Supplementary Tables

Ч	BA		BX		BY	
	С	H (multiplicity, J in Hz)	С	H (multiplicity, J in Hz)	С	H (multiplicity, J in Hz)
1						
2	78.82		182.31		181.85	
3	202.23		61.41		62.11	
4	124.82	7.56 (d, 7.2)	125.97	7.23 (d, 7.2)	126.31	7.43 (d, 7.8)
5	137.79	7.45 (t, 7.8)	121.07	6.98 (dd, 7.2, 8.0)	120.85	6.99 (td, 7.8. 0.6)
6	119.35	6.81 (t, 7.8)	128.06	7.19 (dd, 7.2)	128.15	7.20 (td, 7.8. 0.6)
7	112.1	6.80 (d, 8.4)	109.18	6.82 (d, 7.2)	109.05	6.80 (d, 7.8)
8	121.11		142.32		142.42	
9	160.16		130.56		129.78	
10	37.43	2.78 (d 15.6)	33.12	2.19 (d, 13.6)	33.63	2.12 (d, 15.6)
		2.33 (d 15.6)		2.85 (d, 14.4)		2.81 (d, 15.6)
11	67.82	-	65.63	-	67.17	
12	169.76	-	169.39	-	169.06	
14	44.06	3.46, m	43.39	3.40, m	43.27	3.26, m
15	25.1	2.04, m	24.33	1.79, m	24.47	1.78, m
				1.99, m		1.98, m
16	28.96	2.79, m	28.99	2.50, overlap	28.45	1.79, m
		1.86, m				2.47, m
17	69.52		68.07		69.1	
18	29.17	1.91, m	29.42	1.94 (dd, 10.4, 10.4)	27.97	1.93, m
		1.87, m		1.76, m		1.64, m
19	55.7	2.4 (dd, 9.0, 7.8)	55.43	3.22 (dd, 8.8, 9.6)	50.04	3.16, overlapped
20	172.43		173.08		172.52	
22	48.44		45.10		46.86	
23	19.93	1.14, s	19.71	0.74, s	20.42	1.00, s
24	24.15	0.928, s	23.25	0.72, s	23.00	0.68, s

Supplementary Table 1. NMR data of BA, BX and BY.

	7				
	С	H (multiplicity, J in Hz)	HMBC	¹ H- ¹ H COSY	
1					
2	189.29		10, 23, 24		
3	81.31		4,10		
4	122.32	7.48 (d, 7.8)	3, 5, 6	5	
5	125.93	7.25 (t, 7.8)	4, 6	4, 6	
6	129.21	7.37 (t, 7.8)	5,7	5,7	
7	120.43	7.49 (d, 7.8)	5,6	6	
8	151.98		6, 7		
9	142.48		4, 10		
10	38.12	2.69 (d, 15.6)	2, 3, 9, 11, 12, 19		
		1.70 (d, 15.6)			
11	61.17	-	10, 19		
12	168.02	-	10, 14		
14	43.93	3.33, m	12, 15, 16, 17	15	
		3.28, m			
15	23.92	1.95, m	14, 16, 17	14, 16	
		1.82, m			
16	28.51	1.83, m	14, 15, 17, 18	15	
		2.52, m			
17	66.64		14, 15, 16, 18		
18	31.40	1.94, m	16, 17, 19, 22	19	
		2.13 m			
19	49.89	1.92 (dd, 27.6, 5.4)	18, 11, 22	18	
20	172.22		16, 18,		
22	40.05		18, 19, 23, 24		
23	19.47	1.37, s	24, 22, 19, 2		
24	27.02	1.21, s	23, 22, 19, 2		

Supplementary Table 2. NMR data of compound 7.

