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In the main article, we present a method for reconstructing internal bending moments of
swimming fish from high-speed video data. First, we reconstruct the 3D motion of the fish
from multi-camera high-speed video. The automated method we developed for this has been
described in detail previously1, we will not go into further detail in this Supporting Informa-
tion. We then use these kinematics to calculate the resultant fluid dynamic forces. Finally, we
combine these with the 3D kinematics in a beam model of the fish to calculate the resultant
internal forces and moments.

In this Supporting Information, we provide the detailed mathematical background of the
methods used in the article. In addition, we show the results of the validation performed on
these methods.

1 Calculating fluid forces from kinematics

We refer to the section “Calculating fluid-force distribution” in the Materials and Methods
section of main text for details on the computational method we used for solving the Navier-
Stokes equations around reconstructed 3D swimming kinematics.

Flow fields calculated numerically were post-processed to extract the fluid force distribu-
tion on the skin of the fish with a custom Python 3 program. In this program, we interpolated2

the pressure and velocity gradients to a triangulated surface slightly offset from the fish skin.
These were then used to calculate the local stress on each triangular face as:

σpressure = −pn; (S1)

σfriction = τn, (S2)

where p is the pressure, τ is the shear stress tensor, and n is the outward facing normal of the
face. Under the assumption of a Newtonian fluid, the shear stress tensor is defined as:

τ = µ
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 , (S3)

where µ is the dynamic viscosity, and u, v, w are the velocity components in respectively x-, y-,
and z-direction. These surface stress distributions were then grouped into segments along the
fish to calculate the local net fluid force in the moving reference frame.
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2 Equations of motion

We use the reconstructed kinematics and fluid-dynamic forces to the internal forces and mo-
ments by modelling the fish as a bending ‘beam’. In this section, we show the derivation of the
equations of motion for this large-deformation beam representation of the fish.

2.1 Deriving the equations of motion

We model the fish as a beam with varying cross-sections, undergoing arbitrarily large deforma-
tion. Plane cross-sections are assumed to remain plane and perpendicular to the neutral line
(no shear deformation), but axial deformation is allowed. Although the motion we tracked
from the video is three-dimensional, we assume that the fish deforms in a single plane. There-
fore, we can use a two-dimensional beam model to represent the deformation of the fish, under
a suitable coordinate transformation. In summary, we model the fish as a beam undergoing
large bending deformations in two dimensions.

We describe the deformation of the beam with the displacement of each infinitesimal beam
element with respect to the reference configuration (Fig. S1A). It is defined as a function
ξ(s, t) =

(
ξ(s, t), η(s, t)

)
of a parameter s along the length of the beam, and the time t. The

position of the central axis at each point s is given by:(
x(s, t), y(s, t)

)
=
(
x0(s) + ξ(s, t), y0(s) + η(s, t)

)
, (S4)

where (x0(s), y0(s)) is the reference configuration of the beam. We define the reference config-
uration as a straight beam aligned with the positive x-axis, so the position becomes:(

x(s, t), y(s, t)
)

=
(
s+ ξ(s, t), η(s, t)

)
, (S5)

This displacement results in a local deformation angle θ(s, t) for each beam element (Fig. S1A).
It can be calculated from the displacements with:

θ = arctan

(
∂η
∂s

1 + ∂ξ
∂s

)
. (S6)
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Fig. S1. Beam representation of the fish body for computation of bending moments. (A) Geometric definitions of a beam
element ds at a position s along the body, in reference (left) and deformed (right) configuration. We consider an infinitesimal
element at (s, 0) in the reference configuration, that is displaced by (ξ, η), and rotated by an angle θ. (B) Free body diagram of
a beam element ds, with axial force N , shear force Q, bending moment M , net fictitious force distribution ffict, net fluid force
distribution ffluid, net in-plane fluid moment distribution mfluid, and acceleration ξ̈.

