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Supplementary Figures 

 

Supplementary Figure 1:  Gross cropland expansion, 2008-16.   The map represents the conversion of 

noncropland to cropland across the US, displayed as the percentage of the landscape that was 

converted between 2008-16.  The highest rates of gross conversion occurred in the Prairie Pothole 

Region (PPR) of North and South Dakota, the Dissected Till Plains of Iowa and Missouri, and the High 

Plains portion of Kansas, Oklahoma, and Texas. 
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Supplementary Figure 2:  Emerging hotspots of cropland expansion.  The map displays areas of gross 

cropland expansion during 2009-12 compared to more recent areas of cropland expansion 2013-16.  

Midcontinental locations such as Kentucky, Missouri, and Tennessee, as well as the Canadian border in 

Montana and North Dakota have more recently emerged as additional hotbeds of elevated conversion.   
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Supplementary Figure 3:  Gross cropland abandonment, 2008-16.  The map represents the conversion 

of cropland to noncropland across the US, displayed as the percentage of the landscape that was 

abandoned between 2008-16.  Rates of cropland abandonment were greatest along the eastern 

seaboard, the Gulf coast, and parts of the Pacific Northwest.  
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Supplementary Figure 4:  Locations of conversion to cropland from specific land cover classes.  The 

map displays the percentage of the landscape within 3 km x 3 km visualization units that has been 

converted to cropland from grasslands (a), shrublands (b), forests (c), and wetlands (d) between 2008-

16.  Land cover type derived from the Cropland Data Layer1 based on the trajectory analysis of 

conversion and the latest non-crop class prior to a conversion.  Grasslands were the primary source of 

new croplands across much of the country, including the Great Plains, the Midwest, and eastern states.  

Other regional patterns included the clearing of shrublands in in the western US, the conversion of 

forest and timber land in the southeastern US, and the cultivation of wetlands across the Prairie Pothole 

Region (PPR).  
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Supplementary Figure 5:  Relative loss of all natural land covers combined.  This map displays the 

conversion to cropland divided by the total amount of grasslands, shrublands, wetlands, and forest that 

were present in 2008.  The ratio was assessed within nonoverlapping 9 km x 9 km neighborhoods.  The 

highest rates of natural land cover loss relative to their remaining extent occurred in swaths of the 

Western Corn Belt and Southern Plains where rates of existing cultivation and cropland expansion were 

both high. 
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Supplementary Figure 6:   First crop type planted on newly cultivated land.  For each area of land 

converted to crop production, the first crop type was extracted from the Cropland Data Layer1 for the 

first growing season following conversion. Between 2008-16, corn was the most common crop on land 

newly converted to cropland, followed by soybeans and wheat.  Corn and soybeans were common 

throughout the midwestern Corn Belt and its periphery, whereas wheat was more common farther 

west.   
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Supplementary Figure 7:  First crop type planted on newly cultivated land by state and year.  For each area of land converted to crop 

production, the first crop type was extracted from the Cropland Data Layer1 for the first growing season following a conversion — i.e., land 

converted between 2008-09 is reported as a 2009 conversion to the crop present in 2009.  Corn and soybeans were the most common on 

converted land in most states and years, with nearly equal proportions of each in many regions.  In contrast, corn was much more common on 

new croplands in South Dakota, Nebraska, and New York, while soybeans were the more common breakout crop in Missouri and North Dakota.  

Nationwide across the United States, corn was most common on new croplands in all years except 2014-15 when soybeans were more 

prevalent.  
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Supplementary Figure 8:  Relationship between yield differentials and remaining uncultivated extent.  

