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1 A Biophysical Modeling Framework for Microbial Community

In this study, we present a biophysical model that combines population dynamics of di�erent cell types
that complete for external nutrients and their intracellular metabolism. The population dynamics part of
our model (i.e., cell population expansion and contraction) is similar to previous models [1, 2, 3] but the
part with respect to the intracellular metabolism is very di�erent. We considered the internal metabolism
of nutrient uptake and conversion via a simplified 3-level metabolic network that captures resource trans-
formation from growth substrates to metabolic building blocks and then to biomass. Growth substrates,
either substitutable or non-substitutable, are molecules that are able to support cell growth as the sole
sources that supply nutrients they contain. Metabolic building blocks are incorporated into di�erent func-
tional units of biomass and thus assume to be non-substitutable. Note that in our coarse-grained picture,
building blocks can be any metabolite intermediates that serve as precursors of molecules that are actu-
ally integrated into biomass. In some cases, a molecule can be a growth substrate for one cell type and a
metabolite precursor for another.

The variables we considered in our model include: (1) Density of active cells of nc microbial popu-
lations with distinct cell types (Nl , l = 1,2, · · · ,nc); (2) Concentration of ns growth substrates in the cul-
ture medium (Si , i = 1,2, · · · ,ns) and in cell type l (Ŝl,i , i = 1,2, · · · ,ns); (3) Concentration of nm metabolic
building blocks in the culture medium (Mj , j = 1,2, · · · ,nm) and in cell type l (M̂l, j , j = 1,2, · · · ,nm). The
biochemical reactions that define the relationships among these variables are given below

Si
J
upt,S
l, i
−−−−→ Ŝl,i l = 1,2, · · · ,nc, i = 1,2, · · · ,ns (1)

Mj

J
upt,M
l, j

−−−−→ M̂l, j l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (2)
ns∑
i=1
(1/δl,i, j)Ŝl,i

J
syn
l, j

−−−→ M̂l, j l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (3)

M̂l, j

J leak
l, j

−−−→ Mj l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (4)
ns∑
i=1
(1/γl,i)Ŝl,i +

nm∑
j=1
(1/γl, j)M̂l, j

J
grow
l
−−−−→ An active cell of population l l = 1,2, · · · ,nc (5)

An active cell of population l
Jdeath
l
−−−−→ An inactive cell of population l l = 1,2, · · · ,nc (6)

Ŝl,i
J sink,S
l, i
−−−−→ ∅ l = 1,2, · · · ,nc, i = 1,2, · · · ,ns (7)

M̂l, j

J sink,M
l, j

−−−−−→ ∅ l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (8)

where J’s represents reaction rates (fluxes). Equation (1) and (2) describe resource uptake into intracellu-
lar space. Equation (3) describes biosynthesis of intermediate metabolites M̂l, j from substrates Ŝl,i , where
1/δl,i, j is the number of molecules of substrate Ŝi consumed for every one molecule of metabolite M̂j

produced by cell type l. Note that Equation (3) is a lumped and elementary form of realistic metabolic re-
actions which allow multiple products on the right-hand side and also multiple cooccuring reactions with
the same reactants/products but di�erent stoichiometry. Equation (4) describes the leakage of intracellu-
lar metabolites M̂l, j into the environment. Equation (5) describes biomass synthesis from both substrate
Ŝl,i and metabolic building blocks M̂l, j , where γl,i and γl, j are biomass yield coe�icients (alternatively,
1/γl,i and 1/γl, j represent the numbers of molecules of Ŝl,i and M̂l, j needed to construct one active cell of
cell type l respectively). Importantly, the first sum over substrates in Equation (5) approximates biomass
composition from other building blocks that are not explicitly modeled. Equation (6) describes a decrease
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in viable biomass, i.e., cell death. Equation (7) and (8) represent sink reactions that consume substrates
Ŝl,i and metabolites M̂l, j through non-growth metabolic processes and degradation pathways.

We consider constant supply rate of growth substrates in a chemostat culture with dilution rate D.
The eight reactions shown above can be translated to the following di�erential equations

d[Si]
dt
= D(S0,i −[Si])−

nc∑
l=1

Jupt,S
l,i

Nl i = 1,2, · · · ,ns (9)

dNl

dt
= Nl

(
Jgrow
l
− Jdeathl −D

)
l = 1,2, · · · ,nc (10)

d[Mj]

dt
= D(M0, j −[Mj])+

nc∑
l=1

(
J leakl, j − Jupt,M

l, j

)
Nl j = 1,2, · · · ,nm (11)

d[Ŝl,i]
dt

= Jupt,S
l,i
−

nm∑
j=1
(1/δl,i, j)J

syn
l, j
−(1/γl,i)J

grow
l
− Jsink,S

l,i
(12)

d[M̂l, j]

dt
= Jsyn

l, j
+ Jupt,M

l, j
− J leakl, j −(1/γl, j)J

grow
l
− Jsink,M

l, j
(13)

where [· · · ] denotes molecular concentration. S0,i and M0, j are the concentrations of Si and Mj in the
chemostat feed medium respectively.

