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Supplementary Material (Methods) 

MRI acquisition  
 
For adults, BOLD images were acquired using a T2*-weighted EPI acquisition (sequence parameters: TR/TE 

= 3280/40ms; flip angle = 90°; FOV = 192×192 mm; imaging matrix 64×64; resolution 3×3×3 mm; slices = 

50, collected in descending order; average total volumes = 142). For Infant Cohort A, the same fMRI sequence 

was used with a reduction in slices (33 slices) and an infant-optimised TR/TE of 2500/40ms 1. For Infant 

Cohort B: BOLD images were acquired using a T2* BOLD-weighted, GRE acquisition with EPI readout, 70° 

flip angle, TE= 50 ms1, TR= 1,300 ms, mean TA= 6 mins (approx.), multiband 42,3, 90 x 90 in-plane matrix 

size, 56 slices, 2 mm isotropic voxels. All studies used a 32-channel head coil. 

 
MRI Pre-processing 
 

All infant fMRI data were processed using the dHCP functional pipeline4,5 Motion and distortion correction of 

infant BOLD fMRI data in the dHCP fMRI preprocessing pipeline is necessarily more extensive than in typical 

adult pipelines, due to the substantial image contamination that occurs due to infant head motion. Using the 

dHCP pipeline, our infant data were head motion corrected for both volume misalignments due to between-

volume motion and slice misalignments due to within-volume motion, known as slice-to-volume effects. 

Additionally, the dynamic distortion correction accounted for the magnetic field changes that occur due to 

certain head rotations, known as susceptibility-by-motion effects. These advanced motion and distortion 

corrections were simultaneously performed using the FSL tool EDDY6,7, as implemented in the dHCP fMRI 

pipeline. ICA-based denoising was subsequently performed on the corrected data in a similar manner to the 

adult pipeline outlined in the main text8,9 For the infant data, the subject head motion parameter timeseries 

were estimated using the DVARS metric10, which is based on the rate of change of signal from volume-to-

volume and closely reflects subject head motion as well as other artefacts. A 3mm low-pass spatial filter and 

100s period high-pass temporal filter were applied. 

The adult data were processed using FSL 6.011. BOLD data were motion and distortion corrected to remove 

volume misalignment and susceptibility-induced distortions, high pass temporally filtered with a 100s cut-off 

period to remove slow temporal drifts, and low-pass spatially filtering with a 5mm FWHM kernel to remove 

high frequency spatial noise. The data were decomposed using spatial independent component analysis (ICA) 

to identify detrimental structured signal components due to both biological and scanner-related sources. 

Standard fMRI ICA-based clean-up was employed, which simultaneously regressed from the BOLD data both 

ICA noise components and subject head motion parameter timeseries (estimated during motion correction).  

 The pain responses were modelled using a general linear model (GLM) in FEAT11 in which the expected 

stimulus-response BOLD timeseries for the sequence of stimuli is regressed onto the data independently at 

each voxel. The expected timeseries was derived for adults by convolving the experimental design (a timeseries 
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defining the specific application of the stimuli) with the canonical adult double gamma BOLD haemodynamic 

response function, and for infants by convolving the experimental design with the term-infant-specific optimal 

basis functions generated by Arichi and colleagues12. Using a summary statistics approach1311, regression 

parameter maps were generated for each adult and infant at each stimulus intensity and transformed into 

standard Montreal Neurological Institute (MNI) template space for further analysis, via a series of 

transformations (Fig. 1B; see below) to account for individual variability in morphology. 

Regression parameter estimate maps for individual subject and intensity levels were transformed into the 

standard adult MNI space via a series of transformations. This step was necessary so that the adult-derived 

signatures could be projected onto the infant brain. Alignment between infant functional (BOLD) and 

structural (T2) space was performed using boundary-based-registration (BBR), which aligned the boundary 

between cerebral grey matter and white matter. Alignment between infant structural space and the standard 

age-matched T2 template14 was performed via non-linear registration. Week-to-week nonlinear transforms 

registered the infant data from the age-matched template to the 44-week template. To align the infant 44-week 

template with the adult MNI template, the NIHPD2 lifespan atlases (ages birth to 21 years) were used as 

intermediate non-linear transform targets15,16. All infant non-linear transforms were performed using ANTs’s 

SyN (Advanced Normalization Tools Symmetric image Normalization method), using multimodal registration 

with both T1 and T2 structural template images to best account for the changing structural image contrast 

over development17. All transforms between infant functional space and adult MNI space were combined and 

applied in a single step to minimise image degradation due to resampling and interpolation. For adults, FNIRT 

nonlinear registration was used to transform data to MNI space13. 

Signature analysis 

The CANlab toolbox provides a pipeline for processing, quality control and visualisation of parameter maps 

for the signature-based analysis of our group fMRI data. This included the extraction, assessment, regression 

and of white matter and cerebro-spinal fluid components, the calculation of signature similarity measures, 

estimation of contrasts and SVM classifier maps, and NPS subregion analysis. Parameter maps from each of 

the three cohorts were organised for processing with the CANlab toolbox. The signature response was 

estimated for each participant in each test condition by calculating the cosine similarity of vectorised activation 

images and template signature maps, masked for brain tissue only. As a measure of similarity, cosine similarity 

will be dependent on the spatial properties of the signatures and effective spatial resolution, which will differ 

between adults and infants and across signatures.  Therefore, we do not directly compare similarity measures 

across groups. 

The SIIPS1 signature was trained using data from which the contribution from NPS had been removed via 

regression19. We performed the same procedure here, removing the NPS spatial signature from the GLM 
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response parameter maps. We adapted CANLAB code to include regression of the NPS prior to SIIPS1, and 

analysis of SIIPS1 subregions and single trial variability https://github.com/canlab. 

Response statistics and intensity encoding were assessed using a two-level GLM summary statistics approach, 

modelling participants as random effects13. 
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