In areas with more remaining natural land cover, new croplands have lower yields compared to national 

averages (a-c) but smaller local yield deficits compared to nearby croplands (d-f).  In locations with little 

natural cover remaining, new croplands perform better in relation to national averages, but worse 

relative to nearby existing cropland extent.  Trendlines represent the results of 0.5 (median) quantile 

regression.  The slope of all six regressions was significantly different from zeros at α = 0.001 (see 

Supplementary Table 3 for details). 
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Supplementary Figure 9:  Cultivation suitability of areas converted to cropland.  Ratings are according 

to the USDA NRCS Land Capability Classes (LCC).  Nearly two-thirds of converted lands were 

characterized as having moderate to severe limitations for cultivation (LCC 2-3).  An additional 18% of 

conversion occurred on land with very severe limitations (LCC 4), and 15% occurred in areas deemed 

unsuitable for crop cultivation due to physical or environmental conditions that typically preclude tillage 

(LCC 5-8).  In contrast, just 11% and 8.4% of existing croplands were considered to have very severe 

limitations or be unsuitable for cultivation, respectively (see Supplementary Table 5).   
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Supplementary Figure 10:  Slope gradient of areas converted to cropland.  Land recently converted to 

cropland had an average slope gradient of 3.35% (SD 3.45%), or approximately 1.7 times greater than 

that of existing croplands (mean 2.00%, SD 2.60%).  Areas with particularly steep land converted to 

cropland included the periphery of the Appalachian Mountains, the Driftless region of southwestern 

Wisconsin and Iowa, and the Palouse Hills of Washington state.   
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Supplementary Figure 11:  Proportion of new croplands on hydric soils.  On average, 8.10% of new 

croplands 2008-16 were planted on hydric soils, or those for which the topsoil is water saturated for at 

least part of the year.  These wetland-capable locations can be highly productive, but also indicate likely 

use of drain tile, drainage ditches, or other wetness mitigation practices to facilitate crop production or 

expansion.  Expansion occurred frequently on hydric soils throughout much of the Midwest region, 

especially in locations such as northern Minnesota and northeast Missouri, as well as in parts of the 

Southeast Coast and the Mississippi Alluvial Plain.   
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Supplementary Figure 12:  Proportion of cropland expansion occurring on land previously enrolled in 

the Conservation Reserve Program (CRP).   The map displays the estimated percentage of conversion to 

cropland coming from CRP within each county, derived from National Resources Inventory data for 

2008-15.  See Supplementary Note 1 for details on the estimation and use of CRP conversion rates. 
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Supplementary Figure 13:  Milkweed stems lost due to conversion of grasslands, shrublands, and 

wetlands to corn and soy production in the Midwest, 2008-16.  The map represents the concentration 

of milkweed loss estimated as the number of stems lost per 10,000 acres of land in the region.  The 

greatest losses of milkweed occurred in the eastern Dakotas, southern Iowa, and northern Missouri — 

locations with a confluence of high rates of cropland expansion and a high proportion of conversion 

from land previously enrolled in the Conservation Reserve Program (CRP). 
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Supplementary Figure 14: State-level comparison to other recent cropland expansion estimates.  

Average annual rates of cropland expansion derived from the National Resources Inventory (NRI) 2007-

15 (a-c), the National Land Cover Database (NLCD) 2008-16 (d-f), and the Census of Agriculture (CoA) 

2007-17 (g-i).  Maps in the first column (a, d, and g) depict the annual rate at which croplands expanded 

within each state, calculated as a percentage of the total state area.  Maps in the second column (b, e, 

and h) show how these annual rates differ in absolute terms (Δ percentage points) from the comparable 

estimates derived in this study. Scatterplots in the third column (c, f, and i) illustrate how absolute 

annual rates of expansion within each state (acres yr-1) from each data source compare to those in this 

study. The R2 value for each linear regression is listed on the corresponding plot, with full regression 

statistics reported in Supplementary Table 6.  Note that NRI and NLCD estimates and comparisons to 

this study are based on rates of gross cropland expansion; CoA estimates and comparisons based on 

rates of net cropland change.  All three comparison datasets – based on unique sources – corroborate 

the general trend observed in this study of widespread cropland expansion throughout the US over 

approximately the past decade.   
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Supplementary Figure 15:  County-level visual comparison of recent cropland expansion estimates.  