Bacterial growth occurs at much faster time scale compared to that associated with intracellular
metabolic processes [3]. It is therefore reasonable to separate time scales by assuming quasi-steady-state
for intracellular growth substrates Ŝl,i and metabolic building blocks M̂l, j . Solving Equation (12) and (13)
with d[Ŝl,i]/dt = d[M̂l, j]/dt = 0 yields the internal flux-balance equations

Jupt,S
l,i
−

nm∑
j=1
(1/δl,i, j)J

syn
l, j
−(1/γl,i)J

grow
l
− Jsink,S

l,i
= 0 (14)

Jsyn
l, j
+ Jupt,M

l, j
− J leakl, j −(1/γl, j)J

grow
l
− Jsink,M

l, j
= 0 (15)

Here, the uptake rate of the external substrate Si by cell type l follows the classical Monod equation [4]

Jupt,S
l,i
=

Vl,i[Si]
Kl,i + [Si]

l = 1,2, · · · ,nc, i = 1,2, · · · ,ns (16)

where Vl,i is the maximum uptake rate and Kl,i is the half-maximal substrate concentration. Similarly,
the uptake rate of the external building block Mj by cell type l follows a modified Monod equation by
including terms that account for the potential inhibitions from substrates

Jupt,M
l, j

=
Vl, j[Mj]

Kl, j + [Mj]

(
ns∏
i=1

Cl,i, j

Cl,i, j + [Si]

)
l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (17)

where Vl, j is the maximum uptake rate, Kl, j is the half-maximal metabolite concentration in the absence
of the substrates Si , and Cl,i, j is the inhibition constant. We assume that substrates are the preferred
sources and can repress uptake of metabolic building blocks if both types of resources are present in the
environment. One well-known example is diauxic growth of Escherichia coli (E. coli) on glucose where
acetate is secreted from the beginning but consumed only a�er glucose exhaustion [5]. This regulatory
mechanism that determines hierarchical use of resources associated with the same limiting nutrient is
generally termed as "catabolite repression" and has been universally found in both prokaryotic and eu-
karyotic microorganisms [6].
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The total influxes of substrates Jupt,S
l,i

and metabolites Jupt,M
l, j

are balanced by their consumption fluxes.
First, the influxes of substrates are allocated to biosynthesis of internal metabolites. The maximum frac-
tion reserved by each substrate Ŝl,i to produce each metabolite M̂l, j is quantified by φl,i, j (0 ≤

∑nm
j=1 φl,i, j ≤

1). Since the biosynthesis reaction of a metabolite generally couples multiple substrates as reactants
through fixed stoichiometry ratio, its actual flux can be modeled through the Liebig’s law of minimum,
which states that the rate-limiting step of a reaction is determined by the reactant with the minimum
ratio of its supply level relative to its stoichiometric coe�icient (i.e., demand)

Jsyn
l, j
= min

i=1,2, · · ·,ns

©­­­­­­­«

φl,i, j J
upt,S
l,i︸     ︷︷     ︸

supply

1/δl,i, j︸ ︷︷ ︸
demand

ª®®®®®®®¬
l = 1,2, · · · ,nc, j = 1,2, · · · ,nm (18)

Similarly, we assume, for each metabolite M̂l, j , a constant fraction (ϕl, j ) of the influx is released back to
the environment

J leakl, j = ϕl, j J
syn
l, j

(19)

The validity of this assumption is discussed in Sect. 5.
Second, the remaining influxes of substrates and metabolites are supplied to biomass production. The

specific growth rate of cell type l can also be modeled through the Liebig’s law of minimum (i.e., rate is
limited by the substrate or metabolite with the minimum supply-demand ratio)

Jgrow
l

= min

©­­­­­­­­­­­­«
min

i=1,2, · · ·,ns

©­­­­­­­­­­­­«

Jupt,S
l,i
−

nm∑
j=1
(1/δl,i, j)J

syn
l, j︸                        ︷︷                        ︸

supply

1/γl,i︸︷︷︸
demand

ª®®®®®®®®®®®®¬
, min
j=1,2, · · ·,nm

©­­­­­­­«

Jsyn
l, j
− J leakl, j + Jupt,M

l, j︸                  ︷︷                  ︸
supply

1/γl, j︸︷︷︸
demand

ª®®®®®®®¬

ª®®®®®®®®®®®®¬︸                                                                                               ︷︷                                                                                               ︸
basal growth rate

·

(
ns∏
i=1

Il,i
Il,i + [Si]

)
︸             ︷︷             ︸

inhibition due to substrate toxicity

·
©­«
nm∏
j=1

Il, j
Il, j + [Mj]

ª®¬︸               ︷︷               ︸
inhibition due to metabolite toxicity

l = 1,2, · · · ,nc (20)

where we take the inhibitory e�ects on growth for substrates and metabolites if they are also toxic and Il,i ,
Il, j represent the half-inhibition concentrations of the substrate Ŝl,i and the metabolite M̂l, j respectively.