To derive the equations of motion, we consider a free body diagram of an infinitesimal
beam element of length ds (Fig. S1B). The force balance in x- and y-direction for a beam ele-
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ment ds can be expressed as:

ρfishA(s) ds ∂
2ξ
∂t2

(s, t) = N(s, t) cos
(
θ(s, t)

)
−N(s+ ds, t) cos

(
θ(s+ ds, t)

)
− Q(s, t) sin

(
θ(s, t)

)
+Q(s+ ds, t) sin

(
θ(s+ ds, t)

)
+ fx,muscle(s, t) ds+ fx,fluid(s, t) ds+ fx,fict(s, t) ds;

(S7)

ρfishA(s) ds ∂
2η
∂t2

(s, t) = N(s, t) sin
(
θ(s, t)

)
−N(s+ ds, t) sin

(
θ(s+ ds, t)

)
+ Q(s) cos

(
θ(s, t)

)
−Q(s+ ds, t) cos

(
θ(s+ ds, t)

)
+ fy,muscle(s, t) ds+ fy,fluid(s, t) ds+ fy,fict(s, t) ds,

(S8)

where ρfish is the beam density, A is the beam cross-sectional area, N is the internal normal
force, Q is the internal shear force, fx,muscle, fy,muscle are the muscle forces in x- and y-direction,
fx,fluid, fy,fluid are the external fluid forces in x- and y-direction, and fx,fict, fy,fict are the fictitious
forces in x- and y-direction (from the non-inertial reference frame, see section 2.2).

The moment balance (counter-clockwise positive) about the point on the neutral line at
s+ ds is given by:

ρfishI(s) ds ∂
2θ
∂t2

(s, t) = M(s, t)−M(s+ ds, t)−Q(s, t)ds
+ mmuscle(s, t) ds+mfluid(s, t) ds+mfict(s, t) ds,

(S9)

where I is the distribution of the second moment of area, M is the internal moment, mmuscle

is the muscle moment per unit length, mfluid is the external fluid moment per unit length, and
mfict is the fictitious moment per unit length (see section 2.2).

Dividing equations S7, S8, and S9 by the infinitesimal length ds, applying the definition
of a derivative ∂ϕ

∂s (s, t) = ϕ(s+ds,t)−ϕ(s,t)
ds , and dropping the explicit f(s, t) notation, yields the

equations of motion:

ρfishA
∂2ξ

∂t2
= − ∂

∂s

(
N cos θ

)
+

∂

∂s

(
Q sin θ

)
+ fx,muscle + fx,fluid + fx,fict; (S10)

ρfishA
∂2η

∂t2
= − ∂

∂s

(
N sin θ

)
− ∂

∂s

(
Q cos θ

)
+ fy,muscle + fy,fluid + fy,fict; (S11)

ρfishI
∂2θ

∂t2
= −∂M

∂s
−Q+mmuscle +mfluid +mfict. (S12)

2.2 Fictitious forces

We reconstructed the motion of the fish from video in three-dimensional space, but described
the equations of motion in a two-dimensional plane. However, in the video-tracking method,
we assumed that the fish deforms in a single plane. Hence, we can create a coordinate system
aligned to this plane and obtain the equations in two dimensions only. We define this head
reference frame as fixed to the snout of the fish and rotating along with the stiff head region in
the deformation plane. Any point x̂ in world coordinates (denoted with a circumflex) can be
expressed in the fish coordinate system at time t as:

x = RT(t) (x̂− x̂snout), (S13)

where R(t) is the time-dependent rotation matrix expressing the orientation of the snout and
x̂snout is the position of the snout.

