SUPPLEMENTAL METHODS

ELISA cytokine quantification

CCL22 and VEGF-C were determined using specific Raybiotech (Norcross, GA, USA) ELISA Kits and VEGF-A was evaluated by Mini TMB ELISA Development from Peprotech (London, UK). Cytokines levels were assessed in duplicates in supernatants harvested from FL primary cells (2x10⁶ cells/mL) co-cultures. A standard curve was generated for each cytokine, and mean absorbance for each set duplicate were interpolated and transformed into concentrations. The optical density at 450nM was analyzed in a spectrophotometer (Synergy Bio-tek Instrument, Winooski, VT, USA)

T cell migration assays

PBMCs obtained either from fresh tonsils or peripheral blood were enriched in T cells by depletion of B cells and monocytes with CD19 and CD14 magnetic beads, respectively (Miltenyi). Migration of the different T cell subpopulations was evaluated in 24-well chemotaxis chambers containing 5 μ M pore size inserts (Corning, Life Science, Tewksbury, MA, USA). In brief, 2x10⁵ cells/transwell were allowed to migrate for 3h towards FL/FDC co-culture supernatants treated w/wo Idelalisib and the T regulatory cells (T_{reg}; CD4⁺/CD25⁺/FOXP3+) that migrated to the lower chamber were enumerated by flow cytometer. In the assays performed with PBMC from tonsils we distinguished two populations: T follicular helper (TFH CD4+/CXCR5+/CD25-) and T follicular regulatory (T_{fr}; CD4+, CXCR5+, FOXP3+) cells. Cell viability was assessed using Live/Dead Fixable Aqua Dead Cell Stain kit (Thermo Fisher Scientific). Net migration was determined for each T cell population by calculating the ratio between the number of cells migrated and the cells loaded.

HUVEC tube formation assay

Human umbilical vein endothelial cells (HUVEC) were kindly provided by Dr Maria C. Cid and were cultured as previously described.¹ Supernatants from FL primary cells (2x10⁶ cells/mL) were harvested after 48 hours of incubation with/without (w/wo) idelalisib in co-culture with FDC or in monoculture. 24-well plates were coated with Matrigel (BD Biosciences, San Jose, CA, USA) and allowed to polymerize for 45 minutes at 37°C. Afterwards, the supernatants of interest were mixed (1:1) with HUVEC cells (4x10⁴ cells) in HUVEC medium (RPMI 1640 medium that contains 25% of Bovine Calf Serum (HyClone, Thermo Fisher Scientific, Waltham, MA, USA), 150 μg/ml medium endothelial cell growth supplement

(ECGS) (BD Bioscience), and 4U/ml medium of sodium heparin salt (AppliChem, Darmstadt, Germany) and incubated for 24 hours. Pictures were taken at x40 magnification in a DMIL LED Leica microscope coupled to a DFC295 camera and analyzed with Suite v 3.7 software (Leica, Wetzlar, Germany). Then, the number of nodes and junctions was quantified in 5 randomly chosen fields using the Image J software (angiogenesis analyzer plugin).

Adhesion assay to HUVEC cells

HUVEC cells were plated in 96 wells plate at final concentration of 1×10^5 cells/well. in HUVEC medium and incubated overnight (ON) with TNF- α (10ng/ml) (R&D Systems, Minneapolis, MN, USA). Otherwise, FL co-cultured with FDC w/wo idelalisib were recovered after 48 hours of incubation and were counted and labeled with 1 μ M Calcein, AM (Thermo Fisher Scientific) for 30 minutes at 37°C. After washing twice with PBS, 1×10^5 cells/well were seeded in a plate containing activated HUVEC cells for 3 hours with RPMI 1640 medium at 37°C. Then, the plate was washed extensively with RPMI 1640 to remove non-adhered cells. Adhered cells were lysed with 1% Triton X-100, supernatant was transferred into black plates (Thermo Fisher Scientific) and fluorescence was measured in a spectrophotometer (Synergy Bio-Tek Instrument) (excitation filter: 485 ± 20 nm; band-pass filter: 530 ± 20 nm). Data were expressed as relative fluorescent units (RFU) after subtraction of non-specific adhesion (empty well).

Transendothelial migration

HUVEC cells ($2x10^5$ cells/well) were seeded on gelatin 0.1% coated transwells (Corning, Life Science, Tewksbury, MA, USA.) and incubated ON with TNF- α (10ng/ml). The next day, $5x10^5$ FL cells coming from 48 hours of FDC co-culture w/wo idelalisib were seeded into transwells with the endothelial monolayer, in RPMI medium with 10% FBS, and were allow to migrate for 6 hours in a gradient of FBS (RPMI medium + 20% FBS). CD20⁺ cells crossing HUVEC barrier were counted by flow cytometer (Attune Acoustic Focusing Cytometer, Thermo Fisher Scientific).

