Supplementary information for:

The gamma-butyrolactone system from *Streptomyces filipinensis* reveals novel clues to understand secondary metabolism control.

Eva G. Barreales,^a Tamara D. Payero,^a Ester Jambrina,^a Jesús F. Aparicio^{a#}

ORF	Size (pb)	Size (aa)	Predicted function	ID (%)	Protein/Organism
sfb1	1950	649	SARP-like regulator	39 35	AfsR S. coelicolor (BAA14186) DnrI S. peucetius (AAA26736)
sfb2	1050	349	StrR-like regulator	49 42	KasT S. kasugaensis (BAC53615) StrR S. griseus (CAH94333)
sfbR	702	233	TetR-like regulator	57 56	SpbR S. pristinaespiralis (AYO26762) AvaR1 S. avermitilis (AKK07686)
sfb4	1278	425	P450 monooxygenase	57 56	Orf16* S. fradiae (AAD40802) Cyp S. avermitilis (BAC71416)
sfb5	846	281	Dehydrogenase	51 50	Orf4 <i>Streptomyces</i> sp. SBI034 (AKP54263) ScbC <i>S. coelicolor</i> (CAB60186)
sfb6	1482	493	Hypothetical protein	54 35	Hypothetical protein <i>S. virginiae</i> (WP_051762480) SCO0249 <i>S. coelicolor</i> (CAB53289)
sfb7	828	275	SARP-like regulator	66 65	BulY S. tsukubaensis (CBY91988) FarR4 S. lavendulae (BAG71714)
sfbR2	618	205	TetR-like regulator	51 47	PapR5 S. pristinaespiralis (CBW45767) SgvR1 S. griseoviridis (AGN74903)
sfbA	1014	337	AfsA-like protein	57 55	SrrX S. rochei (BAC76543) Lct9 S. rishiriensis (ABX71092)

Table S1. Deduced function of each gene of the GBL cluster in *S. filipinensis* and orthologous counterparts in other bacterial species.

					helix turn	helix	
SfbR ArpA BarA FarA ScbR SpbR	MA MAVRHERVAV MA MA	QQERAFRTRR KQARAVQTWR RQERAVRTRQ EQVRAIRTRQ KQDRAIRTRQ RQERAVRTRR	TILTAAAEVF SIVDAAASVF AIVRAAASVF AILSAAARVF TILDAAAQVF AILVAAAEVF	DELGYEAATM DDYGYERAAI DEYGFEAATV DERGYQAATI EKQGYQAATI DEVGYEAATI	SEILGRSGVT SEILRRAKVT AEILSBASVT SEILTVAGVT TEILKVAGVT SEILKRSGLT	KGALYFHFPS KGALYFHFAS KGAMYFHFAS KGALYFHFQS KGALYFHFQS KGALYFHFAS	52 52 60 52 52 52
SfbR ArpA BarA FarA ScbR SpbR	KEQLAKEVLQ KEAIAQAIMD KEELARGVLA KEDLAQGVLT KEELALGVFD KEELAQGVLA	ENVQVVPAVP EQTST-VEFE EQTLH-VAVP AQNED-LLP AQEPP-QAVP EQVHALPDLP	PQRLKLQEAV QEGSPLQSLV ESGSKAQELV ERPAKLQEVV EQPLRLQELI EGELMLQTAV	DRGLLLAYLM DGGQQFAFAL DLTMLVAHGM DAVMLHTHRL DMGMLFCHRL DRALLLAHLL	VRDPVLR RHNSMAR LHDPILR RTNPMVR RTNVVAR RRDTGDPIVR	GGVRLALEQA AGTRLSIEGV AGTRLALDQG AGVRLSLDVN AGVRLSMDQQ GSVRLTVEQG	109 108 116 108 108 112
SfbR ArpA BarA FarA ScbR SpbR	G-HGKVDRSV FLGGPH AVDFSDAN AGGLDRSA AHGLDRRG ALRDGLDRRV	Ligand binding * PFLAWSQESR PWGDWIDATA PFGEWGDICA PFRNWVDKFT PFRRWHETLL PMQAWMEQTQ	RMFEQAKLAG RMLELGQERG QLLAEAQERG DLLEKAQAQG KLLNQAKENG DLFEQAQAAG	ELQPHIDPGE EVFPQIDPMV EVLPHVNPKK ELLPHVVPAE ELLPHVVTTD EILPHVDLVG	LADVFVGAFA SAKIIVASFT TGDFIVGCFT TADVITGAYG SADLYVGTFA AAKTFVGAFT	GVQLMSQALT GIQLVSEADS GLQAVSRVTS GVQSMSQALT GIQVVSQTVS GVQVLSNIMT	168 164 174 166 166 172
SfbR ArpA BarA FarA ScbR SpbR	GRADLDERVA GRADLRGQVA DRQDLGHRIS EHQDLGQRVN DYQDLEHRYA GRQDMTERVA	ALYRVLMAGV EMWRHILPSI VMWNHVLPSI ALLRHLMPSI LLQKHILPAI DLYRFLMTAI	AVPSVLVQLD AHPGVIAHIK VPASMLTWIE AQPSVLASLH AVPSVLAALD AVPGVLVRLD	VAVDRGARVN PEG-RVDLAA TGEERIGKVA LGESRAEEVY LSEERGARLA FSPGRGVLAY	EAVEQQRH QAREKAEREE AAAEAAEA LEARQLAR AELAPTGK EEAVRRRD	QEARIAAEAK	216 223 222 214 214 220
SfbR ArpA BarA FarA ScbR SpbR	GKGQSPPERT GAGSDAATDS AEASEAASDE EQADEED D AAPQPAAH	AR-LVEHG GSRSGGSGLR 	GGGSSGRGPRA	GGAGDEGDEE	PAGAGVAAGG	233 VVA 276 232 221 215 228	