	BY	BX	15
Empirical formula	C ₂₁ H ₂₃ N ₃ O ₃	C42H48N6O7	C22H27N3O3
Formula weight	365.42	748.86	381.46
Temperature	85(2) K	85(2) K	99.99(10) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system, space group	Orthorhombic, P2 ₁ 2 ₁ 2 ₁	Monoclinic, P21	Monoclinic, P21
Unit cell	a = 8.64880(6) Å	a = 8.92445(7) Å	a = 9.95650(10) Å
dimensions	alpha = 90 deg.	alpha = 90 deg.	alpha = 90 deg.
	b = 14.08640(10) Å beta = 90 deg.	b = 16.05755(13) Å beta = 97.6976(7) deg.	b = 9.19010(10) Å beta = 109.0060(10) deg.
	c = 14.60695(10) Å	c = 13.03707(11) Å	c =11.01750(10) Å
	gamma = 90 deg.	gamma = 90 deg.	gamma = 90 deg.
Volume	1779.57(2) Å ³	1851.44(3) Å ³	953.157(17) Å ³
Z, Calculated density	4, 1.364 Mg/m ³	2, 1.343 Mg/m ³	2, 1.329 Mg/m ³
Absorption coefficient	0.749 mM ⁻¹	0.753 mM ⁻¹	0.719 mM ⁻¹
F (000)	776	796	408
G (1)	$0.250 \times 0.080 \times 0.080$	0.110 x 0.100 x 0.070	0.984 x 0.304 x 0.048
Crystal size	mm	mm	mm
Theta range for data collection	4.360 to 69.214 deg.	3.421 to 69.249 deg.	4.244 to 76.353 deg.
	-10<=h<=10,	-10<=h<=10,	-12<=h<=12,
Limiting indices	-17<=k<=16,	-18<=k<=19,	-11<=k<=11,
	-17<=l<=17	-15<=l<=15	-12<=l<=13
Reflections	27067 / 3304 [R(int)	28204 / 6550 [R(int) =	17458/ 3824 [R(int) =
collected / unique	= 0.0525]	0.0504]	0.0336]
Completeness to theta = 67.684	99.80%	99.90%	99.80%
Absorption	Semi-empirical from	Semi-empirical from	Semi-empirical from
correction	equivalents	equivalents	equivalents
Max. and min. transmission	1.00000 and 0.81488	1.00000 and 0.83164	1.00000 and 0.60142
Refinement	Full-matrix	Full-matrix	Full-matrix
method	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data / restraints / parameters	3304 / 0 / 254	6550 / 1 / 524	3824 / 37 / 277
Goodness-of-fit on F ²	1.045	1.057	1.065
Final R indices	R1 = 0.0274, wR2 =	R1 = 0.0337, wR2 =	R1 = 0.0275, wR2 =

Supplementary Table 3. Crystal data and structure refinement for compounds BY, BX and 15

[I>2σ(I)]	0.0715	0.0872	0.0687	
D indiago (all data)	R1 = 0.0277, wR2 =	R1 = 0.0351, wR2 =	R1 = 0.0302, wR2 =	
K males (an data)	0.0719	0.0900	0.0699	
Absolute structure	0.00(6)	0.05(10)	0.01(7)	
parameter	0.00(0)	0.03(10)		
Extinction	2/2	<i>n</i> /2	0.0111(10)	
coefficient	n/a	II/a		
Largest diff. peak	0.221 and $0.101 \circ \Lambda^{-3}$	$0.655 \text{ and } 0.175 \text{ a} \Lambda^{-3}$	0.248 and $0.156 \circ \Lambda^{-3}$	
and hole	0.221 and -0.191 e.A	0.055 and -0.175 e.A	0.246 and -0.136 e.A	
Hooft parameters	0.00(5)	0.04(7)	0.00(6)	

Supplementary Table 4. HPLC integrated peak areas and the calculated ratios of Brevianamide derivatives based on authentic standards.

Standard	BA	7	BX	BY		
Peak area / 1 mM	22950830	12386848	6650753	6820322		
Duoduot		Peak are	ea (230 nm)			
Product	Pb-WT	Pb-bvnE-KO	Ao-bvnBCD	Ao-bvnBCDE		
BA	6070509	1645891	89398	1135720		
BB	385483	1512301	62211	145886		
7	0	5656029	170993	0		
BX	0	1740695	44157	0		
BY	0	4145174	106020	0		
Duoduot	Peak area (404 nm)					
Froduct	Pb-WT	Pb-bvnE-KO	Ao-bvnBCD	Ao-bvnBCDE		
BA	422582	32811	2784	62595		
BB	37730	38626	2608	7441		
ratio	11:1	1:1	1:1	8:1		
	·					
	Pb-WT	Pb-bvnE-KO	Ao-bvnBCD	Ao-bvnBCDE		
ratio		BA:BB	:7:BX:BY			
	11:1:0:0:0	1:1:7:5:9	1:1:5:2:6	8:1:0:0:0		