Finally, the remaining substrate influxes that are neither converted to metabolites nor incorporated
into biomass, and the remaining metabolite influxes that are neither leaked to the environment nor in-
corporated into biomass, are dumped through their sink reactions

Jsink,S
l,i

= Jupt,S
l,i
−

nm∑
j=1
(1/δl,i, j)J

syn
l, j
−(1/γl,i)J

grow
l

(21)

Jsink,M
l, j

= Jsyn
l, j
+ Jupt,M

l, j
− J leakl, j −(1/γl, j)J

grow
l

(22)
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Since we take the min form of the fluxes involving substrates and metabolites (Equation (18) and (20)), only
the most growth-limiting nutrient (either a substrate of a metabolite) that is in short supply is explicitly
conserved.

The per-capita mortality rate of cell type l is assume to be a constant

Jdeathl = ηl l = 1,2, · · · ,nc (23)

5



2 Unilateral Cross-Feeding between Glucose and Acetate Specialists

2.1 Model Specification from the General Framework

Our first application is a community of two E. coli mutants (CV103 and CV101) with di�erent strategies of
resource utilization [7]. Briefly, the CV103 mutant has faster glucose uptake rate than the CV101 mutant.
However, it cannot utilize acetate, while CV101 can grow on acetate and co-utilize both carbon sources.
By secreting acetate, CV103 creates an additional carbon-source niche for CV101 and the two mutants
are thus involved in a one-way cross-feeding interaction.

A chemostat model was derived using the framework we described in Sect. 1

d[G]
dt

= D(G0−[G])− Jupt1,g N1− Jupt3,g N3 (24)

dN1
dt

= N1

(
Jgrow1 − Jdeath1 −D

)
(25)

dN3
dt

= N3

(
Jgrow3 − Jdeath3 −D

)
(26)

d[A]
dt

= D(A0−[A])+
(
J leak1,a − Jupt1,a

)
N1+ J leak3,a N3 (27)

where D is the dilution rate, G0 and A0 are the feed medium concentrations of glucose and acetate re-
spectively, [G] and [A] are their concentrations in the culture vessel respectively, N1 and N3 are the active
population densities of CV101 and CV103 respectively.

Reaction rates (J’s) are described as follows. Jupt1,g and Jupt3,g are the glucose uptake rates for the two
mutants

Jupt1,g =
V1,g[G]
Kg + [G]

(28)

Jupt3,g =
V3,g[G]
Kg + [G]

(29)

where V1,g and V3,g are the maximum glucose uptake rates for CV101 and CV103 respectively, and Kg

is the half-saturation glucose concentration (we assume the same value for both mutants). Jupt1,a is the
acetate uptake rate for CV101

Jupt1,a =
V1,a[A]

K1,a + [A]
C1,g

C1,g + [G]
(30)

where V1,a is the maximum uptake rate, K1,a is half-saturation acetate concentration in the absence of
glucose, and C1,g is the inhibition constant. Since the acetyl-CoA synthetase was semi-constitutively
expressed in CV101 [7], we assume that the glucose repression of acetate uptake is not fully relieved and
the repression e�ect can be quantified by C1,g.

The acetate production rates in both CV101
(
Jsyn1,a

)
and CV103

(
Jsyn3,a

)
cells are proportional to their

corresponding glucose uptake rates

Jsyn1,a = φaδaJupt1,g (31)

Jsyn3,a = φaδaJupt3,g (32)

where φa is the fraction of glucose uptake allocated to produce acetate and δa is the number of acetate
produced per molecule of glucose consumed (we assume both parameters share the same values between
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CV101 and CV103). The acetate leakage rates by both CV101
(
J leak1,a

)
and CV103

(
J leak3,a

)
cells are then

proportional to their corresponding acetate production rates

J leak1,a = ϕaJsyn1,a (33)

J leak3,a = ϕaJsyn3,a (34)

where ϕa is the proportion of acetate that is leaked to the environment (again, we assume it has the same
value between CV101 and CV103).

The per-capita growth rates for CV101
(
Jgrow1

)
and CV103

(
Jgrow3

)
are determined by the most limiting

nutrient supply between acetate and the remaining glucose that is not converted to acetate

Jgrow1 = min
(
γgJupt1,g (1−φa), γa

(
Jsyn1,a − J leak1,a + Jupt1,a

)) I1,a

I1,a + [A]
(35)

Jgrow3 = min
(
γgJupt3,g (1−φa), γa

(
Jsyn3,a − J leak3,a

)) I3,a

I3,a + [A]
(36)

Note that the flux of remaining glucose is a proxy of building blocks that cannot be synthesized from
acetate. Therefore, γa is the biomass yield of E. coli on acetate and γg represents the averaged yield value
for E. coli cells to grow on building blocks other than acetate. I1,a and I3,a are the thresholds of growth
inhibition of CV101 and CV103 by acetate respectively.

