Parameter	Unit	Value	Source
α	μM	3.00×10^{6}	Ref. 1
<i>k</i> _{<i>e</i>,1}	1/h	1.20×10^{3}	
<i>k</i> _{<i>e</i>,2}	1/h	7.56×10^4	Ref. 1
$m_{e,1}$		325	Ref. <mark>2</mark>
$m_{e,2}$		11738	Ref. 3
K _{m,s}	μM	1.00×10^{2}	
K _{m,m}	μM	2.00×10^{1}	Ref. 1
K _{i,r}	μM	6.00×10^{1}	
k _r	1/h	3.60×10^3	Ref. 1
d_r	1/h	1.26×10^2	Ref. 1
Y _m	$1/\mu M$	3.33×10^{-7}	
M _e	μM	0.00	
K _{i,a}	μM	1.00	

Supplementary Table 4: Parameter values used in the simulation of the single-strain model. Note that these values are specific to *E. coli*. The value of $m_{e,2}$ was calculated by multiplying the literature value (7336 amino acids in ribosomal proteins) by a factor of 1.6 to account for tRNA-affiliated proteins. The yield coefficient of amino acid is the inverse of the total amino acid concentration of an *Escherichia coli* cell, i.e., $Y_m = 1/\alpha$. By choosing $M_e = 0$, we assume that the metabolite released to the environment does not accumulate and can be quickly metabolized by other cell types.

References

- [1] Allen G Marr. Growth rate of Escherichia coli. Microbiol. Rev., 55(2):316-333, 1991.
- [2] Arijit Maitra and Ken A Dill. Bacterial growth laws reflect the evolutionary importance of energy efficiency. *Proc. Natl. Acad. Sci. USA*, 112(2):406-411, 2015.
- [3] Stefan Klumpp, Matthew Scott, Steen Pedersen, and Terence Hwa. Molecular crowding limits translation and cell growth. *Proc. Natl. Acad. Sci. USA*, 110(42):16754–16759, 2013.