	15		16		17	
	С	H (multiplicity, J in Hz)	С	H (multiplicity, J in Hz)	С	H (multiplicity, J in Hz)
1						
2	191.57		70.22		178.77	
3	86.32		201.52		54.57	
4	123.25	7.45 (d, 7.8)	123.2	7.22 (d, 7.8)	128.73	7.05 (d, 7.8)
5	125.3	7.14 (dd, 7.8, 1.2)	116.78	6.56, m	119.52	6.84 (t, 7.2)
6	129.12	7.31 (dd, 7.8, 1.2)	136.4	7.31 (ddd, 8.4, 7.2, 1.2)	127.55	7.11 (t, 7.2)
7	120.2	7.41 (d, 7.8)	111.18	6.82 (d, 8.4)	108.66	6.71 (d, 7.8)
8	141.69		120.13		143.31	
9	151.64		161.05		128.73	
10	34.32	3.12 (dd, 6.6, 15.6)	32.69	2.47 (dd, 4.8, 15.6)	30.91	2.939, m
		1.8 (dd, 3.0, 15.6)		2.67 (dd, 3, 15.0)		2.55 (dd, 6, 16.2)
11	56.6	4.72	59.46	3.9	59.99	3.97
12	165.92		163.57		162.56	
14	45.35	3.41, m	44.79	3.23 (td, 9.6, 3.6)	43.7	3.19 (dt, 11.4, 8.4)
				3.73, m		2.94, m
15	22.01	1.85, m	20.74	1.67, m	20.18	1.51, m
						1.4, m
16	28.21	2.18, m	28.15	1.68, m	28.11	1.72, m
		1.87, m		0.47, m		0.45 m
17	58.29	4.3 (t, 4.3)	58.04	3.77 (ddd, 1.8, 5.4, 11.4)	57.95	3.69 (dd, 6.0, 12.0)
18	168.09		165.95		165.8	
19-NMe	30.11	2.36, s	32.69	2.6, s	32.81	2.76, s
20	42.8		44.79		42.72	
21	145.12	6.31 (dd, 17.4, 10.2)	142.11	6.02 (dd, 10.8, 16.8)	143.06	6.03, m
22	111.93	5.15 (dd, 0.6,10.2)	113.5	5.1 (d, 17.4)	113.52	5.03 (d, 10.8)
		5.05 (dd, 0.6,10.2)		5.0 (d, 12.0)		4.91 (d, 17.4)
23	26.01	1.52, s	21.16	0.92, s	20.87	0.86, s
24	27.53	1.47, s	21.16	0.95, s	21.75	0.96, s

Supplementary Table 5. NMR data of compounds **15**, **16** and **17**.

Compound type	Product	Stereochemistry	Relative G of different TS (kcal/mol)	Probability	Selectivity
	7	N Me Me S HO N N N	0.00	0.521	7: 52.1%
3-hydroxy	8 (converted to BY)	Me Me N R.:- SOHS OH	0.19 1.92	0.375 0.020	(BY) 39.5%
indolenines	9 (converted to BX)	N Me Me R H O R HO N N	1.62 2.47	0.034 0.008	(BX) 4.2%
	22	Me Me N S O H S OH	1.49	0.042	4.2%
	BA	NH Me R H O R O N	0.00 1.52 0.72	0.706 0.055 0.210	97.1%
3-spiro-	BB		2.07 3.51 2.82	0.022 0.002 0.006	2.9%
ψ−indoxyls	23	NH Me R HOR N N	8.67 9.14 7.91	0.000 0.000 0.000	0.0%
	24	Me HN S O HS N O	8.38 15.71 10.51 9.27	0.000 0.000 0.000 0.000	0.0%

Supplementary Table 6. Selectivity calculation results of different Brevianamide derivatives.