Lastly, cell death is not considered in this model so that

Jdeath1 = Jdeath3 = 0 (37)

2.2 Simplifying Assumptions and Justifications

Biomass yields on glucose and acetate are similar for E. coli cells [8, 9]: The yield of glucose was reported
to be 0.45 gDW/g glucose (equivalent to 13.5 gDW/mol Carbon) [8] and the observed per-carbon acetate
yield is between 10-15 gDW/mol Carbon, depending on the acetate level [9]. It is therefore reasonable to
assume that glucose and acetate are completely substitutable and all building blocks that are synthesized
from glucose can also be synthesized from acetate. With this assumption, we can assume that 100% of
glucose influx is directed to synthesize acetate, i.e., φa = 1, and as a result, acetate is the only growth-
limiting factor.

The schematic diagram of the simplified model is shown in Fig. 2A in the main text and its equations
are described below

d[G]
dt

= D(G0−[G])− Jupt1,g N1− Jupt3,g N3 (38)

dN1
dt

= N1

(
Jgrow1 −D

)
(39)

dN3
dt

= N3

(
Jgrow3 −D

)
(40)

d[A]
dt

= D(A0−[A])+
(
ϕaδaJupt1,g − Jupt1,a

)
N1+ϕaδaJupt3,g N3 (41)

Jupt1,g =
V1,g[G]
Kg + [G]

(42)

Jupt3,g =
V3,g[G]
Kg + [G]

(43)
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Jupt1,a =
V1,a[A]

K1,a + [A]
C1,g

C1,g + [G]
(44)

Jgrow1 = γa

(
(1−ϕa)δaJupt1,g + Jupt1,a

) I1,a

I1,a + [A]
(45)

Jgrow3 = γa(1−ϕa)δaJupt3,g
I3,a

I3,a + [A]
(46)
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3 Bilateral Cross-Feeding between Lysine and Leucine auxotrophies

3.1 Model Specification from the General Framework

Our second application is a community of two E. coli single-gene knockout strains: knockouts of lysA
and leuA genes resulted in two engineered strains that have auxotrophic phenotype of lysine and leucine
respectively [10]. The two mutants cooperate by compensating for each other’s metabolic deficiency: the
lysine auxotroph (∆K) secretes leucine that can be utilized by the leucine auxotroph (∆L), which in return
facilitate growth of the lysine auxotroph by secreting lysine to the environment.

A chemostat model was derived using the framework we developed in Sect. 1

d[G]
dt

= D(G0−[G])− Jupt
∆k,g

N∆k − Jupt
∆l,g

N∆l (47)

dN∆k
dt

=
(
Jgrow
∆k
− Jdeath
∆k −D

)
N∆k (48)

dN∆l
dt

=
(
Jgrow
∆l
− Jdeath
∆l −D

)
N∆l (49)

d[K]
dt

= D(K0−[K])+ J leak
∆l,kN∆l − Jupt

∆k,k
N∆k − Jupt

∆l,k
N∆l (50)

d[L]
dt

= D(L0−[L])+ J leak
∆k,lN∆k − Jupt

∆k,l
N∆k − Jupt

∆l,l
N∆l (51)

where D is the dilution rate, G0, K0 and L0 are the feed medium concentrations of glucose, lysine and
leucine respectively, [G], [K] and [L] are their concentrations in the culture vessel respectively, N∆k and
N∆l are the population densities of active cells of the lysine and leucine auxotroph respectively.

Reaction rates (J’s) are described as follows. Since the two E. coli auxotrophies are identical except
that each carries a knockout of a single di�erent gene, they were assumed to have equal glucose uptake
kinetics, i.e.,

Jupt
∆k,g
= Jupt
∆l,g
=

Vg[G]
Kg + [G]

(52)

where Vg is the maximum uptake rate and Kg is the half-saturation glucose concentration. J∆k,l , J∆l,k ,
J∆k,k and J∆l,l are the leucine uptake rate by the lysine auxotroph, the lysine uptake rate by the leucine
auxotroph, the lysine uptake rate by the lysine auxotroph, and the leucine uptake rate of the leucine
auxotroph respectively

Jupt
∆k,k

=
V∆k,k[K]

K∆k,k + [K]
(53)

Jupt
∆l,l

=
V∆l,l[L]

K∆l,l + [L]
(54)

Jupt
∆l,k

=
V∆l,k[K]

K∆l,k + [K]
(55)

Jupt
∆k,l

=
V∆k,l[L]

