Anti-tumor activity of the dual BET and CBP/EP300 inhibitor NEO2734

Filippo Spriano ¹, Eugenio Gaudio ¹, Luciano Cascione ^{1,2}, Chiara Tarantelli ¹, Federica Melle ³, Giovanna Motta ³, Valdemar Priebe ¹, Andrea Rinaldi ¹, Gaetanina Golino ¹, Afua Adjeiwaa Mensah ¹, Luca Aresu ⁴, Emanuele Zucca ^{1,5}, Stefano Pileri ³, Michael Witcher ⁶, Bill Brown ⁷, Claes Wahlestedt ⁸, Francis Giles ⁹, Anastasios Stathis ^{5,10}, Francesco Bertoni ^{1,5}

¹ Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; ² SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ³ European Institute of Oncology, Division of Diagnostic Haematopathology, Milan, Italy; ⁴ Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy; ⁵ Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland; ⁶ Departments of Oncology and Experimental Medicine, McGill University, Montreal, Canada; ⁷ Oncology, NEOMED Therapeutics 1 Inc, Montreal, Canada; ⁸ Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; ⁹ Developmental Therapeutics Consortium, Chicago, IL, USA; ¹⁰ Faculty of Biomedical Sciences, USI, Lugano, Switzerland.

Supplementary Material

Supplementary Figure 1. Curves showing binding of molibresib and NEO2734 to bromodomains. Bromodomain levels measured by qPCR (Signal; y-axis) are plotted against the corresponding compound concentration in nM in log10 scale (x-axis). Experiments performed in duplicate. BRD2, BRD3, BRD4, BRDT, CBP AND EP300 shown as examples.

Supplementary Figure 2. Activity of NEO2734 in Lymphoma or Leukemia or Prostate cancer cells compared to other tumor types. IC50s calculated for 60 cell lines after 72 hours treatment with NEO2734. Each dot represents a cell line. *** p < 0.001 (Mann-Whitney test)

Supplementary Figure 3. Percentage of cell lines for each tumor type that are sensitive or resistant to **NEO2734.** Sensitive = IC50 < 500 nM; Resistant = IC50 > 500 nM. The numbers inside the bars represent the number of cell lines in each group. X axis: percentage of cell lines that are sensitive or resistant for each tumor type.

Supplementary Figure 4. *BCL2* is upregulated in DLBCL cell lines resistant to NEO2734. A) Heatmap generated with the GSEA software (Broad Institute) showing the top 50 upregulated genes in sensitive cell lines (left panel) and the top 50 upregulated genes in resistant cell lines (right panel). B) Box-plot showing CI (Chou-Talalay combination index) for NEO2734 plus venetoclax combination treatment. Y-axis: CI values. In each box-plot, the line in the middle of the box represents the median and the box extends from the 25th to the 75th percentile (interquartile range, IQ); the whiskers extend to the upper and lower adjacent values (i.e., ± 1.5 IQ). CI < 0.9 = synergy; 0.9 < CI < 1.1 = additivity; CI > 1.1 = no benefit. C) Dose response curve after 72h treatment with venetoclax alone. D) Dose response curves for NEO2734 plus a fixed concentration of venetoclax and vice versa. In SU-DHL10 and TMD8 sensitive cell lines the combination curves are below the predicted additivity curves, indicating synergism. In Farage and U2932 resistant cell lines the combination and predicted additivity curves overlap, indicating no synergism.

A)

B)

C)

D) Farage Farage 10 10 % of proliferating cells % of proliferating cells Venetoclax - NEO2734 ---- Predicted additivity ± 10% Predicted additivity ± 10% Venetoclax + 250nM NEO2734 50 50-CTR 0 500 5000 0 CTR 50 500 50 0 Venetoclax (nM) Neo2734 nM U2932 10 100 NEO2734 % of proliferating cells Predicted additivity ± 10% ---- Predicted additivity ± 10% NEO2734 + 250nM venetoclax 50--50 34 500 5000 50 0 CTR 500 ò 50 Neo2734 nM SU-DHL10 100 10 % of proliferating cells - NEO2734 Predicted additivity ± 10% - 10-- medicted additivity ± 10% 50- NEO2734 + 6.5 μM venetoclax 50 734 OLTR 0 500 5000 50 0L CTR 500 50 ò Neo2734 nM TMD8 100 100 % of proliferating cells --- NEO2734 Predicted additivity ± 10% Predicted additivity ± - 4-- 10-10% NEO2734 + 250 nM venetoclax **50** 50--4 0 CTR 0 50 500 5000 50 500 ò

5

Neo2734 nM

Supplementary Figure 5. NEO2734, NEO1132, birabresib (OTX015) and SGC-CBP30 show correlated patterns of activity in 27 DLBCL cell lines. Each dot represents a cell line. Pearson's correlation was used for correlation analysis.