Flow cytometry

Cells were seeded in co-culture or monoculture w/wo idelalisib and venetoclax (Selleck Chemicals, Houston TX, USA) as single agents or in combination for 72 h. Drugs cytotoxicity was evaluated by staining FL cells with CD19-PE (BD Bioscience), including Annexin V-FITC (Thermo Fisher Scientific) and 7-Aminoactinomycin D (7AAD) (Sigma-Aldrich Darmstadt,

Germany). Finally, cells were acquired and analyzed by flow cytometry. FL viable cells were identified as CD19⁺, Annexin V-FITC⁻ and 7AAD⁻. CD80 (Thermo Fisher Scientific), ICAM1, CD80 and SLAMF1 (BD Biosciences) surface expression was analyzed by flow cytometry. Phosphoflow was performed to determine pS6 ribosomal protein. In brief, FL cells stimulated with anti-IgM (10ug/ml) for 30 minutes were recovered in ice, fixed and permeabilized using Phosflow Perm buffer III (BD Biosciences). Anti-human cytoplasmic CD20-FITC (BioLegend) was used to select B cell population and Phospho-S6 ribosomal protein (Ser235/236) antibody (eBiosciences) to measure S6 phosphorylation.

Simple Western Methods (Peggy Sue)

FL cells were harvested in lysis buffer (Cell Signaling Technology) containing: Protease Inhibitor Cocktail (Roche Diagnostics Corp), and phosphatase inhibitor sets 1 and 2 (EMD Millipore). Following 30 minutes on ice, cell lysates were cleared by centrifugation at 12,500 RPM for 10 minutes at 4°C. Lysates were analyzed by Simple Western using Peggy SueTM or Sally SueTM (ProteinSimple, San Jose, CA) according to manufacturer's standard protocol. Data was processed using Compass software (ProteinSimple). The following antibodies were purchased from Cell Signaling Technology: p-AKT (S473), pBAD (S112), pBAD (S136), BAD and β -actin.

Gene expression profiling (GEP) and data analysis

FL cells were purified using CD20 magnetic beads (Miltenyi, Bergisch Gladbach, Germany). Then, total RNA was obtained by using the TRIzol reagent (Thermo Fisher Scientific) followed by a cleaning step with the RNAeasy kit (Thermo Fisher Scientific). RNA integrity was examined with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara CA, USA). Only RNAs with sufficient quality (RIN values between 7,2 and 9) were then retrotranscribed to cDNA and hybridized on HGU219 microarray. All samples were simultaneously run in a GeneTITAN platform (Thermo Fisher Scientific). Data was normalized to RMA using Expression Console software (Thermo Fisher Scientific). The microarray data has been deposited in the NCBI's Gene Expression Omnibus (GEO) and it is accessible through the accession number GSE130918.

For the identification of differentially expressed genes, Limma was applied using a paired analysis with False Discovery Rate (FDR) \leq 0.05. Gene Set enrichment Analysis (GSEA) v2.0 (Broad Institute, Cambridge, MA, USA) was used to interrogate C2, C3, GO and Hallmark 0.5 gene sets from the Molecular Signature Database v2.5, and experimentally derived custom

gene sets. A two-classes analysis with 1000 permutations of gene sets and a weighted metric was used. Benjamini-Hochberg correction for multiple testing was applied and only gene sets with FDR \leq 0.05 and a normalized enrichment score (NES) of \geq 1.5 were considered significant. The list of enriched gene-sets is detailed in Table S2. The leading-edge genes were displayed using Morpheus (Broad Institute).

Multiplex Fluidigm

RNA was extracted using RNeasy kit of Qiagen. Then, cDNA was prepared with Fluidigm Reverse Transcription Master Mix, and a preamplification reaction was performed with specific TaqMan Assays (PreAmp Master Mix, Fluidigm). High-throughput quantitative PCR was performed on the 48.48 IFC Dynamic Chip and Biomark system (Fluidigm). Cycling threshold (C_T) values were calculated with BioMark system software for each assay. *GUSB*, *ACTB* and *B2M* houskeeping genes were used for normalization

Targeted Next Gene Sequencing (NGS)