Maps depict (a) gross conversion from noncropland to cropland 2008-16 from this study; (b) gross 

conversion to cultivated cropland 2008-16 according the National Land Cover Database (NLCD); (c) gross 

transitions to cultivated and noncultivated cropland 2007-15 according to the National Resources 

Inventory (NRI); and (d) net increases in cropland area 2007-17 according to the Census of Agriculture 

(CoA).  Reported values are the annual averages across each study period and reflect the amount of land 

that was converted within each county as a percentage of total county land area.  Grey-colored counties 

represent administrative units with no data due to the sample size (NRI) or suppression for 

confidentiality (CoA).  Despite their different data sources and analyses, the four mapped estimates 

indicate similar patterns of extensive cropland expansion over approximately the past decade in the US. 
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Supplementary Figure 16:  Model validation results based on comparison between the predicted and 

observed yields for all cropland within a county for crop years 2008-17.  Observed yield data are from 

the county-level NASS annual surveys.   Model RMSE was 7.23, 1.97, and 3.30 bu ac-1 for corn, soybeans, 

and wheat, respectively.   
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Supplementary Figure 17:  Variable importance plots for the representative yield models of (a) corn, (b) soybeans, and (c) wheat.  Mean 

decrease in accuracy reflects the decline in out-of-bag performance if a given variable is removed from the model.  Variables with greater 

importance are located near the top of the plots.  Whiskers represent the standard deviations of a 10-fold cross validation.  
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Supplementary Tables 

Supplementary Table 1:  Gross cropland expansion and abandonment, by state, 2008-16. 

 

% of state acres area

Alabama 160,700 51,400 0.33% 109,300

Arizona 37,100 25,300 0.02% 11,800

Arkansas 27,700 44,100 -0.05% -16,400

California 153,300 170,500 -0.02% -17,200

Colorado 329,000 121,800 0.31% 207,200

Connecticut 1,800 3,600 -0.06% -1,800

Delaware 1,500 15,100 -1.05% -13,600

Florida 87,900 138,100 -0.14% -50,200

Georgia 112,400 58,100 0.14% 54,300

Idaho 97,700 125,000 -0.05% -27,300

Illinois 175,600 43,300 0.37% 132,300

Indiana 92,400 47,800 0.19% 44,600

Iowa 548,800 61,500 1.35% 487,300

Kansas 615,500 83,500 1.01% 532,000

Kentucky 430,200 75,800 1.37% 354,400

Louisiana 47,600 86,800 -0.13% -39,200

Maine 7,700 14,000 -0.03% -6,300

Maryland 22,800 86,800 -0.95% -64,000

Massachusetts 2,800 3,300 -0.01% -500

Michigan 119,800 31,900 0.24% 87,900

Minnesota 349,800 47,500 0.56% 302,300

Mississippi 104,200 23,700 0.26% 80,500

Missouri 624,800 93,600 1.19% 531,200

Montana 463,200 106,900 0.38% 356,300

Nebraska 510,800 43,500 0.94% 467,300

Nevada 11,000 21,000 -0.01% -10,000

New Hampshire 900 2,100 -0.02% -1,200

New Jersey 7,000 19,800 -0.26% -12,800

New Mexico 117,600 64,900 0.07% 52,700

New York 198,700 167,900 0.10% 30,800

North Carolina 270,300 94,800 0.55% 175,500

North Dakota 1,033,100 141,500 1.97% 891,600

Ohio 126,200 49,600 0.29% 76,600

Oklahoma 202,900 91,400 0.25% 111,500

Oregon 52,700 44,200 0.01% 8,500

Pennsylvania 190,100 114,200 0.26% 75,900

Rhode Island 200 2,200 -0.28% -2,000

South Carolina 42,000 27,100 0.07% 14,900

South Dakota 1,044,400 105,000 1.90% 939,400

Tennessee 234,700 56,600 0.66% 178,100

Texas 881,600 436,200 0.26% 445,400

Utah 65,300 54,300 0.02% 11,000

Vermont 13,000 52,500 -0.64% -39,500

Virginia 149,300 98,300 0.20% 51,000

Washington 130,700 112,200 0.04% 18,500

West Virginia 13,000 9,100 0.03% 3,900

Wisconsin 116,000 99,800 0.05% 16,200

Wyoming 70,700 51,700 0.03% 19,000

United States 10,096,300 3,519,400 0.34% 6,576,900

Net Conversion
State

Expansion 

(acres)

Abandonment 

(acres)
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Supplementary Table 2:  Expected yields on new croplands relative to existing croplands nationwide.  