Fig S1. Alignment of *S. filipinensis* **SfbR with other GBL receptors.** Orthologues are ArpA from *S. griseus* (BAA36282), BarA from *S. virginiae* (BAA36282), FarA from *S. lavendulae* (BAG71716), ScbR from *S. coelicolor* (CAB60184) and SpbR from *S. pristinaespiralis* (AAK07686). Identical amino acids in at least four of the six sequences are shaded. The amino acid residues that form the helix-turn-helix motif for DNA binding are indicated and the conserved tryptophan involved in GBL binding (W123 in *S. filipinensis*) is boxed.

				helix	turn helix			
SfbR2	-MVKOERAVR	TRNALIAAAA	EDFSRLGYSP	SSLLSISRHA	GVISGALHFH	FPTKVALASA	59	
AvaR2	-MTKOERAAR	TRHALIRSAA	HAFEROGYTO	ARLADISACA	GVSPGALHFH	FESKAEVARA	59	
BarB	MTPKOERAFR	TRTOLVLSAA	EAFDROGFAT	ASLTAISNSA	GVSNGALHFH	FESKEALAAA	60	
CprB	-MAROLRAEO	TRATIIGAAA	DLFDRRGYES	TTLSEIVAHA	GVTKGALYFH	FAAKEDLAHA	59	
FarR2	MKQERAVR	TROALLESAA	TVFGRRGYAE	ATLSMISVGA	GVSPGALHFH	FENKAAVAEA	58	
ScbR2	-MTKQERAAR	TRRALILSAA	EVFDQEGFAP	ASLTMISSRA	GVSNGALHFH	FANKNAVAEA	59	
SfbR2	VMAAAIQRLH	QIVERCEKRM	PPGGALQLLV	DAGHELVQQL	REDAVLRAGF	DLEGDPGC	117	
AvaR2	VEAAAGVSLR	RAAWLAQP	PGTNALQRLT	NTSHALAERL	RGDVVARAGF	RLNCESAG	115	
BarB	VEAEAAERMR	TIVDGAAR	RGASALQALV	DTSHAVMLRL	RQDVVVRAGF	RLSGDAAR	116	
CprB	VETAGARTLR	ATTREVYT	RRTSALQALA	DSSQALAGLL	LSDVVARAAF	QLNREPAY	114	
FarR2	ILEIQSRTSR	RLAKDLDG	RGYSSLEALM	RLTFGMARLC	VQGPVLRAGL	RLATAGVPVR	117	
ScbR2	VQGEALSVLR	QIAHAWPE	GATPSLQSLV	DTSHTLAQRL	QDDVVLRAGF	GLSGDTTW	115	
Ligand binding								
SfbR2	PRGVGEVRRH	WHOWVOATLO	CAEEAGOLRP	GVSVEOVASA	VFVCTVGIOM	LG-RRDTOWV	176	
AvaR2	GG-ALNLLRE	WOTCVEOLLA	EAAEEGLLAR	RLVRADTVSA	VVAATTGFEL	LG-RRDPEWL	173	
BarB	QA-THDLPEH	WRQSVVRLLE	RAGRDGSLTS	AVTPSDVAGV	VTATVLGFGV	LA-RFDSAWL	174	
CprB	PP-LPHPFTE	WREIATSRLL	DAVROSDVHO	DIDVDSVAHT	LVCSVVGTRV	VGGTLEPAGR	176	
FarR2	PS-SFALPGE	WHDYVHRLLL	EAAEEGALLP	GLNHRNVATT	VVAATLGFEA	LG-RDDPQWL	172	
ScbR2	KE-RADLRRH	WVDWVSSGLT	VVALDGALAD	DVATGDALAV	IAATTLGFEA	MG-RTDPQWS	173	
SfbR2	SRRTLSRFWY	LVLPRIAAGE	GDLDAAGT	C		- 205		
AvaR2	SGQSLAAFWR	VLLPRAATAA	ALTAVDPDGT	CPSRAETRTP	ATTAG	- 218		
BarB	ASGSLSGFWK	LMLPMIAAGP	VERGELDCRP	AVPADVRRAP	AV	- 216		
CprB	EPRRLAEMWY	ILIRGMVPVT	RRARYVTLAA	RLEQ		- 210		
FarR2	APRTLAGFWR	VVMPCLAGPA	TLRRLDTAGR	GS		- 204		
ScbR2	TREMFTRLWR	LLLPRISADN	GTGPVAPEGT	SAPGGVVPGP	RWWPERQDAP	H 224		