Supplementary Figure 6. Effect of three days versus six days exposure to NEO2734 and birabresib. A) Box plot comparing AUC Birabresib / AUC NEO2734 after 3 days or 6 days treatment in CREBBP/EP300 WT or mutated DLBCL cell lines. B) Box plot comparing AUC birabresib/AUC NEO2734 after 3 days or 6 days treatment in *BCL2* low expressor or *BCL2* high expressor DLBCL cell lines. AUC (Area Under the Curve) was calculated using Prism7.

Supplementary Figure 7. RNA-Seq of DLBCL cell lines treated with NEO2734 or birabresib in four DLBCL cell lines. (A) volcano plots showing significantly upregulated (red) or down-regulated (blue) genes after exposure to NEO2734 (left panel) or birabresib (right panel). (B) Scatter plots of log2-fold gene-expression changes after NEO2734 and birabresib 6h treatment in four DLBCL cell lines. Y axis, log2-fold changes after birabresib treatment; X axis, log2-fold changes after NEO2734 treatment. Pearson rho = 0.89, P < 0.001. (C) GSEA plots for NEO2734-treated GCB-DLBCL analyzed for enrichment of genes affected by birabresib treatment (logfc > |0.5|; adj. P < 0.05) in GCB-DLBCL (above) and GSEA plots in birabresib-treated GCB-DLBCL analyzed for enrichment of genes; bars in the middle portion of the plots show where the members of the gene set appear in the ranked list of genes; Positive or negative ranking metric indicates, respectively, correlation or inverse correlation with the profile; NES, normalized enrichment score.

Supplementary Figure 8. Real-time PCR performed after 6h NEO2734 treatment of DLBCL cell lines. Real-time PCR was performed in 4 cell lines SU-DHL10 and TMD8 (sensitive) and U2932 and Farage (resistant) treated for 6h with 100 nM NEO2734 or DMSO. At least two biological replicates were performed. Primers: ASB2 Fw: 5'-CATTGGGCAGGAGGAGTACA-3', Rev: 5'- TCTCAGGAGGTGCAGTGGA-3';

CD180 Fw: 5'- AAACATCGCTTAATGGGCCC -3' Rev: 5'- TGGGAAGTCTTTGGGGAACT -3'; CDK9 Fw: 5'- GTTCCCCATTACAGCCTTGC -3' Rev: 5'- CAGACAGCGTGAACTTGACC -3'; USP18 Fw: 5'- CTGACAATCCACCTCATGCG -3' Rev: 5'-AAAGCTCATACTGCCCTCCA -3'; CNT1 Fw5'- TTGTTCGAGCAAGCAAGGAC -3'Rev: 5'- ATACTCCCACCAGTGCTTCC -3'; Primer sequences for BCL2, MYC, HIST2H2BE and HEXIM1 were obtained from Lucile et al.¹

CDK9

MYC

Supplementary Figure 9. Antiproliferative activity of NEO2734, NEO1132, birabresib (OTX015) and CBP30 in a canine DLBCL cell line. CLBL-1 cells were treated with increasing doses of NEO2734, NEO1132, Birabresib or CBP30 for 72h and the percentage of proliferating cells was determined with an MTT assay.

SUPPLEMENTARY TABLES AND FIGURE

Supplementary Table 1. Binding activity of NEO1132 against bromodomains, as detected using a ligand binding site-directed competition assay.