We performed NGS of 10 genes (TNFRSF14, CREBBP, TP53, MEF2B, RRAGC, EP300, KMT2D, EPHA7, TNFAIP3 and EZH2), targeting all exons and their flanking regions. Libraries were generated using HaloPlex HS target enrichment system (Agilent technologies, Santa Clara, CA) following the manufacturer's protocol with an input of 60 ng of genomic DNA. Libraries were sequenced in a MiSeq instrument (Illumina, San Diego, CA) in a paired-end run of 150 bp. The variant calling was performed using an updated version of our in-house pipeline.² Briefly, quality control and trimming of the raw sequencing reads was done using the FastQC (v0.11.5) and Surecall Trimmer (v4.0.1) algorithms, respectively. Trimmed reads were aligned to the GRCh37/hg19 human reference genome using the Burrows-Wheeler Aligner-MEM algorithm $(v0.7.17)^3$. Base quality score recalibration and indel realignment steps were subsequently performed according to the GATK Best Practices (GATK, v3.8)^{4,5}. The mean coverage obtained was 2585x, with 96% of the target region covered at >100x (Samtools $(v1.6)^{6}$, custom scripts). The variant calling was done in parallel using VarScan2 (v2.4.3)⁷ Mutect2 (GATK, v4), VarDict $(v1.4)^8$, and deepSNV-shearwater $(v1.24.0)^9$. The post processin was used to filter the mutations detected by VarScan2. All variants detected by any of the variant callers were combined and annotated using SnpEff and SnpSift (v4.3)^{10,11}. Finally, a custom script was applied to filter out recurrent artifacts, low quality, low variant allele frequency (VAF <2%), intronic and synonymous variants. Polymorphisms described in the Single Nucleotide Polymorphism Database (dbSNP149) with a European population

frequency higher than 1% (1000 Genomes Project database) or in our in-house CLL database¹² were also excluded. All programs were executed following the authors' recommendations.

CD40L stimulation with YK6-CD40L cells

YK6-TPC cells, an immortalized cell line derived from FDC, or YK6 engineered to express CD40L, were generated and kindly provided by Dr. Daniel J. Hodson. YK6 cells were plated in a 12-well plate at $2x10^5$ cells/well and treated the next day with Mitomycin C (10μ g/ml for 1hour) (Sigma). FL cells were then labeled with CFSE (0.5μ M) and co-cultured together with YK6 +/- CD40L cells in a ratio 1:1, during 5 days, in RPMI medium supplemented with 10ng/ml of human IL4 (Peprotech). At day 5, cells were analyzed by flow cytometry in the Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific). Alive B cells (LIVE/DEAD AQUA⁻ CD19⁺) were examined for CFSE fluorescence. The percentage of cells with low expression of CFSE referred to expression at day 0 was used as a read-out of proliferation ¹³.

Statistical analysis

Unpaired and paired T-tests were used to assess differences between two groups using GraphPad Prism software 7.0. Standard deviation (SD) was calculated among experimental replicates in each case. The statistical significance convention used along the manuscript was as follows: * p<0.05, **p<0.01 and ***p<0.001.

Identification of sensitive FL samples by qPCR

The microarray data showed that the expression pattern of different patients was modified in different degree by the Idelalisib treatment. In base of these results, we performed additional gene expression analyses to verify and refine a gene expression signature affected by Idelalisib. Specifically, we first used the microarray data to select 39 candidate genes whose expression was affected by the treatment. Then, we obtained cells from 25 new FL patients and treated these cells with three different conditions: untreated, FL-FDC co-culture, and FL-FDC co-culture with Idelalisib. The expression of the selected genes in the treated cells was then measured by qPCR. Finally, to identify which of the 25 patients were affected by the Idelalisib treatment we performed, for each one, a paired t-test between the log2 expression of the co-culture without and with Idelalisib treatment. The obtained *p*-values were then adjusted with the Benjamini-Hochberg method (*q*-values) and the 9 patients that showed a significant downregulation (q-value<0.05) were classified as sensitive, whereas the other (with no change or up-regulation) were categorized as resistant.

Reduction of the idelalisib gene signature

The initial idelalisib gene signature selected from the microarray data included 39 genes. To define a minimal gene signature able to detect sensitive patients, we used the qPCR data of the 25-patient cohort. First, we ordered the genes according to the variance of the difference in log2 expression between the co-culture without and with idelalisib treatment. We then performed a paired t-test between the two conditions using from 3 to 39 genes. When 18 genes were used, only 1 of the 25 patients had a different test result when compared to using all 39 genes, corresponding to a patient whose expression was minimally modified.

SUPPLEMENTAL REFERENCES

1. Kleinman HK, C. M. Preparation of endothelial cells. Curr Protoc Cell 831 (2001)

2. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic leukemia. Blood. 2016 Apr 28;127(17):2122-30

3. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60

4. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2012 Mar;22(3):568-76.

5.Van der Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1-33

6. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).

7. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012 Mar;22(3):568-76

8. Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic acids research 44, e108-e108 (2016).

9. Gerstung, M., Papaemmanuil, E. & Campbell, P. J. Subclonal variant calling with multiple samples and prior knowledge. Bioinformatics 30, 1198-1204 (2014).

10. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso- 2; iso-3. Fly 6, 80-92 (2012).