Fig S2. Alignment of *S. filipinensis* SfbR2 with other GBL pseudo-receptors. Orthologues are AvaR2 from *S. avermitilis* (BAC71414), BarB from *S. virginiae* (BAA23612), CprB from *S. coelicolor* (BAA28748), FarR2 from *S. lavendulae* (BAG74711) and ScbR2 from *S. coelicolor* (CAC37887). Identical amino acids in at least four of the six sequences are shaded. The amino acid residues that form the helix-turn-helix motif for DNA binding are indicated and the conserved tryptophan likely to be involved in ligand binding (W128 in *S. filipinensis*) is boxed.

SfbA AfsA BarX	M M	TLLVRQQEPT	RAPAWQGVQD MDA	LPQLTTTVPR EAEVVHPVGI MTSTVPR	EYVHRASLAE EMVHRTRPED ELVHRAAVAE	VFLTGCRQLD AFPRNWVRLG VFLTGWSRTA	51 33 27
FarX ScbA SrrX	MNVHAFRKQD	MPEAVV GDSIRSDRDT	LINSASDANS RL-SPGDTSW	IEQTALPVPM LTPLTTTVPR	-MVHRTSTAQ ALVHRTRVQD EYVHRASLAE	VLLTDWQRLD AFPVSWIPKG VFLTRCTRIH	19 46 59
			AfsA dor	nain #1			
SfbA AfsA BarX FarX ScbA SrrX	GTRFELTGQW RDRFAVEAVL ENRFALTAQW DARFSVTARW GDRFSVTAVL ETRFLLTGQW	PRAHTFFTSS PHDHPFFAPV PRAHSYFTPV PLSHAFFTPV PHDHPFFAPV PRAHTFFLSP	DGTQHDPMQA GDDLHDPLLV N-GCYDPLLA GDGYYDPLMC HGDRHDPLLI DGRRHDPMQI	AETIRQVGLF AEAMRQAAML SETIRQVGTL AETIRQIAYL AETIRQAAML AETMRQVGLH	LAHSEFGVPL AFHAGYGIPL LSHAEFGVSF LGHAEFAVPF VFHAGYGVPV LAHAEFDVPL	GHHFLLRDME GYHFLLTELD GDQFLMWDLH GHQFVLWDLS GYHFLMATLD GHHFIMWDMS	111 93 86 79 106 119
SfbA AfsA BarX FarX ScbA SrrX	FS-VIPDNLG YV-CHPEYLG HS-VRPEQAG VSVVRPELLR YT-CHLDHLG FV-SRVEHLG	IGARPSELTL VGGEPTEIGL VGAAPADLEL VGLVPATVDL VSGEVAELEV VGRTPTDLDV	QAACTDVKWR EVFCSDLKWR DVICSDIRRR AITCVEIKRR EVACSQLKFR EATCVDVVRR	GNRLVQFAMR AGLPAQGRVG GRRLAGMRYE AGRLSGLGYE GGQPVQGQVD RGKLVEFRLV	ITIERDGRLA WAVHRGDRLA VTLYCGGQVI AVVRRDGQVV WAVRRAGRLA ITIERDGHLV	ARGSGHFTCV ATGVAATRFS ATGGAAFDCT ATGRASVTCT ATGTATTRFT ANGGGRFTCI	170 152 145 139 165 178
SfbA AfsA BarX FarX ScbA SrrX	APAAYHRLRG TPKAYRRMRG SPAVYQRLRG SPAVYQRIRP SPQVYRRMRG TEAMYRRLRR	AGHTETG-TV DVPVEGI DRVGATG-VR EHVLTPE-HR DFATPTA SAPATTAHQA	PIPRPLPVEP SLPETAPVPA PLPQPLAP PLPLTAPAAP SVPGTAPVPA ASHQPAPLPP	WRVGRSSVAD SPAGRARVED ASVGRFLTTD QSVARLSPTD ARAGRTRDED SDFGRTAPRD	VVLSATDQPG VVLSGTGREG VVLSATERPL VVLSPLDREN VVLSASSQQD VVLAPGGAPN	RWLLSPDPRH VWELRVDTRH EWQLRVDEQH RWQLRVDTNH TWRLRVDTSH RWRLNADTSH	229 209 202 198 222 238
			AfsA dor	main #2			