Target	NEO2734 (Kd, nM)	NEO1132 (Kd, nM)			
ATAD2A	>10000	>10000	>10000		
ATAD2B	>10000	>10000	5600		
BAZ2A	150	>10000	120		
BAZ2B	130	>10000	150		
BRD1	1100	>10000	1200		
BRD2(1)	4.6	55	6.2		
BRD2(1,2)	9	64	42		
BRD2(2)	4.1	20	57		
BRD3(1)	1.4	29	4		
BRD3(1,2)	3.5	40	26		
BRD3(2)	2.6	26	48		
BRD4(1)	5.1	60	7.2		
BRD4(1,2)	7.1	31	63		
BRD4(2)	6.2	19	190		
BRD4(full-length,short-iso.)	2.5	40	7.4		
BRD7	200	>10000	110		
BRD8(1)	>10000	>10000	4700		
BRD8(2)	>10000	>10000	>10000		
BRD9	59	>10000	43		
BRDT(1)	4.6	150	24		
BRDT(1,2)	3.5	50	87		
BRDT(2)	17	37	190		
BRPF1	75	>10000	6.5		
BRPF3	2600	>10000	1900		
CECR2	25	>10000	290		
CBP	19	>10000	61		
EP300	31	>10000	80		
FALZ	2300	>10000	140		
GCN5L2	>10000	>10000	>10000		
PBRM1(2)	3800	>10000	2400		
PBRM1(5)	1100	>10000	1500		
PCAF	3300	>10000	5300		
SMARCA2	4700	>10000	3700		
SMARCA4	9100	>10000	8300		
TAF1(2)	100	>10000	1300		
TAF1L(2)	490	>10000	7600		
TRIM24(Bromo.)	680	>10000	410		
TRIM24(PHD,Bromo.)	2000	>10000	890		
TRIM33(PHD,Bromo.)	3300	>10000	1900		
WDR9(2)	4100	>10000	2400		

Supplementary Table 2. Antiproliferative activity, expressed in nM, obtained in 60 cell lines after 72 hours exposure to NEO2734 or molibresib (iBET-762, GSK525762).

-

			Molibresib IC50 nM	NEO2734 IC50 nM		
1		SW780	10000	1090		
2	Bladder	T24	7230	590		
3	Brain &	M059K	10000	1430		
4	Nerves	SK-N-SH	10000	1530		
5		BT474	10000	1710		
6		CAL-120	10000	2160		
7		HCC1937 10000		10000		
8	Breast	HCC1954 10000		10000		
9		MX-1 10000		7340		
10		SK-BR-3	10000	760		
11		ZR-75-1	10000	3050		
12	Comin	HeLa	1640	350		
13	Cervix	HeLa 229	10000	2630		
14		COLO 205	2340	400		
15		DLD-1	10000	670		
16	Colorectum	HCT-8	10000	1770		
17		SW1116	10000	860		
18		SW1417	9370	680		
19		786-O	10000	3010		
20	Kidney	OS-RC-2	10000	10000		
21		UO.31	5770	480		
22		Hep3B	10000	890		
23		SNU-182	10000	5330		
24	Liver	SNU-354	10000	470		
25		SNU-368	10000	3840		
26		SNU-387	10000	1430		
27		Hs 618.T	10000	7620		
28		NCI-H1417	3750	390		
29		NCI-H1688	10000	5080		
30	Lung	NCI-H1836	10000	10000		
31]	NCI-H1963	1070	190		
32]	NCI-H209	10000	10000		
33		NCI-H69	10000	1400		

34		SW1271	10000	600	
35		A2780cis	1700	340	
36	Ονοτγ	OVCAR-8	2300	340	
37	Ovary	SW626	10000	790	
38		SW756	10000	830	
39		CFPAC-1	6360	570	
40	Pancreas	PL45	10000	1210	
41		SW1990	10000	2790	
42		22Rv1	10000	610	
43		C4-2	2290	460	
44	Prostato	DU 145	10000	6550	
45	Trootato	LNCaP clone FGC	990	240	
46		VCAP	790	170	
47	Skin	SK-MEL-28	10000	3880	
48		SK-MEL-5	10000	960	
49		SNU-1	1120	300	
50	Stomach	SNU-216	10000	810	
51	Stomach	SNU-484	10000	850	
52		SNU-601	10000	890	
53		Molt-4	2380	560	
54		KG-1	580	110	
55		THP-1	1010	290	
56	Blood	KHYG-1	1070	180	
57	RIOOD	Daudi	1170	300	
58		Raji	1780	320	
59		RL	840	130	
60		U-937	1110	280	

Supplementary Table 3. Antiproliferative activity, expressed in nM, obtained in DLBCL cell lines after 72 hours exposure to NEO2734, birabresib (OTX015), SGC-CBP30 and NEO1132. DLBCL, diffuse large B-cell lymphoma; GCB, germinal center B-cell type; ABC, activated B-cell like. *MYD88*, *BCL2*, *MYC* and *TP53* status were obtained as previously described ^{2.3}. *CREBBP* and *EP300* status was obtained as described in the methods.