11. Ruden, D. M. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Frontiers in genetics 3, 35 (2012).

12. Puente XS et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015 Oct 22;526(7574):519-24.

13. Quah BJC, Warren HS, Parish CR. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2007;2(9):2049–56.

SUPPLEMENTAL FIGURES

Figure S1. Idelalisib induces moderate cytotoxicity in FL monocultures and FL-FDC co-cultures. Cell viability (Annexin V-/7AAD-) was assessed in FL cells from monocultures and FL-FDC co-cultures w/wo idelalisib (500nM, 72 hrs)

Figure S2. Idelalisib blocks PI3K/AKT pathway in FL monocultures and FL-FDC co-cultures. FL patient samples (n=3) were treated for 3h with idelalisib (IDELA, 500nM) and phosphorylation of AKT at Ser 473 was assessed by Peggy Sue simple western and quantified by densitometry. Images from a representative case are shown (FL35).

Figure S3. Cell viability of FL samples subjected to microarrays analysis. Viability was assessed by flow cytometry in FL primary cells from monocultures or FL-FDC co-cultures, treated w/wo idelalisib (500nM, 48h). Cells were labeled with CD20, Annexin V and 7AAD. The percentages of CD20⁺/Annexin V⁻/ 7AAD⁻ cells are plotted.

Figure S4. A 39-gene signature segregates idelalisib sensitive and resistant FL cases. FL primary cells were isolated from FL-FDC (n=25) co-cultures treated w/wo idelalisib (500nM, 48h), RNA was extracted and subjected to a multiplex RT-PCR by Fluidigm to characterize 39 selected genes as in figure 1B. Heatmap displays the mean expression of these genes in either sensitive (n=9) or resistant (n=16) patients classified as in figure 1B. The - Δ Ct obtained by Fluidigm were first normalized using 3 houskeeping genes, and they were then transformed to fold change referred to the corresponding baseline control without co-culture.

Figure S5. Somatic mutations and idelalisib sensitivity in FL-FDC co-cultures. DNAs from 24 FL patients were analyzed by targeted next-generation sequencing (Haloplex) for the presence of somatic mutations in 10 recurrently mutated genes in FL. No mutations were identified in *EPHA7*. Cases (in columns) carrying a mutation in each specific gene are depicted in blue. R (resistant to idelalisib); S (sensitive to idelalisib)

Figure S6. Idelalisib inhibits gene sets related to GC program and mTORC1. FL cells (n=5) were cultured for 48h with idelalisib (500nM), and B cells were purified and subjected to GEP. Gene sets regulated by idelalisib in the presence and absence of FDC co-culture were identified by Gene Set Enrichment Analysis (GSEA) using custom genes set (<u>http://lymphochip.nih.gov/signaturedb/index.html</u>). Heatmaps of the corresponding leading edge of selected gene sets are shown including the relative gene expression of FL cells cultured w/wo idelalisib referred to the untreated control.

Figure S7. Idelalisib inhibits the phosphorylation of the downstream mTOR target pS6. FL cells (n=7) were treated w/wo Idelalisib (500nM, 1h) and stimulated with anti-IgM ($10\mu g/ml$) for additional 30 minutes. Afterwards, cells were collected in ice, fixed with 4% paraformaldehyde and permeabilized with Perm Buffer III (BD Phosflow). FL cells were labeled with anti-CD20-FITC (Biolegend) and anti-PS6-PE (S235, S236 (eBioscience)) and analyzed in a Fortessa 4L flow cytometer.

Figure S8. Idelalisib reduces CD40L-induced FL cells proliferation. FL cells (shown FL39) were labeled with CFSE (0.5μ M) and co-cultured for 5 days w/wo 500nM idelalisib on pre-established layers of FDCs engineered for CD40L expression. The percentage of viable CD19+ cells with low CFSE fluorescence was used as a read-out of proliferation.

Figure S9. Idelalisib does not modify BIM induced priming. FL cells (n=13) either in monoculture or in co-culture with FDC or M ϕ , were treated with idelalisib 500nM for 24 hour. Then cells were permeabilized and incubated for 1 hr with 0.1µM BIM peptide fixed/stained for intracellular Cytochrome C and evaluated by flow cytometry as a read-out of apoptosis priming

Figure S10. Effect of Idelalisib on BAD and HRK mediated cell priming. FL cells (n=13) either in monoculture or in co-culture with FDC or M ϕ , were treated with idelalisib 500nM for 24 hour. Then cells were permeabilized and incubated for 1 hr with 10 μ M BAD or 100 μ M HRK, fixed/stained for intracellular Cytochrome C and finally evaluated by flow cytometry as a read-out of apoptosis priming.

Figure S11. Idelalisib upregulates the expression of *HRK* **in FL-FDC co-cultures.** FL-FDC co-cultures (n=26) were treated w/wo idelalisib (500nM, 48h), RNA extracted and *HRK* gene expression was measured by real-time PCR in primary FL cells. *GUSB, ACTB* and *B2M* houskeeping genes were used for normalization.

Figure S12. Idelalisib downregulates the expression of *BFL-1* in FL-M ϕ co-cultures. FL primary cells were isolated from FL-M ϕ (n=5) co-cultures treated w/wo idelalisib (500nM, 48h), RNA was extracted and subjected to GEP in HG-U219 microarrays as indicated in materials and methods.