When we transform the motion to the non-inertial fish reference frame, additional equation
terms accounting for the effect of the translation and rotation of the frame must be considered.
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These additional acceleration terms for any point x in the rotating reference frame are given
by3:

aadd = −âhead − 2ω̂× v − ω̂× (ω̂× x)− α̂× x, (S14)

where âhead is the acceleration of the origin, ω̂ is the angular velocity of the rotating coordinate
system, v is the velocity of the considered point, and α̂ is the angular acceleration of the rotat-
ing coordinate system. Note that the quantities âhead, ω̂, and α̂ are calculated with respect to
the world reference frame, but expressed in the basis vectors of the moving reference frame.
The position x and velocity v are expressed with respect to the moving reference frame.

These accelerations can be considered as an additional ‘fictitious’ external force distribution
in the moving reference frame. This force distributions is given by

ffict = ρAaadd. (S15)

These fictitious forces are added to the fluid-dynamic forces to calculate the total external force
distribution acting on each beam element.

3 Reconstructing internal forces and moments with inverse dynamics

We reconstructed bending moments from the motion of the fish and its simulated external fluid
force distribution, an approach commonly called inverse dynamics. This section describes the
optimisation procedure we used to reconstruct the internal forces and moments.

In our inverse dynamics approach, we cannot separate the effects of the active and passive
tissues inside the fish: the internal forces and moments that we compute include the effects of
both. Considering this, the moment equation becomes:

ρfishI
∂2θ

∂t2
= −∂M

∗

∂s
−Q+mfluid +mfict, (S16)

where ∂M∗

∂s = ∂M
∂s −mmuscle. This combined moment is what we reconstruct from the motion

with our optimisation procedure. From here onwards, we drop the asterisk notation and refer
to the combined active and passive internal bending moment as the ‘bending moment’.

3.1 Optimising internal forces and moments

To calculate the normal force, shear force, and bending moment, we used an optimisation
algorithm that determines the best-fitting distributions in space and time. At every point in
time, we described the internal forces and moments with a quintic spline2 along the length
of the fish. Values were prescribed at 12 uniformly spaced control points, between which the
values were interpolated with the spline. The first and last control point, at respectively s = 0
and s = `, were fixed at a value of 0, to satisfy the boundary conditions of N(0) = N(`) = 0,
Q(0) = Q(`) = 0, and M(0) = M(`) = 0 that should hold for the free ends of a beam.

At each time step, we optimised the moment-, shear-, and normal distributions to minimise
the deviation from equations S10, S11, S12 at every point along the fish. This deviation was
quantified by the residual value that is needed to balance the left- and right-hande side of
the equations. We optimised the distributions with the Levenberg-Marquardt algorithm2, that
minimises the squares of the residuals. At every time step, this resulted in a series of control
point values describing the internal forces and moments that best satisfy the equations.
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3.2 Calculating resultant power

We calculated the resultant power on the fish from two sources: the power exerted on the fluid,
and the changes in kinetic energy. Both quantities are computed in the inertial reference frame.
We calculated the power per unit length that the fish exerts on the water as:

p̂fluid = −f̂fluid · v̂, (S17)

where v̂ is the velocity of the centreline in world coordinates. We negated the power because
we are considering the power that the fish exerts on the water, rather than the inverse.

The kinetic energy per unit length at any point in time was calculated as:

êkinetic =
1

2
ρA||v̂||2. (S18)

The kinetic power per unit length is the time derivative of the kinetic energy:

p̂kinetic =
∂êkinetic

∂t
. (S19)

Note that we do not calculate powers based on the internal forces and moments. We do not
separate passive and active effects, which might compensate each other. Hence, the power cal-
culated from the net internal forces and moments does not correspond to the actual power con-
sumption by the active components only. This problem is similar to modelling the power con-
sumption of an aeroplane flying at constant speed without separating thrust and drag sources:
because there are no net forces, the net power calculated is zero. However, when the ‘active’
component (i.e. thrust from the engines) is separated from the ‘passive’ component (i.e. drag
of the aircraft), the computed power consumption is clearly non-zero.

4 Integrating the equations of motion to generate reference data

We integrated the equations of motion to verify whether the derived equations are physically
valid and to generate reference data to test our algorithm for reconstructing bending moments.
This section explains how we numerically solved the derived non-linear equations of motion.