DLBCL type	Cell.line	Neo2734	Birabresib	Neo1132	SGC-CBP30	MYC translocation	MYD88 mutation	BCL2 translocation	p53 inactive	CREBBP	EP300
ABC	SUDHL2	56.6	60.6	127.9	2670.9	no	N.A.	no	no	0	1
ABC	TMD8	79.9	181.5	196.5	3013.6	no	N.A.	N.A.	no	0	0
ABC	RCK8	98.3	271.5	316.0	4157.4	no	N.A.	N.A.	no	0	0
ABC	OCILY10	99.3	341.2	274.4	5749.9	no	yes	no	yes	0	0
GCB	TOLEDO	106.0	167.0	227.2	3018.0	yes	N.A.	yes	yes	0	1
GCB	DOHH2	107.5	120.5	292.5	4079.9	yes	N.A.	yes	no	0	1
GCB	DB	116.4	255.8	398.5	4711.5	N.A.	N.A.	N.A.	N.A.	0	1
GCB	SUDHL10	129.4	233.7	348.3	7148.2	yes	no	yes	yes	0	1
ABC	HBL1	135.6	192.9	272.0	5619.8	no	yes	N.A.	yes	0	0
GCB	PFEIFFER	137.1	222.9	299.7	3405.1	no	N.A.	yes	yes	1	1
GCB	SUDHL6	137.6	125.3	397.4	4408.7	no	yes	yes	yes	0	1
GCB	SUDHL16	140.8	123.8	384.8	4422.1	no	N.A.	N.A.	N.A.	1	1
ABC	RI1	146.9	140.4	599.2	4891.8	N.A.	no	N.A.	yes	1	0
GCB	OCILY1	157.0	204.0	477.3	3607.7	no	N.A.	yes	yes	0	0
ABC	OCILY3	162.2	432.5	341.6	17135.5	no	yes	no	no	0	0
GCB	WSUDLCL2	167.0	442.9	377.2	8244.1	no	no	yes	yes	0	1
ABC	U2932	176.1	163.3	662.8	11027.2	no	no	no	yes	0	0
GCB	OCILY7	207.6	392.0	621.6	10430.7	yes	no	no	yes	0	1
GCB	SUDHL5	213.7	278.0	551.5	3454.9	no	no	no	N.A.	0	1
GCB	OCILY8	224.5	164.3	648.7	15358.0	yes	no	yes	yes	1	0
GCB	SUDHL4	231.5	405.2	596.6	11618.9	no	no	yes	yes	0	1
GCB	SUDHL8	251.9	240.5	893.7	5447.2	yes	no	no	N.A.	1	1
GCB	OCILY18	257.7	171.4	579.1	3096.4	yes	no	yes	yes	0	1
GCB	KARPAS422	328.9	404.1	806.7	7929.2	no	N.A.	yes	yes	1	1
GCB	OCILY19	345.9	522.7	1194.1	9586.9	N.A.	N.A.	yes	no	1	0
GCB	VAL	644.6	495.0	1064.8	11035.9	yes	no	yes	no	1	0
GCB	FARAGE	2462.7	16274.5	8381.0	38441.4	no	N.A.	no	yes	0	1

Supplementary Table 4. Gene set enrichment analysis data. Cell lines were divided into sensitive and resistant cell lines to NEO2734. Selected gene sets, P value < 0.05 and FDR <0.05.

Supplementary Table 5. Supervised analysis of RNA-Seq data of DLBCL cell lines exposed to NEO2734. Data are presented for all the cell lines together, for ABC- or GCB- DLBCL subtypes. In each worksheet: Red, transcripts with log fold change >1 and adjusted P < 0.05; Green, transcripts with log fold change <-1 and adjusted P < 0.05; B) Gene sets significantly enriched after treatment.

Supplementary Table 6. Supervised analysis of RNA-Seq data of DLBCL cell lines exposed to birabresib (OTX015). Data are presented for all the cell lines together, for ABC- or GCB- DLBCL subtypes. In each worksheet: Red, transcripts with log fold change >1 and adjusted P < 0.05; Green, transcripts with log fold change <-1 and adjusted P < 0.05; B) Gene sets significantly enriched after treatment.

References

1. Astorgues-Xerri L, Vazquez R, Odore E, et al. Insights into the cellular pharmacological properties of the BETinhibitor OTX015/MK-8628 (birabresib), alone and in combination, in leukemia models. *Leuk Lymphoma*. 2019;60(12):3067-3070.

2. Hicks SW, Tarantelli C, Wilhem A, et al. The novel CD19-targeting antibody-drug conjugate huB4-DGN462 shows improved anti-tumor activity compared to SAR3419 in CD19-positive lymphoma and leukemia models. *Haematologica*. 2019;104(8):1633-1639.

3. Spriano F, Chung EYL, Gaudio E, et al. The ETS Inhibitors YK-4-279 and TK-216 Are Novel Antilymphoma Agents. *Clin Cancer Res.* 2019;25(16):5167-5176.