SfbA AfsA BarX FarX ScbA SrrX	PILFDHGGDH LTLFQRPNDH PVLFDHPVDH PVLFDHWVDH PTLFQRPNDH PILFDHEGDH	VPGMVLIEAA VPGMLLIEAA VPGMVLMESA VPGMVLMEAA VPGMLLIEAA VPGMVLIESA	RQAACGLLE- RQAACLVAG- RQAAQAIDP- RQAAASALG- RQAACLVTG- RQAACALLPP	GDTFLPVRAI PAGIVPVEAR SRPFLPTTMR RPSFMPLGVA PAPFVPSIGG GSTLIPATVS	TEFHRYAEFA TRFHRYSEFG SEFSRYAELD GEFKRYVELD TRFVRYAEFD TEFRRYVEFT	TPCWIDAVLA SPCWIGAVVQ RPCWIQAEPL APCVIESERL SPCWIQATVR SPCWIEASGL	288 268 261 257 281 298
SfbA AfsA BarX FarX ScbA SrrX	HPEQPG-TRS PGTDED-TVT PAADNG-DRQ FQDVPGAEEV PGPAAG-LTT AVTGSG-TFH	VYVTGHQDGN VRVTGHQDGE VRVTGHQDDT VRVTGHQNGE VRVTGHQDGS ALITGRQDDD	EVFRTRLDGE TVFSTVLSGP TVFSCLIGTR LTFVGTVTAS LVFLTTLSGP EVFTARISGP	CAHHGAPREQ RAHG GAAE SYGY AFSG VVQD	RAGAAQDVGA	337 301 294 291 314 331	

Fig S3. Alignment of *S. filipinensis* **SfbA with other GBL synthases.** Orthologues are AfsA from *S. griseus* (BAH47547), BarX from *S. virginiae* (BAA23611), FarX from *S. lavendulae* (BAA21858), ScbA from *S. coelicolor* (CAA07627) and SrrX from *S. rochei* (BAC76543). Identical amino acids in at least four of the six sequences are shaded. The amino acid residues likely to be involved in catalysis (E83, R86, Q87 and E247, R250, Q251 in *S. filipinensis*) are boxed. The two AfsA domains characteristic of these proteins (Pfam03756) are indicated.

Fig S4. Construction of *sfbR* and *sfbR2* mutants. A) Predicted PCR fragment amplification of the parental strain and the $\Delta sfbR$ mutant. The primers used in the assay are indicated with arrowheads. The *acc(3)IV-oriT* cassette is indicated in black. B) Predicted PCR fragment amplification of the parental strain and the $\Delta sfbR2$ mutant. The primers used in the assay are indicated with arrowheads. The *aadA* cassette is indicated in black. C) PCR analyses of the wild type and the mutants. PCR fragments were verified by Sanger sequencing. SR: simple recombinant, ΔR : $\Delta sfbR$; $\Delta R2$: $\Delta sfbR2$.

Fig S5. RT-PCR amplification of the *sfb* **cluster intergenic regions.** Total RNA was prepared after growth for 48 h in YEME medium without sucrose. In the PCR 40 amplification cycles were used to detect low abundant transcripts. Primers, designed to obtain a cDNA corresponding to unabated transcription between the two genes, are listed in Table 1.

Figure S6. Purified GST fusion proteins. 2 µg purified GST, GST-SfbR and GST-SfbR2 proteins after affinity chormatography were analysed by SDS-PAGE. Left lane, molecular size markers (in kDa).