4.1 Constitutive and kinematic relations

The normal forces and moments can be calculated from the displacements using constitutive
equations. To generate the reference data, we assumed a Hookean material, resulting in the
following equations:

N = −Y Aε; (S20)

M = −Y I ∂θ
∂s
, (S21)

where Y is the Young’s modulus. The strain ε can be computed from the displacements as
follows:

ε =

√(
1 +

∂ξ

∂s

)2

+

(
∂η

∂s

)2

− 1. (S22)

These relations complete the set of equations required to calculate the accelerations of each
point on the beam with equations S10 and S11.
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4.2 Temporal integration

We used the backward Euler method to integrate the beam accelerations to velocities, and
velocities to displacements. To calculate the velocities and displacements in x-direction at the
time step i, we used: (

∂ξ

∂t

)
i

=

(
∂ξ

∂t

)
i−1

+ ∆t

(
∂2ξ

∂t2

)
i

; (S23)

ξi = ξi−1 + ∆t

(
∂ξ

∂t

)
i

, (S24)

and analogous expressions for η.

4.3 Equation scaling

The governing equations resulted in an ill-conditioned system, caused by large scale differ-
ences in the matrix coefficients. This makes a system difficult to solve numerically. To improve
this, we scaled the variables such that all coefficients were close to 1. We used the following
scaling coefficients, where an asterisk denotes a scaled quantity:

s∗ =
1

∆s
s; t∗ =

1

∆t
t;

ξ∗ =
1

∆s
ξ; η∗ =

1

∆s
η; θ∗ = θ;

N∗ =
∆t2

ρA∆s2
N ; Q∗ =

∆t2

ρA∆s2
Q; M∗ =

∆t2

ρI∆s
M.

(S25)

The scaled equations for temporal integration of ξ then become:

ξ∗i − ξ∗i−1 −
(
∂ξ∗

∂t∗

)
i

= 0, (S26)

and analogously for the other three equations related to integration of ξ and η.
Scaling the force balance in x-direction yields:

∂2ξ∗

∂t∗2 +
∂N∗

∂s∗
cos θ∗ −N∗∂θ

∗

∂s∗
sin θ − ∂Q∗

∂s∗
sin θ∗ −Q∗∂θ

∗

∂s∗
cos θ − ∆t2

ρA∆s
fx = 0. (S27)

Equivalently, for the force balance in y-direction:

∂2η∗

∂t∗2 +
∂N∗

∂s∗
sin θ∗ +N∗∂θ

∗

∂s∗
cos θ∗ +

∂Q∗

∂s∗
cos θ∗ −Q∗∂θ

∗

∂s∗
sin θ∗ − ∆t2

ρA∆s
fy = 0. (S28)

The scaled moment balance becomes:
∂2θ∗

∂t∗2 +
∂M∗

∂s∗
+
A∆s2

I
Q∗ − ∆t2

ρI
m = 0 (S29)

Finally, the constitutive and kinematic relations become:

N∗ +
Y∆t2

ρ∆s2

√(1 +
dξ∗

ds∗

)2

+

(
dη∗

ds∗

)2

− 1

 = 0 (S30)

M∗ +
Y∆t2

ρ∆s

∂θ∗

∂s∗
= 0 (S31)

θ∗ − arctan

(
∂η∗

∂s∗

1 + ∂ξ∗

∂s∗

)
= 0 (S32)
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4.4 Solution method

We integrated the scaled equations of motion with multivariate Newton-Raphson, an iterative
solution method for non-linear partial differential equations. Based on the solution at the pre-
vious time step, we calculated the vector of residuals for each of the 4 temporal integration
relations, 3 force and moment balances, and 3 constitutive and kinematics relations per point
along the beam. This led to a vector of 10nlon residuals, with nlon the number of longitudinal
points in the beam. To calculate the value for the next iteration, we solved:

JF (ϕi)
(
ϕi+1 −ϕi

)
= −F (ϕi), (S33)

where the subscripts i and i+ 1 denote the current and next iteration, JF is the Jacobian of the
residuals, F is the vector of residuals, and ϕ is the vector of variables.