Figure S13. Idelalisib improves Venetoclax response both in sensitive (n=4) and resistant (n=9) patients. FL-FDC co-cultures were treated w/wo idelalsib (500nM, 24h), then cells were permeabilized and incubated for 1 hr with 10µM venetoclax, fixed/stained for intracellular Cytochrome C and evaluated by flow cytometry as a read-out of apoptosis priming. The increase in priming (Δ priming = (% cyt C release FL/FDC+IDELA) – ((% cyt C release FL/FDC))

Figure S14. Idelalisib and venetoclax do no affect M ϕ **or FDC viability.** Macrophages (derived from peripheral blood and differentiated with M-CSF (100ng/ml) for 7 days) and HK cells (FDC from tonsil) were plated in triplicates at the same density used for co-cultures and treated with Idelalisib (I200nM, I500nM), Venetoclax (VEN10nM, VEN50nM) or their respective combinations. After 72h of treatment, Tetrazolium salt (MTT) was added to cultures and the subsequent formation of formazan crystals for metabolically active cells (meaning alive cells) was assessed by spectrophotometry. Results were plotted as percentage referred to the untreated control.

SUPPLEMENTAL TABLES

Table S1. Patient clinical data

Study label	Sex/Age	Histologic Grade ¹	Ann Arbor stage	FLIPI ²	Disease status ³	% T cells⁴	Genomic alterations ⁵	First line therapy ⁶	DFS ⁷ (months)	Number of relapses
FL1	M/71	2	IV	I	D	21.2	NA	R	86	0
FL2	M/77	NA	NA	NA	NA	30.8	1,2,3	NA	NA	NA
FL3	F/83	2	Ш	T	D	18	1,2,3	R	60	0
FL4	M/65	2	I	L	D	22	1,2,3,5	R	67	0
FL5	F/73	2	IV	Н	D	12.8	NA	R-L	34	1
FL6	M/80	2	IV	I	D	9.4	1	R-B	25	0
FL7	M/73	2	IV	Н	D	13.5	1,3	R-B	1	2
FL8	M/75	2	I	L	D	14.4	1,2,3,6	СР	26	0
FL9	M/69	2	IV	Н	D	14.6	1,2,3,9	R-CHOP	25	0
FL10	F/55	3a	IV	н	D	NA	1,3,4,7,8	R-CHOP	1	2
FL11	M/50	2	П	L	D	30.7	1,3,5,8	R-CHOP	23	1
FL12	F/73	3a	Ш	I	D	18.3	2	R-CHOP	31	1
FL13	F/60	2	IV	I	D	37.8	3,6	R-FCM	168	0
FL14	F/70	2	I	L	R	23.5	1,3	RTx	32	1
FL15	F/54	2	IV	L	D	28.1	1,4	R-CHOP	11	0
FL16	M/54	2	IV	н	D	13.7	1,3,7,9	FCM	47	1
FL17	F/69	2	IV	I	D	35.7	3,5	R-CHOP	60	0
FL18	M/58	3a	IV	L	R	59.2	1	Chl	106	1
FL19	M760	2	IV	L	D	30.2	2,3,7	R	13	1
FL20	F/66	1	IV	I	R	40.05	1,3	CHOP	38	2
FL21	F/50	2	IV	L	D	38.4	3	FCM	190	0
FL22	M/70	2/3	IV	I	R	13.9	1,2,3	RTx	33	1
FL23	M/50	1	I	L	R	33.3	3	СНОР	64	1
FL24	F/80	2	Ш	Н	D	29.8	1,2,3,4,6	R-CHOP	152	0
FL25	F/32	2	IV	I	D	23.17	1,2,3	R-CHOP	16	0
FL26	M/53	3a	IV	I	R	34.4	2,3,4	R-CHOP	37	2
FL27	F/59	2	IV	I	R	30.43	1,2,3	R-CHOP	57	2
FL28	F/59	2/3	IV	Н	D	14.7	NA	R-CHOP	162	0
FL29	M/56	2	IV	I	R	11.3	1,2,3,6	R-CHOP	4	2
FL30	F/66	1	IV	Н	D	29.8	NA	R-CHOP	13	0
FL31	M/60	1/2	Ш	I	D	36.3	1,3,5,6,7	R-CHOP	15	0
FL32	F/77	3	IV	н	D	15.8	7	R-CHOP	22	0
FL33	M/57	1	IV	I	R	34.3	NA	R-CHOP	16	1
FL34	F/	2	NA	NA	NA	47.7	1,2,3,6	NA	NA	NA
FL35	M/59	2	IV	I	D	13.13	NA	none	35	0
FL36	F/73	2	IV	Н	D	12.7	NA	R-L	34	1
FL37	F/83	1	Ш	I	D	13.94	NA	R-COP	52	0
FL38	F/35	2	IV	Н	D	36.3	NA	R-CHOP	42	0
FL39	F/47	2	IV	I	D	4.5	NA	R-Lena	93	0
FL40	M/52	2	IV	Н	D	19.8	NA	R-Lena	20	1
FL41	M/23	1	I	L	D	45	NA	CHOP	NA	NA
FL42	F/53	1	IV	L	D	NA	NA	FCM	2	2

