Deutschland GmbH, Waldbronn, Germany) was used to deliver the make-up solution. 

Anionic metabolites were separated on a Dionex IonPac AS11-HC-4 μm column (250 × 0.4 mm, 4 

μm; Thermo Fisher Scientific) that was maintained at 35°C. The flow rate was 20 μL/min and the 

injection volume was 0.4 μL. The following KOH concentration gradient was used: 1 mmol/L from 0 

min to 2 min, 20 mmol/L at 16 min, 100 mmol/L at 35 min, held at 100 mmol/L until 40 min, and then 



decreased to the initial concentration within 0.1 min and held at this concentration for 5 min. The 

total analysis time was 45.1 min. Isopropanol containing 0.1% acetic acid was delivered as the 

make-up solution at 5 μL/min.  

The standard ESI sprayer (product number OPTON–20011, Thermo Fisher Scientific), without 

any alterations, was used in this study. The standard ESI sprayer contains two coaxial tubes. A 

fused-silica capillary (0.10 mm I.D., 0.19 mm O.D.), through which the eluent flowed, was inserted 

in a stainless-steel tube with a slightly larger diameter (first tube). A make-up solution was supplied 

through this tube and mixed with the eluent at the outlet of the sprayer. In addition, the sheath gas 

which assists with stable spray formation was supplied from the second coaxial tube.  

The Q Exactive mass spectrometer was operated in ESI negative ion mode and the spray voltage 

was set at 4.0 kV. The capillary temperature was 300 °C, the sheath gas flow rate was 20 (arbitrary 

units), the auxiliary gas flow rate was 10 (arbitrary units), the sweep gas flow rate was 0 (arbitrary 

units), and the S-lens was 50 (arbitrary units). Full scan mode was used and the parameters were 

as follows: resolution, 70,000; auto gain control target, 1 × 106; maximum ion injection time, 100 ms; 

and scan range, 70–1000 m/z. The instrument was calibrated at the beginning of each sequence 

using the calibration solution provided by the instrument manufacturer. 

 

Quantification and statistical analysis 

All statistical details including statistical tests used, exact value of n, what n represents, definition of 

centre, and dispersion measures are described in the figure legends.  
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