We calculated the Jacobian numerically by perturbing each variable with a fixed-step size
and then calculating one-sided finite-differences. We solved the system with a direct solver4.

5 Validating the inverse dynamics methods

This section describes the validation of the internal forces and moments reconstruction, based
on reference data and based on a reference CFD simulation.

We assessed the validity of the equations of motion by comparing a simulated beam to
experimental results5. We then tested the reconstruction of internal forces and moments based
on reference data produced by integrating the equations of motion (see section 4).

5.1 Equations of motion

To assess the validity of the derived beam equations, we compared experimental results from
Beléndez et al.5 with our simulation of a cantilever beam. In their study, a 300 mm steel ruler
(Y = 200 GPa) with rectangular cross-section (width × height = 30.4 mm × 0.78 mm) was
clamped at one end. The beam was loaded with a point force of 3.92 N in negative y-direction
at the unclamped tip, in addition to the distributed gravity load of 1.85 N m−1 (total 0.554 N
over 300 mm).

We simulated a beam with the same geometry and loading, but in a time-dependent man-
ner. We started with the beam in undeformed configuration, then smoothly ramped the load-
ing from 0 to the reference amplitudes over a period of 5 seconds, and continued simulating
for 5 more seconds. The resulting deformation was compared to the experimental reference in
Fig. S2A—it overlaps strikingly, providing confidence in the physical validity of the derived
equations of motion.

5.2 Calculating internal forces and moments

To check the correctness of the algorithm for reconstructing forces and moments, we generated
a simple model of a ‘swimmer’ by prescribing analytical external forces and moments to a
simulated beam of a Hookean material (see section 4). We prescribed the fluid forces as:

fx,fluid(s, t) = Ax sin(2πft); (S34)

fy,fluid(s, t) = Ay cos(2πft), (S35)

and the muscle moment by:

mmuscle = Am sin(2πft)
[
1 + sin

(
2π
s

`
− π

2

)]
. (S36)
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Fig. S2. Reference data for the internal forces and moments reconstruction. (A) Comparison of our simulated beam (solid
grey line) with experimental results 5 dots, under a distributed and point load (resp. red and green arrows). (B) Motion of the
simulated reference ‘swimmer’, with the beam centrelines (grey), path of the ‘head’ (green) and of the ‘tail’ (purple). The dark
grey, green, and purple indicate the cycle selected for further analysis. (C) The motion of the reference ‘swimmer’ over the selected
cycle, centreline (black), beam coloured by phase angle. (D)–(E) The elastic contribution (D) and the ‘muscle’ contribution (E) to
the internal bending moment for the reference ‘swimmer’.
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The resulting motion is shown in Fig. S2B, demonstrating a swimming-like motion. We se-
lected a single cycle from the motion (Fig. S2C), after the motion had become reliably periodic
after 11 cycles. The total internal bending moment, which is what we reconstruct, consisted of
an elastic contribution (Fig. S2D), and a contribution from the ‘muscle’ moment (Fig. S2E).

We reconstructed the total internal forces and moments of the reference ‘swimmer’ with
the method described in section 3, see Fig. S3. The results match well, both qualitatively and
quantitatively. Qualitatively, the patterns are similar, showing the same dynamics between the
reference and the reconstruction. The shear force and normal force show relatively the largest
errors (respectively maximum 9.7% and 7.0% of the peak value), while the error in bending
moment is low (maximum 0.9% of the peak value). This shows that our main quantity of
interest, the bending moment, can be reliably reconstructed with the proposed method.