¹Grade was evaluated by two different pathologists; ²FLIPI: Follicular Lymphoma International Prognostic Index: >3 high-risk (H), 2 intermediate risk (I), and 0-1 low-risk (L); ³Samples were obtained at D: diagnosis, or R: relapse; ⁴Percentage of T cells in the FL sample assessed by flow cytometry ⁵Somatic mutations identified by NGS: (1) CREBBP, (2) TNFRSF14, (3) KMT2D, (4) EP300, (5) MEF2B, (6) EZH2, (7) TNFAIP3, (8) TP53 and (9) RRAGC. ⁶ First line therapy consisted of R: Rituximab; L: Lenalidomide; B: Bendamustine; C: Cyclophosphamide; P:Prednisone; CHOP: Chemotherapy combination of Cyclophosphamide, Hydroxydaunorubicin, Oncovin and Prednisone; FCM: Fludarabine, Cyclophosphamide and Mitoxantrone; RTx: Radiotherapy; or Chl: Chlorambucil. ⁷DFS (Disease free survival) is referred to time passed from initial therapy to first relapse. NA: not available

Study label	CREBBP	TNFRSF14	KMT2D	EP300	MEF2B	EZH2	TNFAIP3	TP53	RRAGC
FL2	p.Phe1484del	p.Cys42Tyr	p.Gln4609* p.Pro868fs						
FL3	p.Asp1037fs	p.Arg62Gly	p.Trp339*						
FL4	p.Gln1209fs	p.Cys54Ser	p.Cys1474Tyr		p.Thr70Arg				
FL6	p.Pro1948Leu p.Ser1436Arg p.Cys1219*								
FL7	p.Tyr1503Asn p.Gln338fs		p.Gln2819*						
FL8	p.Tyr1450Cys	p.His134fs				p.Tyr646As n			
FL9	p.Arg1446Leu	p.Trp201*	p.Glu1588* p.Pro1460fs						p.Trp115Arg
FL10	p.Arg1498*		p.lle1208fs	p.Trp1436Arg			p.His195fs	p.Ser240Arg	
FL11	p.Tyr1503Ser		p.Val5155fs		p.Pro340Leu			p.Arg248Trp	
			p.His3588fs p.Glu902fs						
FL12		p.Pro55Ser							
FL13			p.Tyr2199fs p.Cys2 7 6fs,			p.Tyr646Phe			
FL14	p.Arg1446Cys,		p.Tyr1495fs p.Ile982fs p.Tyr343Cys						
FL15	p.Gln442*			p.Glu1246*					
FL16	p.Tyr1450Ser		p.Gln3737* p.Arg3452*						p.Pro87Leu
FL17			p.Ser2488fs		p.Thr70Lys				
FL18	p.Ser1680del								
FL19		p.Gln158*	p.Thr3384fs				p.Gln370*		
FL20	p.Gln1491Lys		p.Ser4456fs, p.Gln4412*						
FL21			p.Gln4347fs p.Val2551fs						
FL22	p.Leu1454Arg	p.Cys127Tyr							
FL23			p.Pro2931fs p.Arg1388Leu						
FL24	p.His1487Tyr	p.Ser112Pro	p.Arg5154Gln p.Cys5117* p.Arg348Cys			p.Tyr646Phe			
FL25	p.Ser1680del	p.Cys93*	p.Gln2445* p.Arg1709fs						
FL26		p.Lys 17fs	p.Val4642fs p.Leu3245*	p.Gln1720His					
FL27	p.Arg1446His	p.Gly8fs	p.Arg4198* p.Gln3265fs						

p.Ala692Val

p.Gln350fs p.His351Tyr

p.Arg24Gln p.Ala682Gly

Table S2. Recurrent somatic mutations in FL

FL29

FL31

FL32

p.Tyr1503Asp

p.Tyr1503His

p.Ser1680del p.Cys138Tyr p.Arg3321*

p.Gln425*

p.His5114Tyr

Table S3. Complete list of gene sets regulated by idelalisib treatment in FL-FDC co-cultures in sensitive patients