Parameter	
Wavelength (Å)	1.033
Resolution range	36.72-1.78 (1.84-1.78)
Space group	<i>P</i> 3 ₂ 2 1
Unit cell (Å)	105.6×105.6×61.6
Total reflections	761908 (69001)
Unique reflections	38383 (3783)
Multiplicity	19.9 (18.2)
Completeness (%)	99.9 (99.5)
Mean I/sigma(I)	20.71 (2.60)
Wilson B-factor	22.37
R _{merge}	0.129 (0.950)
R _{meas}	0.132 (0.978)
CC _{1/2}	0.999 (0.886)
Reflections used in refinement	38359 (3780)
Reflections used for R _{free}	2000 (196)
R _{work}	0.182 (0.267)
R _{free}	0.203 (0.316)
Number of non-hydrogen atoms	2604
macromolecules	2290
Ligands	25
Solvent	289
RMS(bonds)	0.006
RMS(angles)	0.82
Ramachandran favored (%)	99.3
Ramachandran allowed (%)	0.7
Ramachandran outliers (%)	0.0
Average B-factor	26.15
macromolecules	25.07
Ligands	37.70
Solvent	33.70

Supplementary Table 7. Data collection and refinement statistics for ligand-free BvnE.

Stains/vectors	Genotype	Description
Penicillium brevicompactum	Wild type	
NRRL 864 (<i>Pb</i>)		
Pb-bvnB-KO		The <i>bvnB</i> knockout mutant of <i>Pb</i>
Pb-bvnC-KO		The <i>bvnC</i> knockout mutant of <i>Pb</i>
Pb-bvnD-KO		The <i>bvnD</i> knockout mutant of <i>Pb</i>
Pb-bvnE-KO		The <i>bvnE</i> knockout mutant of <i>Pb</i>
Aspergillus oryzae NSAR1	niad ⁺ , sC ⁻ ,	Heterologous gene expression host
(Ao)	$\Delta argB, adeA^{-}$	
Ao-bvnA		Heterologous expression of bvnA in Ao
Ao-bvnC		Heterologous expression of <i>bvnC</i> in <i>Ao</i>
Ao-bvnCDE		Heterologous expression of bvnCDE in Ao
Ao-bvnBC		Heterologous expression of <i>bvnBC</i> in <i>Ao</i>
Ao-bvnBCE		Heterologous expression of bvnBCE in Ao
Ao-bvnBCD		Heterologous expression of bvnBCD in Ao
Ao-bvnBCDE		Heterologous expression of bvnBCDE in Ao
Ao-bvnD		Heterologous expression of bvnD in Ao
Ao-bvnDE		Heterologous expression of bvnDE in Ao
E. coli DH5α		For general molecular cloning
E. coli BL21(DE3)		For protein overexpression
E. coli BL21(DE3) pRARE2		For BvnE expression for crystallization
pRSF-hyg		Backbone vector for gene knockout
pTAex3-bvnA		For heterologous expression of <i>bvnA</i> in <i>Ao</i>
pUARA2-bvnB		For heterologous expression of <i>bvnB</i> in <i>Ao</i>
pAdeA2-bvnBD		For heterologous expression of <i>bvnBD</i> in <i>Ao</i>
pAdeA2-bvnC		For heterologous expression of <i>bvnC</i> in <i>Ao</i>
pUSA2-bvnE		For heterologous expression of <i>bvnE</i> in <i>Ao</i>
pET28b-bvnB		For expression of BvnB in <i>E. coli</i>
pET28b-bvnC		For expression of BvnC in E. coli
pET28b-bvnE		For expression of BvnE in E. coli

Supplementary Table 8. Strains and vectors used in this study.