K∆k,l + [L]
(56)

where V∆k,k , V∆l,l , V∆l,k , and V∆k,l are the maximum uptake rates and K∆k,k , K∆l,l , K∆l,k and K∆k,l are the
half-saturation constants. We assume negligible inhibitory e�ects of glucose on amino acids uptake since
no strong evidence has been found in literature.
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J leak
∆l,k

and J leak
∆k,l

are the lysine leakage rate of the leucine auxotroph and the leucine leakage rate of the
lysine auxotroph respectively

J leak
∆l,k = ϕ∆l,k Jsyn

∆l,k
(57)

J leak
∆k,l = ϕ∆k,lJ

syn
∆k,l

(58)

where ϕ∆l,k and ϕ∆k,l represent the proportions of lysine and leucine released back to the environment
by the leucine and lysine auxotroph respectively. The biosynthesis rate of internal lysine by the leucine

auxotroph
(
Jsyn
∆l,k

)
and that of internal leucine by the lysine auxotroph

(
Jsyn
∆k,l

)
are proportional to their

corresponding glucose uptake rates

Jsyn
∆l,k

= φ∆l,kδk Jupt
∆l,g

(59)

Jsyn
∆k,l

= φ∆k,lδlJ
upt
∆k,g

(60)

where φ∆l,k and φ∆k,l are the fractions of glucose influx allocated to produce lysine by the leucine aux-
otroph and leucine by the lysine auxotroph respectively, and δk and δl are the number of lysine and leucine
molecules produced per molecule of glucose consumed respectively.

The per-capita growth rate of each auxotroph is determined by the most limiting factor between the
auxotrophic amino acid (i.e., leucine for the leucine auxotroph and lysine for the lysine auxotroph), the
non-auxotrophic amino acid (i.e., leucine for the lysine auxotroph and lysine for the leucine auxotroph),
and the remaining glucose that is not converted to the non-auxotrophic amino acid

Jgrow
∆k

= min
(
γg(1−φ∆k,l)J

upt
∆k,g

, γk Jupt
∆k,k

, γl(J
upt
∆k,l
+ Jsyn
∆k,l
− J leak
∆k,l)

)
(61)

Jgrow
∆l

= min
(
γg(1−φ∆l,k)J

upt
∆l,g

, γlJ
upt
∆l,l
, γk(J

upt
∆l,k
+ Jsyn
∆l,k
− J leak
∆l,k)

)
(62)

Note that the flux of remaining glucose is a proxy of building blocks other than the auxotrophic and
non-auxotrophic amino acids. Therefore, γk and γl represent the biomass yields of E. coli on lysine and
leucine respectively, and γg represents the averaged yield of other building blocks. Although excessive
amounts (in mM range) of certain amino acids (including leucine) are toxic to E. coli [11], we assume that
the growth inhibitory e�ects of lysine and leucine are negligible, given that their concentrations were
observed to be in the range of sub-mM levels in monoculture experiments [10].

Lastly, cell mortality is modeled with a first-order kinetic rate expression

Jdeath
∆k = η∆k (63)

Jdeath
∆l = η∆l (64)

where η∆k and η∆l are the rate constants.

3.2 Simplifying Assumptions and Justifications

The model can be simplified by two assumptions: (1) leucine or lysine does not limit growth of the aux-
otrophic strain that synthesizes it de novo (i.e., its producing strain) and (2) environment leucine or lysine
is not assimilated by its producing auxotrophic strain. We justified the first assumption by considering
that the lysine biosynthesis pathway in the leucine auxotroph and the leucine biosynthesis pathway in
the lysine auxotroph are unperturbed such that their biosynthetic fluxes may be still tightly regulated
and coordinated with fluxes of other metabolic building blocks. It is therefore reasonable to assume that
lysine and leucine are as growth-limiting as other building blocks (represented by the remaining glucose
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flux that is not converted to the two amino acids) and never become the sole most growth-limiting factor
in their producing strains.

Based on the first assumption, we can simplified the model by lumping the growth e�ect of lysine
and leucine into the growth e�ect of glucose in their producing strains. As a result, growth of the lysine
or leucine auxotroph only depends on the availability of the amino acid that it is auxotrophic for and the
remaining glucose that is not converted to the auxotrophic amino acid. Since the consumption of lysine
and leucine into biomass are implicitly modeled through glucose, their biosynthesis fluxes in the model
should only include the proportion that is eventually released to the environment and thus equal to their
leakage fluxes, i.e., ϕ∆k,l = ϕ∆l,k = 1.