Custom gene sets				
Biological process	Gene set name	Size	NES	FDR q-val
Human angiogenesis				
	HUMAN ANGIOGENESIS MERGED	120	2.63	0.00000
IRF4 pathway		-		
	MYELOMA IRF4	243	1.98	0.00455
Cell cycle regulation		2.0	1.50	0100100
con cycle regulation	CELL CYCLE ΡΑΤΗΜ/ΑΥ	31	1.98	0.00390
	G1 PATHWAY	24	1.50	0.00330
Integrin nathway	GITAMWA		1.77	0.02410
integrin patriway		25	1.02	0.00676
Sorum recoonce		33	1.92	0.00070
Serum response		150	1.05	0.01214
	SERUM_RESPONSE_FB_UP	158	1.85	0.01314
Canonical Pathways (C	2CP)			
Biological process	Gene set name	Size	NES	FDR q-val
Focal adhesion-Integri	ns			
	KEGG_FOCAL_ADHESION	179	2.80	0.00000
	PID_INTEGRIN1_PATHWAY	61	2.71	0.00000
	PID_INTEGRIN3_PATHWAY	41	2.55	0.00000
	PID_AVB3_INTEGRIN_PATHWAY	70	2.46	0.00000
	REACTOME INTEGRIN CELL SURFACE INTERACTIONS	71	2.39	0.00000
	ST INTEGRIN SIGNALING PATHWAY	78	2.14	0.00016
	PID INTEGRIN A9B1 PATHWAY	24	2.10	0.00046
	PID FAK PATHWAY	55	2.07	0.00113
	PID INTEGRIN A4B1 PATHWAY	30	2.00	0.00299
	PID A6B1 A6B4 INTEGRIN PATHWAY	42	2.00	0.00306
	BIOCARTA INTEGRIN PATHWAY	36	1.92	0.00925
	PID INTEGRIN2 PATHWAY	27	1 77	0.03477
Extracellular matrix for	rmation			
	NABA CORE MATRISOME	243	2 76	0.00000
	NABA ECM GLYCOPROTEINS	173	2 67	0.00000
	KEGG ECM RECEPTOR INTERACTION	72	2.61	0.00000
	REACTOME EXTRACELLULAR MATRIX ORGANIZATION	80	2.51	0.00000
		54	2 40	0.00000
	NABA_COLLAGENS	37	2.26	0.00000
	NABA FCM REGULATORS	214	2 14	0.00015
Angiogenesis (VEGE/PI	DGE nathways)			0100015
Anglogenesis (VEGI/II	REACTOME SIGNALING BY PDGE	113	2 29	0.00000
	PID LYMPH ANGLOGENESIS PATHWAY	25	2.20	0.00000
	PID_VEGER1_PATHWAY	23	2.23	0.00000
	PID VEGERI 2 PATHWAY	66	1.86	0.00103
	PID PDGERA PATHWAY	22	1.80	0.02621
Coll adherent junction		~~~	1.00	0.02021
cen aunerent junction.		40	2.08	0.00096
		74	2.00	0.00030
		74	2.07	0.00113
		20	2.04	0.00187
		20	2.04	0.00188
Coll avala C1 M		32	1.65	0.02121
Cell cycle G1-IVI		77	2.01	0.00272
		15	2.01	0.00272
	SA_GI_AND_S_PHASES	15	1.97	0.00461
	BIOCARTA_CELLOTCLE_PATHWAT	22	1.91	0.01036
	BIOCARTA_GI_PATHWAY	27	1.84	0.02107
		150	1.82	0.02304
		32	1.80	0.02632
		113	1.74	0.04301
Transendothelial cell n	nigration			
	KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	107	1.90	0.01151
1	REACTOME SEMA4D INDUCED CELL MIGRATION AND GROWTH CONE COLLAPSE	22	1.78	0.03143

