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Supplementary text 1 
The Sequential Choice Model (SCM) 

 
1. Brief description 

The Sequential Choice Model (SCM) postulates that decision-makers make no 

comparative evaluation of the options at the time of choice. Instead, the same mechanism 

operating when only one option is available is deployed in parallel for each option present. 

Much in the same tradition as classical optimal foraging models, the SCM assumes that 

the main selective pressure modelling decision mechanisms is the resulting rate of net 

objective gains. In turn, a maximal rate can be achieved by treating each encounter with 

a potential prey as a choice between engaging with that opportunity and letting it pass to 

pursue other options that the environment may offer in the future. The critical variables 

are thus the ratio of gain to engagement time typical of a class of prey (called its 

“profitability”) and the ratio of expected gains to expected time in the environment as a 

whole (the Long Term Rate (1)). This however is a mathematical description of a 

theoretical rate-maximizing policy, not an explicit hypothetical model of behaviour 

mechanisms.  

 

In the hypothetical mechanism underlying the SCM, the agent develops a subjective 

valuation of each option across sequential encounters (modelled as single-option trials in 

our paradigm) through learning. This valuation is sensitive to the option’s absolute 

properties (i.e., more profitable options are valued more highly; (2-4)), to the animal’s 

energetic state during learning (i.e., options found under greater need are valued more 

highly; (5-8)), and to the memory of other alternatives available in the environment: The 

subjective value of an option varies inversely with the average gains in the environment; 

(9-11)). Overall, the agent ends up with a library of subjective values for each option. 

When learning reaches stability, the average time to respond when one option is 

encountered on its own reflects the option’s subjective value or attractiveness, with better 

options eliciting shorter response times.  
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When two or more options are met simultaneously (in our protocol this happens in choice 

trials), the SCM proposes that no explicit deliberation between the options takes place. 

Instead, each option triggers an independent, non-interfering sequential process (as in 

single-option trials), and the option generating the shorter response time is expressed 

behaviourally as a choice. Since there is no observable outcome of the process for the 

option eliciting a longer RT, the faster response “censors” the original distribution of RTs 

in the ‘losing’ alternative, to generate an observed distribution where the right tail has 

been suppressed. 

 

This argument can be formalized somewhat. For simplicity, let us assume that two 

options, say A and B, are encountered simultaneously and that A is objectively better than 

B (i.e., has higher profitability). The distributions of response time built during single-

option trials will partly overlap, but A will have lower central value. Consequently, when 

the two sequential processes run in parallel (which is isomorphic to sampling each 

distribution once), A will ‘win’ more often than B. The distribution of times to choose either 

option will shift to the left relative to single-option trials, for the reason explained above. 

That is, the observed time to respond to an option in choice trials should, in general, be 

shorter than the time to respond to the same option in single-option trials. Since the 

distribution of RTs for A is shifted to the left, A will be chosen most of the choice trials, 

and thus will be less censored than B. This means that the leftwards shift in RTs in choice 

trials respect to sequential trials will be sharper for B than for A.  

 

In summary, the time to accept an option in choice trials will be, on average, shorter than 

in single-option trials because the right tails of each distribution will be cross-censored in 

choice trials. This shortening of response times should be particularly noteworthy for the 

non-preferred option B, because longer times to respond to B are censored more often 

(for further details see (12)). This prediction of the SCM goes against the intuition 

predicated by all models that assume that a cognitive comparison is effected between the 

alternatives when a choice is faced. These ideas and predictions are expressed 

mathematically in the next section. 
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2. Mathematical (analytical) implementation 

Say that two options A and B elicit, when encountered alone, response times well 

described by the probability density functions fA and fB, respectively.  

 

When these two options are met simultaneously, the probability of choosing A is given by 

the probability, PA, of a sample from fA being shorter than one from fB. This corresponds 

to  

    (1) 

 

where lA and lB are random samples from the respective distributions, FB is the cumulative 

probability of drawing a latency larger than t from fB, and t is a particular response time 

value. 

 

From Equation 1 we can predict the distribution of response time for each option in choice 

trials. Focusing on A and restricting our analysis to binary choices, this is given by the 

conditional probability that lA = t given that lA < lB in that trial, for all t. Defining R as “t < lA 

≤ t + dt” and S as “lA < lB”, we seek gA such that 

 

       (2) 

 

where hA(R,S) is the probability of joint occurrence of R and S, and jA(S) is the 

unconditional probability of lA < lB. 