The second assumption was justified by parameter sensitivity analysis of the model developed in
Sect. 3.1 using Markov-Chain-Monte-Carlo algorithm. Note that the model in Sect. 3.1 does not take
any of these assumptions. As shown in S7 Fig, the posterior distribution of amino acid uptake rates by
their producing strains are 1-2 orders of magnitude lower than the distribution of amino acid uptake
rates by their non-producing strains. Specifically, the median values of their posterior distributions are
V∆k,k = 9.65×10−14, V∆l,l = 1.27×10−13, V∆l,k = 5.20×10−16, and V∆k,l = 1.07×10−15. Since V∆l,k and V∆k,l
are orders of magnitude smaller than V∆k,k and V∆l,l , we assume V∆l,k = V∆k,l = 0 in the simplified model.

The schematic diagram of the simplified model is shown in Fig. 3A in the main text and its equations
are described below

d[G]
dt

= D(G0−[G])− Juptg (N∆k +N∆l) (65)

dN∆k
dt

=
(
Jgrow
∆k
−η∆k −D

)
N∆k (66)

dN∆l
dt

=
(
Jgrow
∆l
−η∆l −D

)
N∆l (67)

d[K]
dt

= D(K0−[K])+φ∆l,kδk Juptg N∆l − Jupt
∆k,k

N∆k (68)

d[L]
dt

= D(L0−[L])+φ∆k,lδlJ
upt
g N∆k − Jupt

∆l,l
N∆l (69)

Juptg =
Vg[G]

Kg + [G]
(70)

Jupt
∆k,k

=
V∆k,k[K]

K∆k,k + [K]
(71)

Jupt
∆l,l

=
V∆l,l[L]

K∆l,l + [L]
(72)

Jgrow
∆k

= min
(
γg(1−φ∆k,l)J

upt
g , γk Jupt

∆k,k

)
(73)

Jgrow
∆l

= min
(
γg(1−φ∆l,k)J

upt
g , γlJ

upt
∆l,l

)
(74)
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4 Multilateral Cross-Feeding between 14 Amino Acid auxotrophies

4.1 Model Specification from the General Framework

The third application is a community of 14 E. coli amino acid knockouts [12], each of which is auxotrophic
for cysteine (∆C), phenylalanine (∆F), glycine (∆G), histidine (∆H), isoleucine (∆I), lysine (∆K), leucine
(∆L), methionine (∆M), proline (∆P), arginine (∆R), serine (∆S), threonine (∆T), tryptophan (∆W), and
tyrosine (∆Y). For simplicity, we assume that each of the 14 strains only uptakes the amino acid that
it is auxotrophic for but has the potential to secrete all other 13 amino acids to the environment. This
assumption was already justified for the community of the lysine and leucine auxotroph in Sect. 3.2 and
directly applied here. By extending our 2-auxotroph model in Sect. 3.2, we presented the following 14-
auxotroph community model

d[G]
dt

= D(G0−[G])− Juptg

∑
x∈AA

N∆x (75)

dN∆x
dt

=
(
Jgrow
∆x
−η∆x −D

)
N∆x x ∈ AA (76)

d[Mz]

dt
= D(M0,z −[Mz])+ δz Juptg

( ∑
x∈AA

ϕ∆x,zN∆x

)
− Jupt
∆z,z

N∆z z ∈ AA (77)

AA = {c, f ,g, h, i, k, l,m, p,r, s, t,w, y} (78)

where D is the dilution rate, G0 and M0,z are the feed medium concentrations of glucose and amino acid
z respectively, [G] and [Mz] are their concentrations in the culture vessel respectively, N∆x (N∆z) is the
population density of active cells of the auxotroph ∆x (∆z), δz is the number of molecules of amino acid z
produced per glucose consumed, ϕ∆x,z is the leakage fraction of amino acid z secreted by the auxotroph
∆x, and η∆x is the mortality rate of the auxotroph ∆x.

Reaction rates (J’s) are described as follows. We assume that all auxotrophic strains have the same
kinetics of glucose uptake because they are identical except for a single di�erent gene knockout in each
strain. Juptg is the glucose uptake rate for all auxotrophies

Juptg =
Vg[G]

Kg + [G]
(79)

where Vg is the maximum uptake rate and Kg is the half-saturation glucose concentration. Jupt
∆z,z

is the
uptake rate of amino acid z by its auxotrophic strain

Jupt
∆z,z

=
V∆z,z[Mz]

K∆z,z + [Mz]
(80)

where V∆z,z is the maximum uptake rate and K∆z,z is the half-saturation concentration of amino acid
z. The per-capita growth rate of each auxotroph is determined by the more limiting factor between the
auxotrophic amino acid and the remaining glucose that is not converted to the amino acid (proxy of
building blocks other than the amino acid)

Jgrow
∆x
=min

(
γgJuptg

(
1−

∑
z∈AA

ϕ∆x,z

)
, γx Jupt

∆x,x

)
(81)

where γx and γg are the biomass yields of E. coli on amino acid x and building blocks other than amino
acid x respectively.
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4.2 Simplified Pairwise Batch Co-culture Model

Here we derive the analytical solution of population density fold change in pairwise coculture between
any two auxotrophic strains (e.g., ∆x and ∆z). Given the following assumptions,

• All cells are active, i.e., η∆x = η∆z = 0;

• Dynamics of amino acids reach equilibrium very fast, i.e., d[Mx]/dt = d[Mz]/dt = 0;

• Growth of both auxotrophies are limited by the auxotrophic amino acids, i.e., Jgrow
∆x
= γx Jupt

∆x,x
, Jgrow
∆z
=

γz Jupt
∆z,z

.