Supplementary	Table 9	9. Primers	used in	this stu	udy.
					~

Vector/primers	Sequence	Description
Hyg-F	CTGCTCCATACAAGCCAACC	For amplifying knockout split
		fragments
Hyg-R	GATGTAGGAGGGCGTGGATAT	For amplifying knockout split
	GTCCT	fragments
bvnB-up-F	GCCTGCAGGTCGACAAGCTTCC	For amplifying up arm of <i>bvnB</i> .
	CTATCCCTAGAAGTGCCAGTAT	
bvnB-up-R	AAACTACCGCATTAAAGCTTGT	For amplifying up arm of <i>bvnB</i> .
	TAATCATCTAGTCAACATCCTTC	
bvnB-down-F	GTGGAGCGGCGTCGAGATCTGG	For amplifying down arm of
	TTCAGCACAGTCTGATGATACG	bvnB
	Т	
bvnB-down-R	CCGATATCCAATTGAGATCTGCA	For amplifying down arm of
	GCGGATACAACGAATACACTT	bvnB
bvnB-anchor-F	CACCGTTGTCCACCGAGATT	For PCR verification of bvnB
		knockout mutants
bvnB-anchor-R	CGTGAAGATGGGAACCCTGAT	For PCR verification of bvnB
		knockout mutants
bvnB-in-F	GTAGGTATGCCGATGGACT	For PCR verification of bvnB
		knockout mutants
bvnB-in-R	ATCCTGTGCCCTTTAGTGGT	For PCR verification of bvnB
		knockout mutants
bvnC-up-F	GCCTGCAGGTCGACAAGCTTTG	For amplifying up arm of <i>bvnC</i>
	CCCATCATAACCATAACATCCT	
bvnC-up-R	AAACTACCGCATTAAAGCTTAG	For amplifying up arm of <i>bvnC</i>
	TAGAAGCATTTGCGAATTTGAG	
bvnC-down-F	GTGGAGCGGCGTCGAGATCTGA	For amplifying down arm of
	TGTTCGACTGTCCCAGTAAGAT	bvnC
	Α	
bvnC-down-R	CCGATATCCAATTGAGATCTCGT	For amplifying down arm of
	CTGATCCTTCAGTCGGTCTAG	bvnC
bvnC-anchor-F	TGAGACACCCAGGTCCGTAG	For PCR verification of <i>bvnC</i>
		knockout mutants
bvnC-anchor-R	TGCAAAGCCGCCACTCGTAA	For PCR verification of bvnC
		knockout mutants
bvnC-in-F	ACTTGGGCACGGGCCAGGAA	For PCR verification of <i>bvnC</i>
		knockout mutants
bvnC-in-R	GGCCCAGTGGTGGCAAGATA	For PCR verification of bvnC
		knockout mutants
bvnD-up-F	GCCTGCAGGTCGACAAGCTTTA	For amplifying up arm of <i>bvnD</i>
	GTTCCAGATGATGGGCGAGGC	
bvnD-up-R	AAACTACCGCATTAAAGCTTATT	For amplifying up arm of <i>bvnD</i>