Crop 

Proportion of 
new cropland 

area (%) 

Mean yield 
difference 

(%) 

Standard 
Deviation 
(spatial) 

Proportion of new 
cropland area with 

negative differential (%) 

Corn  29.3 -10.9 13.8 78 

Soy 26.7 -8.4 14.9 69 

Wheat 22.6 1.3 21.1 59 

Total* 78.6 -6.5  - 69.5 

*Total represents the area-weighted average for "Mean yield difference" and "Proportion of 

new cropland area with negative differential" 
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Supplementary Table 3:  Results from quantile regression analyses of the national and local yield differentials (%) in relation to the amount of 

natural cover remaining (%).   Negative slopes indicate a lower absolute differential (smaller positive or greater negative value) within a 10 km x 

10 km grid cell as the percentage of natural land cover increased within a grid cell.  For example, a slope of -0.21 means that for every one 

percent increase in the amount of remaining natural land within a 10 x 10 km pixel, the yield difference decreased by 0.21%.   

Crop 

National Yield Differential Local Yield Differential 

N 

Slope Intercept 

N 

Slope Intercept 
Estimate 
(s.e.m.) t p 

Estimate 
(s.e.m.) t p 

Estimate 
(s.e.m.) t p 

Estimate 
(s.e.m.) t p 

Corn 32980 
-0.211 

(0.00285) 
-74.2 0.00000 

1.53 
(0.197) 

7.81 0.00000 31134 
0.0106 

(0.00047) 
22.6 0.00000 

-1.47 
(0.0313) 

-47.0 0.00000 

Soy 26425 
-0.208 

(0.00392) 
-53.1 0.00000 

5.36 
(0.285) 

18.8 0.00000 25088 
0.00466 

(0.00026) 
18.2 0.00000 

-0.584 
(0.0172) 

-34.0 0.00000 

Wheat 32337 
-0.150 

(0.00869) 
-16.8 0.00000 

28.1 
(0.604) 

46.5 0.00000 30570 
0.00269 

(0.00038) 
7.0 0.00000 

-0.411 
(0.0243) 

-17.0 0.00000 
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Supplementary Table 4:  Expected yields on new croplands relative to existing local croplands within a 

10 km x 10 km neighborhood. 

Crop 

Proportion of 
new cropland 

area (%) 

Mean yield 
difference 

(%) 

Standard 
Deviation 
(spatial) 

Proportion of new 
cropland area with 

negative differential (%) 

Corn  29.3 -1.1 1.8 78 

Soy 26.7 -0.6 1.1 75 

Wheat 22.6 -0.7 2.9 55 

Total* 78.6 -0.8  - 70.4 
*Total reflects the area-weighted average for "Mean yield difference" and "Proportion of new 

cropland area with negative differential" 
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Supplementary Table 5:  Cultivation suitability of all land use classes according to the NRCS Land 

Capability Classification (LCC) system.  LCC 1 is the most suitable for cultivation (prime), whereas LCC 8 

is considered the least suitable for cultivation. The proportion of each land use class categorized as  each 

LCC, 1-8, is displayed in each cell.  In general, new croplands (i.e. cropland expansion) were less suitable 

for cultivation than current cropland extent (i.e. stable cropland) — the mean LCC of new croplands was 

3.27, whereas the mean of existing crop fields was just 2.80, indicating greater limitations for new 

cropland. 

 

  

1 2 3 4 5 6 7 8

Stable Noncropland 0.6% 10.6% 13.8% 12.3% 2.2% 23.3% 33.5% 3.8% 5.28

Stable Cropland 5.9% 46.4% 28.4% 10.9% 0.9% 4.8% 2.6% 0.1% 2.80

Cropland Expansion 1.2% 32.6% 34.7% 17.9% 1.0% 8.9% 3.6% 0.2% 3.27

Cropland Abandonment 2.4% 31.2% 31.4% 16.4% 1.7% 9.2% 7.5% 0.3% 3.43

Intermittent Cropland 1.8% 27.7% 31.3% 17.5% 2.0% 11.1% 8.1% 0.5% 3.58

Broad land use class Average LCC

Proportion of each land use class categorized as LCC suitability 1-8
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Supplementary Table 6:  Linear regression statistics from comparisons to other datasets.  Table values 

correspond to the results of the regression analyses performed at the levels of agricultural districts 

(Figure 7) and U.S. states (Supplementary Figure 14).  Data for analyses with the NRI and NLCD were 

log-log transformed to conform with the assumptions of ordinary least squares regression.  In such 

cases, the equation takes the form log(y + 1) = slope*log(x+1) + intercept.  For the untransformed CoA 

analysis, the equation takes the form y = slope*x + intercept.  RMSECV is calculated as the RMSE divided 

by the corresponding mean value of the points along the x axis in the figures (i.e. acres yr-1, this study).  