Motif gene sets (C3TFT)				
Biological process	Gene set name	Size	NES	FDR g-val
Serum Response Factors	s (SRF)	0.10		
Serum Response ructore	VŚCPE OG	218	2 21	0.00000
		102	2.51	0.00000
		01	2.27	0.00000
	VCAWWWAAGG_VSSKF_Q4	100	2.10	0.00000
	V\$SKF_Q5_01	199	2.16	0.00000
	V\$SRF_Q4	206	2.16	0.00000
_	V\$SRF_01	43	2.11	0.00016
Interferon Response Fac	tors (SRF)			
	STTTCRNTTT_V\$IRF_Q6	162	1.85	0.00869
	V\$IRF_Q6	207	1.78	0.01853
NFAT				
	V\$NFAT Q6	221	1.73	0.02107
NF-KB				
	VŚNEKB OG	230	1 64	0.04138
	19/11/tb_Q0	230	1.04	0.04150
Hallmarks (H)				
Biological process	Gene set name	Size	NES	FDR q-val
Epithelial mesenchymal	transition			
	HALLMARK EPITHELIAL MESENCHYMAL TRANSITION	189	3.26	0.00000
Angiogenesis				
	HALLMARK ANGLOGENESIS	35	2.26	0.0000
	TALLMARK_ANGIOGENESIS	35	2.20	0.00000
mior				
	HALLMAKK_MIORC1_SIGNALING	182	1.96	0.00016
Interferon α and γ_resp	onses			
	HALLMARK_INTERFERON_GAMMA_RESPONSE	178	1.60	0.01498
	HALLMARK_INTERFERON_ALPHA_RESPONSE	87	1.51	0.03042
GO genesets (C5)				
Riological process	Cono cot nomo	Sizo	NEC	EDB a val
Biological process	dene set name	3120	INES	FDK q-Vai
Extracellular matrix form	nation	100		
	GO_EXTRACELLULAR_MATRIX_COMPONENT	109	2.92	0.00000
	GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION	271	2.90	0.00000
	GO_EXTRACELLULAR_MATRIX	381	2.79	0.00000
	GO_PROTEINACEOUS_EXTRACELLULAR_MATRIX	322	2.72	0.00000
	GO_EXTRACELLULAR_MATRIX_BINDING	48	2.53	0.00000
	GO_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT	65	2.46	0.00000
	GO_EXTRACELLULAR_MATRIX_DISASSEMBLY	68	2.36	0.00000
	GO REGULATION OF EXTRACELLULAR MATRIX ORGANIZATION	26	2.00	0.00264
Adhesion-Integrins				
		175	2 5 7	0.00000
		150	2.57	0.00000
	GO_CELL_SUBSTRATE_ADHESION	151	2.40	0.00000
		107	2.41	0.00000
		101	2.29	0.00000
		90	2.23	0.00004
	GU_SUBSTRATE_ADHESION_DEPENDENT_CELL_SPREADING	38	2.1/	0.00018
	GO_REGULATION_OF_CELL_MATRIX_ADHESION	82	2.10	0.00064
	GO_FOCAL_ADHESION_ASSEMBLY	24	2.05	0.00161
	GO_NEGATIVE_REGULATION_OF_CELL_MATRIX_ADHESION	29	2.04	0.00165
Vasculature-angiogenes	is-Endothelial cell growth			
	GO_VASCULATURE_DEVELOPMENT	443	2.49	0.00000
	GO_ANGIOGENESIS	276	2.41	0.00000
	GO_SPROUTING_ANGIOGENESIS	43	2.38	0.00000
	GO REGULATION OF VASCULATURE DEVELOPMENT	218	2.27	0.00000
	GO POSITIVE REGULATION OF ENDOTHELIAL CELL PROLIFERATION	65	2,22	0.00005
	GO POSITIVE REGULATION OF VASCULATURE DEVELOPMENT	124	2.21	0.00009
	GO POSITIVE REGULATION OF BLOOD VESSEL ENDOTHELIAL CELL MIGRATION	23	2 15	0.00022
	GO VASCIJAR ENDOTHELIAL GROWTH FACTOR RECEPTOR SIGNALING PATHWAY	65	2 11	0.00057
		22	2.09	0.00075
		10	2.05	0.00075
	GO REGULATION OF READD VESSEL ENDOTHERIAL CELL MICRATION	12	2.05	0.00101
		47	2.03	0.00204
		69	2.01	0.00258
		43	1.91	0.00723
	GU_CELLULAK_KESPONSE_IU_VASCULAR_ENDOTHELIAL_GROWTH_FACTOR_STIMULUS	29	1.90	0.00810
	GO_REGULATION_OF_SPROUTING_ANGIOGENESIS	27	1.70	0.04004
Cell cycle G1-S and G2-N	1			
	GO_POSITIVE_REGULATION_OF_CELL_CYCLE_PHASE_TRANSITION	64	2.09	0.00078
	GO REGULATION OF CELL CYCLE G2 M PHASE TRANSITION	55	2.03	0.00203
	GO REGULATION OF CELL CYCLE G1 S PHASE TRANSITION	134	1.97	0.00379
	GO POSITIVE REGULATION OF CELL CYCLE G2 M PHASE TRANSITION	16	1.87	0.01143
	GO REGULATION OF CELL CYCLE PHASE TRANSITION	291	1.86	0.01228
	GO CELL CYCLE G2 M PHASE TRANSITION	122	1.72	0.03510
L				

l

Table S4. Common gene sets regulated by idelalisib in monoculture and in FL-FDC co-	-
cultures	

GSEA analysis	CONTR	OL vs IDELA	FDC vs FDC IDELA		
Gene sets	NES	FDR, q-value	NES	FDR, q-value	
BLIMP1 targets ¹	2.51	<0.0001	2.21	<0.0001	
CD40 signaling during GC development ¹	2.37	<0.0001	2.20	<0.0001	
GC B CELL ¹	2.24	<0.0001	2.46	<0.0001	
mTORC1 pathway ²	2.26	<0.0001	2.30	<0.0001	

Gene sets regulated by idelalisib (IDELA) were identified by Gene Set Enrichment Analysis (GSEA) using: ¹Experimentally derived custom genes sets (<u>http://lymphochip.nih.gov/signaturedb/index.html</u>); ²Hallmark signatures from Molecular Signature database (v2.5). NES: Normalized Enriched Score; FDR: False Discovery Rate. Threshold FDR<0.05 and NES>1.5.

I