, Equations (75)-(77) can be simplified to

d[G]
dt

= −Juptg (N∆x +N∆z) (82)

dN∆x
dt

= γxϕ∆z,xδx Juptg N∆z (83)

dN∆z
dt

= γzϕ∆x,zδz Juptg N∆x (84)

, and further rewri�en as

G(0)+
N∆x(0)

γxϕ∆z,xδx
+

N∆z(0)
γzϕ∆x,zδz

= G(t)+
N∆x(t)

γxϕ∆z,xδx
+

N∆z(t)
γzϕ∆x,zδz

(85)

N∆x(0)2

γxϕ∆z,xδx
−

N∆z(0)2

γzϕ∆x,zδz
=

N∆x(t)2

γxϕ∆z,xδx
−

N∆z(t)2

γzϕ∆x,zδz
(86)

G(0) and G(t) are the glucose concentration at time 0 and time t respectively. N∆x(0) (N∆z(0)) and N∆x(t)
(N∆z(t)) are the population density of the auxotroph ∆x (∆z) at time 0 and time t respectively. At any
moment t, the population densities of the two auxotrophies are given by

N∆x(t) = N∆x(0)+
−∆1+

√
∆2

1+∆2∆3

∆2
γxϕ∆z,xδx (87)

N∆z(t) = N∆z(0)+
(
G(0)−G(t)+

N∆x(0)−N∆x(t)
γxϕ∆z,xδx

)
γzϕ∆x,zδz (88)

where the ∆’s are defined as

∆1 = N∆x(0)+N∆z(0)+ (G(0)−G(t))γzϕ∆x,zδz (89)

∆2 = γxϕ∆z,xδx −γzϕ∆x,zδz (90)

∆3 =
(
(G(0)−G(t))γzϕ∆x,zδz +2N∆z(0)

)
(G(0)−G(t)) (91)

The fold change of cell density is calculated as (final cell density)/(initial cell density), i.e., N∆x(∞)/N∆x(0)
for the auxotroph ∆x and N∆z(∞)/N∆z(0) for the auxotroph ∆z. Since glucose is depleted a�er su�icient
long time, we used G(∞) = 0 in these calculations.
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5 Discussions on the Proportionality Assumption for Leakage Rate

In the general modeling framework described in Sect. 1, we assumed that the leakage rate of a metabolite
is proportional to its influx rate (proportionality assumption). To understand when the proportionality
assumption is valid and how it breaks down, we leveraged our previous experiences in modeling E. coli
resource allocation [13, 14] and developed a coarse-grained single-strain model that explicitly considers
metabolite concentration by characterizing the kinetic rates of metabolite biosynthesis, its passive leak-
age, and its utilization for biomass under enzymatic regulations. A schematic diagram of the model is
shown in S11A Fig. We summarize the main assumptions below

• We consider three reactions in the model: biosynthesis of an internal metabolite M from extracel-
lular substrate S, leakage of the metabolite, and consumption of the metabolite in biomass produc-
tion (reaction rate Jcon). The biosynthetic reaction is governed by enzyme E1 and the downstream
consumption of the metabolite is mediated by enzyme E2 whose activity can be inhibited by E2-
targeting antibiotic A. Metabolite leakage is assumed to be passive or active with a constant enzyme
level. The total protein density (i.e., amino acid concentration) of E1 and E2 is a constant α;

• The E2 protein production rate is proportional to the translational capacity allocated to its biosyn-
thesis, which further equals to the total protein synthesis rate allocated to E1 and E2 together
multiplied by the relative partitioning between the two. The total production rate of E1 and E2 is
equal to Jgrowα, where Jgrow is the specific growth rate and α, as defined above, is the concentration
of total amino acids contained in E1 and E2. This is because the specific growth rate in balanced
growth is defined as (dX/dt)/X , i.e., the mass production rate of any biological component X per
mass of X . When X represents the total number of amino acids (as an approximation of mass) in
E1 and E2, specific growth rate is then equal to the amino acid production rate of E1 and E2 per
total amino acids in E1 and E2 (i.e., α). Therefore, the amino acid production rate of E1 and E2 is
equal to the specific growth rate Jgrow multiplied by α;

• The relative partitioning of the translational resources between E1 and E2 proteins is mediated by
a transcriptional regulator R, whose biosynthesis rate is assumed to be inversely proportional to
the internal metabolite concentration [M]. Higher R concentration leads to decreased allocation of
translational resources to E2 and, concomitantly, increased allocation to E1. The underlying logic of
this regulatory architecture is that, shortage of the internal metabolite M signals bacteria to reduce
its consumption flux towards biomass while increasing the flux of its uptake and conversion. For
example, biosynthesis of ppGpp (guanosine pentaphosphate) in response to amino acid shortage
directly inhibits transcription of both ribosomal RNAs and ribosomal protein genes while promoting
that of amino acid biosynthetic genes [13].