	GTAACGGATTACTGGAAGGAAT	
hunD down F	GTGGAGCGCCGTCGAGATCTAA	For amplifying down arm of
UVIID-dOWII-F	TTTACTCCATCTACCCCAACTC	how D
		dvnD
	A	
bvnD-down-R	CCGATATCCAATTGAGATCTTCA	For amplifying down arm of
	GCAAACTTGACGCAGTAATCG	bvnD
bvnD-anchor-F	CGTCAAGTCAGCCATACATAGC	For PCR verification of <i>bvnD</i>
		knockout mutants
bvnD-anchor-R	GAAGACATAGGATAAGCGGAGT	For PCR verification of bvnD
		knockout mutants
bvnD-in-F	TGTCAATCGGTATCGGTGGG	For PCR verification of bvnD
		knockout mutants
bvnD-in-R	GAATTTGTCAGGCTCAGGGT	For PCR verification of bvnD
		knockout mutants
bvnE-up-F	CGCCTGCAGGTCGACAGGCTGG	For amplifying up arm of <i>bvnE</i>
	TGACCGTGCGAAAT	
bvnE-up-R	CGTTAGCAATTTAACTGTGATAA	For amplifying up arm of <i>bvnE</i>
1	ACTACCGCATTAACGAGGACTG	
	TAGGAGTAGGC	
bvnE-down-F	GGGCCTTGACATGTGCAGCCGG	For amplifying down arm of
	TGGAGCGGCGTCGATAGCGATT	hvnE
	ACTGCGTCAAG	ovin
hvnF-down-R	GCCGATATCCAATTGACTACGG	For amplifying down arm of
oviil down R		hvnF
hunE anchor_F		Ear DCD verification of hunE
Ovint-anchor-r	ACCIUDIOUACUUIAUCAAI	FOI FUR VEHIcation of UVIL
homE anahor D	CCCATTTATTCACCACCCAC	Ear DCD varification of hunE
DVIIL-anchor-K	GUATTIATICAUCACCAC	FOF FUR VEHIcation of UVIL
h E in E		E DCD varification of humE
bVnE-in-F	CAATCAAACGACAGGICCCA	For PCK verification of <i>UvnE</i>
1		
bvnE-1n-K	ACATUUUGTAGUAAAGTUUU	For PCR verification of <i>bvnE</i>
		knockout mutants
pUARA2-BvnB-F	ATCGATTTGAGCTAGATGACIA	For amplifying <i>bvnB</i> for
	GGAACAATACCAT	pUARA2 insertion by infusion
pUARA2-BvnB-R	TAGTGCGGCCGCTAGCTACTCC	For amplifying <i>bvnB</i> for
	TGACGATATTTCC	pUARA2 insertion by infusion
pAdeA2-BvnD-F	AAGCTCCGGAATTCGAGCTCGG	For amplifying <i>bvnD</i> for
	TACCATGACCAAGGCCACCACC	pAdeA2 insertion by HiFi
	CC	assembly
pAdeA2-BvnD-R	GATCCCCGGTACCCTATATTTT	For amplifying <i>bvnD</i> for
	GACCTCCTCTTGTCGCCG	pAdeA2 insertion by HiFi
		assembly
pAdeA2-linker-F	GGTCAAAATATAGGGTACCGG	For amplifying linker from
	0010/11/11/1000011/0000	

		HiFi assembly
pAdeA2-linker-R	TTGACTTGGTCATGCTAGCTCA	For amplifying linker from
	AATCGATTCGAATTC	pAdeA2 for pAdeA2- <i>bvnBD</i> by
		HiFi assembly
pAdeA2-BvnC-F	GATTTGAGCTAGCATGACCAAG	For amplifying <i>bvnC</i> for
	TCAAACGAAGTC	pAdeA2 insertion by HiFi
		assembly
pAdeA2-BvnC-R	ACTACCCGGGTCACTAGTGCGG	For amplifying <i>bvnC</i> for
	CCGCTAGCTCAGTTCTCCCACG	pAdeA2 insertion by HiFi
	GATAGG	assembly
pUSA2-BvnE-F	AAGCTCCGGAATTCGAGCTCGG	For amplifying <i>bvnE</i> for
	TACCATGACGCTCAATCAAACG	pUSA2 insertion by HiFi
	AC	assembly
pUSA2-BvnE-R	ATCCCCGGGTACCCTATATGGA	For amplifying <i>bvnE</i> for
	TGTCGATTCTGC	pUSA2 insertion by HiFi
		assembly
BvnE Y109F	GGCGGCATGTGGCCTTTTTGAG	BvnE site specific mutagenesis
	AATGAGTACATGGTCGTACTTA	
	CC	
BvnE R38A	CAGACGCGATGGTCTCACACGC	BvnE site specific mutagenesis
	CACCGAGGAATGTGTCACGC	
BvnE R49A	ACGCGTCCCGCGCCGGCCTCGC	BvnE site specific mutagenesis
	TTGGCTTTGCACCGCTAA	
BvnE Y113F	GTGGCCTTTATGAGAATGAGTT	BvnE site specific mutagenesis
	CATGGTCGTACTTACCTTTAAT	
	G	
BvnE E131A	GACTTTGCTACGGGATGTTATC	BvnE site specific mutagenesis
	GCGTTTGCAGATAGCGATTACT	
	GC	
BvnE E131Q	GACTTTGCTACGGGATGTTATC	BvnE site specific mutagenesis
	CAGTTTGCAGATAGCGATTACT	
	GC	
BvnE R38Q	CAGACGCGATGGTCTCACACCA	BvnE site specific mutagenesis
	GACCGAGGAATGTGTCACGC	