Comparison Dataset N Slope (SE) Intercept (SE) R2 RMSECV 

Enumeration unit: USDA Agricultural Districts 

NRI* 301 0.743 (0.0325) 2.86 (0.249) 0.636 9.85% 
NLCD* 303 0.917 (0.0285) 0.450 (0.218) 0.775 10.0% 
CoA 303 1.28 (0.130) 1190 (760) 0.243 251% 

Enumeration unit: U.S. States 
NRI* 48 0.851 (0.0372) 2.33 (0.346) 0.919 4.85% 
NLCD* 48 0.948 (0.0416) 0.348 (0.388) 0.919 6.05% 

CoA 48 1.31 (0.167) 7020 (5580) 0.571 111% 

*represents relationships that were log-log transformed 
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Supplementary Table 7:  Comparison with other estimates of cropland expansion.  The four national 

products compared here — the NLCD, the CoA, the NRI, and our study — all report annual average rates 

of net cropland expansion between 822,000 and 1.39 million acres, which represents a consensus of net 

cropland expansion during the last decade in the U.S. 

Product Comparable term(s) 
Years 

reported 
Total change 

(acres) 
Average change 
per year (acres) 

National Land Cover 
Database (NLCD) 

Cultivated Crops  
(class 82) 

2008-16 

Exp: 9,682,841 

Abn: 1,777,646 

Net:  7,905,195 

Exp: 1,210,355 
Abn: 222,206 

Net:  988,149 

CDL-based (this study) 
 

Cropland  
(see supp. methods) 

2008-16 

Exp: 10,096,300 

Abn: 3,519,400 

Net:  6,576,900 

Exp: 1,262,000 
Abn: 439,900 

Net:  822,100 

USDA Census of 
Agriculture (CoA) 

Harvested + Failed + 
Fallow 

2007-17 

Exp: n/a 

Abn: n/a 

Net:  13,919,458 

Exp: n/a 

Abn: n/a 

Net: 1,391,946 

National Resources 
Inventory (NRI) 

Cropland  
(Cultivated and 
Noncultivated) 

2007-15 

Exp:  21,458,200 

Abn:  13,940,300 

Net:  7,517,900 

Exp:  2,682,275 

Abn:  1,742,538 

Net:  939,738 
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Supplementary Table 8:  Expected accuracies of conversion classes across the study period.  Expected 

accuracies calculated as the product of the state- and class-specific superclass accuracies for the year 

and class preceding and following conversion for each converted pixel.  Nationwide, expected user’s and 

producer’s accuracies for conversion from noncropland to cropland were 71.0% and 86.9% on average 

across the study period, respectively, and ranged from lows of 62.2% and 83.3% in 2010 to highs of 

92.6% and 94.3% in 2016.  Average expected user’s and producer’s accuracies for abandonment during 

the study were 72.6% and 81.4%, respectively.   

  Expansion Abandonment 

Year User's Producer's User's Producer's 

2009 63.3% 84.3% 67.0% 80.7% 

2010 62.2% 83.3% 74.6% 84.0% 

2011 71.4% 86.7% 61.9% 80.5% 

2012 68.7% 87.3% 75.0% 78.6% 

2013 81.2% 88.4% 74.0% 76.3% 

2014 72.2% 88.3% 80.1% 76.5% 

2015 73.0% 88.4% 84.0% 80.2% 

2016 92.6% 94.3% 88.4% 84.5% 

Weighted Ave. 71.0% 86.9% 72.6% 81.4% 
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Supplementary Table 9:  Cropland and noncropland categorization of classes within the Cropland Data 

Layer.  Each original class of the CDL was associated with a broad cropland or noncropland category for 

use in spatial processing and detection of change.   