6 Validating the method against a reference fluid-dynamics solver

As a reference to compare the computational fluid dynamics (CFD) results of IBAMR, we used
an extensively validated numerical method for fish free swimming6,7,8. The curvature of the
fish was prescribed similar to Li et al.7, by a travelling curvature wave (rather than an ampli-
tude wave in the original reference) with an experimental curvature amplitude envelope of a
3 days post fertilisation zebrafish larva. The frequency was 50 Hz, the fish length 3.8 mm, the
water density 1000 kg m−3, and the dynamic viscosity 0.8301 mPa s. The motion of the fish
was calculated based on the fluid dynamic forces, resulting in a free-swimming fish. We used
the resulting fluid force distributions and motion to calculate internal forces and moments.

We prescribed the same motion with a custom-developed add-on to the open-source im-
mersed boundary method IBAMR9, see section 1. Note that we did not integrate the motion of
the fish, but prescribed the position of the fish surface directly at all time points. For the results
from IBAMR, we also calculated the internal forces and moments to compare to the reference
from the validated solver.

6.1 Influence of the surface offset

We calculated the force distributions on the fish by interpolating quantities from the CFD flow
field to a triangulated surface of slightly offset from the skin of the fish. The amplitude of these
forces is dependent on this offset, related to the accuracy of the interpolation of the pressure
and velocity gradients. Due to the immersed boundary approach, there is also a flow field
inside the fish, but this is not physically relevant for the force calculations. If this is taken into
account in the interpolation, errors in the force distribution will occur.

Fig. S4A shows the effect of the surface offset on the accuracy of the bending moment
reconstruction. The optimal distance for the offset surface for a simulation with a finest mesh
size of 15 µm (the final selected mesh size) was found to be 20µm. This distance guaranteed
that the flow field was interpolated from only cells outside the body, but was close enough to
accurately reconstruct the frictional forces.

6.2 Influence of the mesh size and time step

To assess the dependency of the solution on the mesh size and time step, we simulated the
reference case from the validated solver on three different mesh sizes (finest level size 20.4,
15.1, 12.0 µm), and 5–6 different time steps. The time steps were chosen such that the coarsest
step always led to a maximum Courant–Friedrichs–Lewy (CFL) number close to (but below) 1
(i.e. the fluid moves less than a grid step in a single time step). In the tested range, mesh size
nor time step had a large influence on the solution.
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Fig. S3. Comparison between reference and reconstructed internal forces and moments. (A)–(C) Reference normal force
(A), shear force (B), and bending moment (C). (D)–(F) Reconstructed normal force (D), shear force (E), and bending moment (F).
(G)–(I) Difference between the reference and the reconstructed normal force (G), shear force (H), and bending moment (I).

10



12.0 µm

20.4 µm

0

0.5

1.0

1.5
Be

nd
in

g 
m

om
en

t
di

ffe
re

nc
e 

[µ
N

 m
m

]

A B

0 25 50
Surface offset [µm]

0

0.25

0.5

0.75

Be
nd

in
g 

m
om

en
t

di
ffe

re
nc

e 
[µ

N
 m

m
]

0 25 50

2.5

0

5

Time step [µs]

15.1 µm

Mesh size

D
ifference relative

to peak [%
]

5

0

10 D
ifference relative

to peak [%
]

Fig. S4. Convergence of the immersed boundary solver. (A)–(B) The difference in reconstructed bending moment compared
to the reference solution as a function of the offset of the surface used for force calculations ((A)), and the mesh size and time
step ((B)). The final choices of surface offset, mesh size, and time step size are highlighted with a red circle. The underlying data
for this figure can be found in S2 Data.

For mesh size, the largest step in accuracy is from 20.4 µm to 15.1 µm, the step to 12.0 µm
is smaller. We chose a mesh size of 15.1 µm, as it allows reasonable accuracy while remaining
computationally feasible—memory usage is a limiting factor on our computational facilities
as the meshes get larger. For the time step, smaller time steps lead to marginally smaller
errors. Computation times are at most linearly affected by the time step, so the trade-off for
computational feasiblity is less relevant. Hence, to be on the safe side, we chose a time step of
0.5 µs for solving the fluid dynamics.

