	Model Prediction		Model Uncertainty	
Predictors	Est.	95% HPD	Est.	95% HPD
Intercept	12.42	10.45 - 14.34	0.92	0.86 - 0.98
ParticipantJudgment	0.82	0.75 - 0.89	-0.02	-0.020.01
Spatialtask	1.34	-0.33 - 3.04	0.002	-0.08 - 0.08
ParticipantJudgment:Spatialtask	0.03	-0.04 - 0.11	-0.01	-0.02 - 0.001
Random Effects				
σ^2	183.49		0.06	
$ au_{00}$	346.35		0.03	
N	129		129	
Observations	2580		2580	
Bayesian \mathbb{R}^2	.437		.674	

Note: We report the posterior median (Est.) and 95% highest posterior density (HPD) interval. In the first model (Model Prediction), participant judgments in the range [1,100] are used to predict the GP posterior mean, whereas the second model (Model Uncertainty) uses confidence judgments in the range [1,11] to predict the GP posterior variance. All GP posteriors are computed based on individual participant λ -values, estimated from the corresponding bandit task. σ^2 indicates the individual-level variance and τ_{00} indicates the variation between individual intercepts and the average intercept. See Methods for full specification of model structure and priors.