 

 

 

  

ID Crop ID Crop ID Crop ID Non-Crop 

1 Corn 48 Watermelons 216 Peppers 37 Other Hay/Non Alfalfa

2 Cotton 49 Onions 217 Pomegranates 62 Pasture/Grass

3 Rice 50 Cucumbers 218 Nectarines 63 Forest

4 Sorghum 51 Chick Peas 219 Greens 64 Shrubland

5 Soybeans 52 Lentils 220 Plums 65 Barren

6 Sunflower 53 Peas 221 Strawberries 81 Clouds/No Data

10 Peanuts 54 Tomatoes 222 Squash 82 Developed

11 Tobacco 55 Caneberries 223 Apricots 83 Water

12 Sweet Corn 56 Hops 224 Vetch 87 Wetlands

13 Pop or Orn Corn 57 Herbs 225 Dbl Crop WinWht/Corn 88 Nonag/Undefined

14 Mint 58 Clover/Wildflowers 226 Dbl Crop Oats/Corn 92 Aquaculture

21 Barley 59 Sod/Grass Seed 227 Lettuce 111 Open Water

22 Durum Wheat 60 Switchgrass 229 Pumpkins 112 Perennial Ice/Snow 

23 Spring Wheat 61 Fallow/Idle Cropland 230 Dbl Crop Lettuce/Durum Wht 121 Developed/Open Space

24 Winter Wheat 66 Cherries 231 Dbl Crop Lettuce/Cantaloupe 122 Developed/Low Intensity

25 Other Small Grains 67 Peaches 232 Dbl Crop Lettuce/Cotton 123 Developed/Med Intensity

26 Dbl Crop WinWht/Soy 68 Apples 233 Dbl Crop Lettuce/Barley 124 Developed/High Intensity

27 Rye 69 Grapes 234 Dbl Crop Durum Wht/Sorghum 131 Barren

28 Oats 70 Christmas Trees 235 Dbl Crop Barley/Sorghum 141 Deciduous Forest

29 Millet 71 Other Tree Crops 236 Dbl Crop WinWht/Sorghum 142 Evergreen Forest

30 Speltz 72 Citrus 237 Dbl Crop Barley/Corn 143 Mixed Forest

31 Canola 74 Pecans 238 Dbl Crop WinWht/Cotton 152 Shrubland

32 Flaxseed 75 Almonds 239 Dbl Crop Soybeans/Cotton 171 Grassland Herbaceous

33 Safflower 76 Walnuts 240 Dbl Crop Soybeans/Oats 181 Pasture/Hay

34 Rape Seed 77 Pears 241 Dbl Crop Corn/Soybeans 176 Grassland/Pasture

35 Mustard 204 Pistachios 242 Blueberries 190 Woody Wetlands

36 Alfalfa 205 Triticale 243 Cabbage 195 Herbaceous Wetlands

38 Camelina 206 Carrots 244 Cauliflower

39 Buckwheat 207 Asparagus 245 Celery

41 Sugarbeets 208 Garlic 246 Radishes

42 Dry Beans 209 Cantaloupes 247 Turnips

43 Potatoes 210 Prunes 248 Eggplants

44 Other Crops 211 Olives 249 Gourds

45 Sugarcane 212 Oranges 250 Cranberries

46 Sweet Potatoes 213 Honeydew Melons 254 Dbl Crop Barley/Soybeans

47 Misc Vegs & Fruits 214 Broccoli
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Supplementary Table 10:  Covariates considered by the random forest yield models.  Gridded 

covariates were derived from the gSSURGO, TerraClimate, and USGS NED databases. Annual means of 

each covariate were tabulated within the planted extent of a given crop within each county in each year 

and joined to the corresponding county average yield of that crop in that year reported by the USDA’s 

Agricultural Resource Management Survey. TerraClimate monthly grids were summarized as the 

multiyear average of the mean, total, minimum and maximum annual values between 2008-17, the 

period over which the yield model was implemented. TerraClimate grids had a native spatial resolution 

of 2.5 arc minutes and were resampled to 30m using the bilinear method prior to analysis. The gSSURGO 

and USGS NED layers are temporally static. The USGS NED had a native spatial resolution of 10m and 

was aggregated to 30m to match the land use change data, as well as the 30m resolution gSSURGO 

covariate grids. 