A comparison of the reference simulation with the final choice of mesh size 15.1 µm and
time step 0.5 µs is shown in Fig. S5. The bending moments show qualitatively similar pat-
terns, in time and space. The magnitude is slightly underestimated in IBAMR compared to
the reference solution. Considering the very different approach between the two CFD solvers
(overset meshes vs. immersed boundary method), we do not expect the solutions to overlap
perfectly—both contain different sources of error. However, the excellent qualitative and good
quantitative overlap between the two solutions provides confidence that major modelling or
numerical errors are absent.

7 Data availability

Data and source code are made available on Dryad at:

https://doi.org/10.5061/dryad.2280gb5p6

Some restrictions apply, because the underlying ’raw’ high-speed video data (the unprocessed
video frames) exceed the capacity of the repository. These video sequences are stored at a
server of Wageningen University. Videos will be made available upon request.
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Fig. S5. Comparison between the validated solver and the final choice of immersed boundary solver settings. (A)–(B)
The reconstructed bending moment for the fluid dynamic forces from the reference solver (A) and IBAMR (B). The dashed lines
indicate the two slices shown in (C) and (D), at a single time step, and a single position along the fish.

12



References

[1] Voesenek CJ, Pieters RPM, Van Leeuwen JL. Automated reconstruction of three-
dimensional fish motion, forces, and torques. PLOS ONE. 2016;11(1):e0146682.
doi:10.1371/journal.pone.0146682.

[2] Jones E, Oliphant T, Peterson P, et al.. SciPy: Open source scientific tools for Python; 2001–.
Available from: http://www.scipy.org/.

[3] Török JS. Analytical mechanics with an introduction to dynamical systems. John Wiley &
Sons; 2000.

[4] Oliphant TE. A guide to NumPy. Trelgol Publishing; 2006.

[5] Beléndez T, Neipp C, Beléndez A. Large and small deflections of a cantilever beam. Eur J
Phys. 2002;23(3):317. doi:10.1088/0143-0807/23/3/317.

[6] Li G, Müller UK, Van Leeuwen JL, Liu H. Body dynamics and hydrodynamics of
swimming fish larvae: a computational study. J Exp Biol. 2012;215(22):4015–4033.
doi:10.1242/jeb.071837.

[7] Li G, Muller UK, Van Leeuwen JL, Liu H. Escape trajectories are deflected when fish lar-
vae intercept their own C-start wake. J R Soc Interface. 2014;11(101):20140848–20140848.
doi:10.1098/rsif.2014.0848.

[8] Li G, Müller UK, van Leeuwen JL, Liu H. Fish larvae exploit edge vortices along their
dorsal and ventral fin folds to propel themselves. J R Soc Interface. 2016;13(116):20160068.
doi:10.1098/rsif.2016.0068.

[9] Griffith BE, Hornung RD, McQueen DM, Peskin CS. An adaptive, formally second order
accurate version of the immersed boundary method. J Comput Phys. 2007;223(1):10–49.
doi:10.1016/j.jcp.2006.08.019.

13

http://www.scipy.org/

	Calculating fluid forces from kinematics
	Equations of motion
	Deriving the equations of motion
	Fictitious forces

	Reconstructing internal forces and moments with inverse dynamics
	Optimising internal forces and moments
	Calculating resultant power

	Integrating the equations of motion to generate reference data
	Constitutive and kinematic relations
	Temporal integration
	Equation scaling
	Solution method

	Validating the inverse dynamics methods
	Equations of motion
	Calculating internal forces and moments

	Validating the method against a reference fluid-dynamics solver
	Influence of the surface offset
	Influence of the mesh size and time step

	Data availability