• The internal metabolite M and proteins E1, E2 are stable in exponential phase and thus not actively
degraded (but they are still subject to growth dilution). By contrast, the turnover rate of R is gen-
erally much faster than the dilution rate (e.g., the half-life time of ppGpp is only 20-30 s [15]). We
therefore assume first-order kinetics for its active degradation and ignore the dilution e�ect.

These assumptions can be translated into the following di�erential equations

d[M]
dt

=
ke,1[E1][S]
Km,s + [S]︸        ︷︷        ︸

metabolite
biosynthesis rate

− Jcon︸︷︷︸
metabolite

consumption rate

− Jgrow[M]︸    ︷︷    ︸
metabolite

dilution rate

− km([M]−Me)︸           ︷︷           ︸
metabolite

leakage rate

(92)
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d[E2]

dt
=

αJgrow

me,2︸  ︷︷  ︸
maximum translational

capacity of E2

·
Ki,r

Ki,r + [R]︸      ︷︷      ︸
transcriptional regulation

− Jgrow[E2]︸     ︷︷     ︸
E2

dilution rate

(93)

d[R]
dt

=
krKm,m

Km,m+ [M]︸         ︷︷         ︸
transcriptional regulator

biosynthesis rate

− dr [R]︸︷︷︸
transcriptional regulator

degradation rate

(94)

Jcon =
ke,2[E2][M]
Km,m+ [M]︸         ︷︷         ︸

maximum metabolite
consumption rate

·
Ki,a

Ki,a + [A]︸      ︷︷      ︸
antibiotic inhibition

(95)

Jgrow = Jcon︸︷︷︸
metabolite

consumption rate

· Ym︸︷︷︸
yield of

metabolite

(96)

[E1] =
α−me,2[E2]

me,1︸          ︷︷          ︸
conservation of amino acids

in E1 and E2

(97)

where ke,1 is the maximum metabolite biosynthesis rate from substrate (depends on nutrient quality of
substrate), ke,2 is the maximum rate of metabolite consumption, Km,s and Km,m are the Michaelis con-
stants, km is the di�usion rate constant, Me is the concentration of metabolite in the environment, α is the
total amino acids contained in protein E1 and E2, Ki,r is the half-inhibition constant, kr is the maximum
biosynthesis rate of the transcriptional regulator, dr is the first-order rate constant of its degradation,
me,1 and me,2 are the number of amino acids in protein E1 and E2 respectively, and Ym is the yield of
bacterial growth on the internal metabolite. The proportionality constant (ϕ) (i.e., flux ratio) between the
metabolite leakage flux and its total influx is defined as

ϕ =
km([M]−Me)

ke,1[E1][S]
Km,s + [S]

(98)

We consider a well-known example where S represents glucose, M represents amino acids, E1 repre-
sents metabolic enzymes, E2 represents ribosomes (ribosomal proteins), and R represents ppGpp. Using
parameter values listed in S4 Table, we simulated the steady state responses of the proportionality con-
stant ϕ under two types of perturbations: (1) changing the external substrate concentration [S] (S11B-E
Fig) and (2) changing the external antibiotic concentration [A] (S11F-I Fig). We also varied the di�usion
rate constant km in the simulations. Our simulation results suggest the following

• Increasing external substrate concentration increases growth rate (S11B Fig) while increasing an-
tibiotic concentration decreases growth rate (S11F Fig);

• Increasing external substrate concentration leads to a positive correlation between the influx of the
internal metabolite and its concentration (S11C Fig) while increasing antibiotic concentration leads
to a negative correlation (S11G Fig);

• Increasing external substrate concentration and antibiotic concentration both lead to higher con-
centration of the internal metabolite (S11D,H Fig) ;
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• ϕ remains unchanged by increasing external substrate concentration (S11E Fig) but it increases
substantially at higher antibiotic concentration (S11I Fig).

From the findings above, we conclude that the proportionality assumption may be valid for an internal
metabolite when its concentration is perturbed from the upstream of the metabolite (e.g., change external
substrate concentration) since the assumption couples the leakage with upstream biosynthesis. However,
it is shown to break down when the perturbation is applied from the downstream of the metabolite (e.g.,
change ribosome-targeting antibiotic concentration). This is also expected because the assumption does
not take feedback regulation from the downstream reactions and metabolites into accounts.
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