 

Since jA(S) is given by Equation 1 and hA(R|S) can be expressed as 

 

  (3)  

 

we can write Equation 2 as  
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      (4) 

 

Equation 4 predicts the distribution of times to respond to A in choice trials with A and B, 

using their response-time distributions in forced trials. The mean response times in choice 

are obtained by integration of this function. The same method can be used to find PB, the 

probability of choosing B, and its response-time distribution in choice trials, gB. 

 

Next, we illustrate this mathematical framework using both Gaussian and ex-Gaussian 

theoretical distributions. We then resort to a Monte-Carlo procedure to generate the 

response-time distributions in choice trials.  

 

 

3. Numerical simulations 

We generated two types of theoretical distributions, Gaussian (Figure A1a) and ex-

Gaussian (Figure A1b). We are aware that the distributions of response times are usually 

heavy-tailed and thus not well captured by symmetrical distributions as the Gaussian. 

Yet, we include it only for illustration purposes. The ex-Gaussian, on the other hand, is 

frequently used to model response time (13). For each distribution family, we defined 3 

probability density distributions of putative response times for 3 options A, B and C, with 

profitability of A > B > C. Table 1 shows the parameters used. Figure A1a and 1b show 

the density functions. 
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Table 1. Parameters used to generate the probability density functions, f, of response times 

in single-option trials. 

 
Gaussian 

ex-Gaussian 

µ s µ s t 

f(A) 600 µf(A) /5 350 µf(A) /10 250 

f(B) µf(A) * 1.35 sf(A) * 1.35 µf(A) * 2 sf(A) * 2 t f(A) * 1.25 

f(C) µf(A) * 1.7 sf(A) * 1.7 µf(A) * 3 sf(A) * 3 t f(A) * 1.5 

mean ( f ) µ µ + t 

standard deviation ( f ) s √( s2 + t2 ) 

 

 

Using a Monte-Carlo procedure, we then generated 105 putative choices between A and 

B, A and C, and B and C, respectively. On every iteration, two response times, one per 

option, were drawn randomly from the corresponding theoretical distributions, f(A),  f(B) and 

f(C) (this procedure was repeated for Gaussian,  Figure A1a, and ex-Gaussian 

distributions, Figure A1b). The shorter response time was expressed as a ‘choice’ and 

its value stored as the corresponding response time (i.e., there is a ‘cross-censorship’ of 

the alternative option). Using this method, we built response time probability density 

distributions, g, for choosing each option in all pairwise arrangements (Figure A1c and 

A1d). For visualization, we show only response-time distributions for choosing A in A vs. 

B (gA), B in A vs. B (gB), and C in A vs. C choices (gC). The simulations yielded higher 

proportion of choices for the better option in each pair (see top insets in Figure A1c and 

d). Importantly, there is a leftwards shift in all choice response-time distributions (compare 

top versus bottom panels’ dashed vertical lines). To quantify this lateral displacement, 

bottom insets of Figure A1c and A1d show the difference between choice and single 

option mean response times for all comparisons (i.e., delta response time). The plots 

show that the distribution of reaction times for each option are more similar to each other 
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in choices than in sequential encounters, and that this is caused by a stronger leftward 

shift in the less preferred of the two options in each case.  

 
 

Appendix Figure A1. Simulated response-time distributions for single-option and choice trials. 
a. Single-option response time Gaussian probability density functions, fx, with x = {A, B, C}. b. Same 
as in a. but using ex-Gaussian distributions. c. Choice response-time probability density functions, gx, 

with x = {A, B, C}, drawn from the corresponding Gaussian distributions depicted in a.  gA corresponds 

to response times for choosing A in A vs B choices,  gB  to choosing B in A vs B, and gC  to choosing 
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C in A vs C. Top inset shows the average proportion of putative choices for the simulations. Bottom 
inset shows the difference in mean response times for each option in a pair minus the corresponding 
mean response time in single-option trials, with dots corresponding to the distributions shown. d. Same 

as in c. for response times drawn from ex-Gaussian distributions depicted in b. Dashed vertical lines 
in each panel show the mean of the matching colour distribution.   
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