Data Source Covariate Description 
gSSURGO NCCPIsg National commodity crop productivity index for small grains 

NCCPIcs National commodity crop productivity index for corn and soybeans 

TerraClimate aet Actual evapotranspiration – derived using a one-dimensional soil water 
balance model. Mean, total, minimum and maximum annual (2008-17). 

def Climate water deficit – derived using a one-dimensional soil water 
balance model. Mean, total, minimum and maximum annual (2008-17). 

pdsi Palmer drought severity index – Mean, total, minimum and maximum 
annual (2008-17). 

pet Reference evapotranspiration (ASCE Penman Monteith) – Mean, total, 
minimum and maximum annual (2008-17) 

pr Precipitation accumulation – Mean, total, minimum and maximum annual 
(2008-17) 

ro  Runoff – derived using a one-dimensional soil water balance model. 
Mean, total, minimum and maximum annual (2008-17). 

soil Soil moisture – derived using a one-dimensional soil water balance model. 
Mean, total, minimum and maximum annual (2008-17). 

srad Downward surface shortwave radiation – Mean, total, minimum and 
maximum annual (2008-17). 

swe Snow water equivalent – derived using a one-dimensional soil water 
balance model. Mean, total, minimum and maximum annual (2008-17). 

tmmn Minimum temperature – Mean, total, minimum and maximum annual 
(2008-17).  

tmmx Maximum temperature – Mean, total, minimum and maximum annual 
(2008-17). 

vap Vapor pressure – Mean, total, minimum and maximum annual (2008-17). 

vpd Vapor pressure deficit – Mean, total, minimum and maximum annual 
(2008-17). 

vs Wind speed at 10m – Mean, total, minimum and maximum annual (2008-
17). 

USGS NED Elevation Elevation above sea level 

Slope Terrain slope 

Aspect Terrain aspect 
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Supplementary Note 1 

Milkweed conversion  

Relative impact and significance 

The large number of milkweed stems lost due to land conversion reflects the substantial decline in CRP 

acreage over the past decade and the concomitant loss of pollinator habitat.  Our estimate of 27.5 

million milkweeds lost per year due to land conversion is over 14 times larger than the 1.9 million found 

by Pleasants (2016)2, though our modeled extent comprises the broader 13-state region that 

encompasses the Pleasants modeled Midwest extent. On an area basis, our estimate of 53.7 stems lost 

per converted acre is roughly 11 times larger than the 4.9 stems per converted acre previously 

estimated2.   This discrepancy arises primarily from a difference in accounting, in that the previous work 

included the loss of only non-CRP grasslands in its enumeration of land use change impacts (CRP was 

fully accounted for, but only in the estimate of milkweeds remaining, not milkweeds lost).  By extending 

that analysis to consider the contribution of both CRP and non-CRP land conversion, we show both the 

precipitous decline of milkweed since 2008 as well as the significance of land use change relative to 

other drivers of milkweed loss.  Most notably, the loss of milkweed due to recent land conversion is 26% 

as large as the mass extirpation of milkweed due to the adoption of glyphosate-tolerant crops and 

herbicide application that occurred between 1999 and 20142, which is estimated to be the single largest 

driver of recent Monarch population declines3,4.      

The loss of milkweed due to cropland expansion may also threaten Monarch recovery efforts, as 

milkweeds (Asclepias spp.) are the sole host plant for Monarch larvae5.  Current Monarch conservation 

targets call for a doubling of existing milkweed populations, or the addition of another 1.3 billion stems.   

However, these recovery efforts will first need to overcome losses from ongoing crop expansion.  If land 

conversion were to continue along the current composition and trajectory identified during our study 

period, additional restorations would be needed to make up for the 27.5 million stems lost each year in 

the Midwest before making progress towards the additional 1.3 billion stem goal.  However, projected 

scenarios to achieve the restoration target already call for an “all hands on deck” approach to increase 

milkweed populations in every land sector just to meet the initial goal5.  As such, there may be little 

room to increase restorations even further in order to compensate for the losses from conversion to 

cropland.  The continued loss of habitat from land conversion should also be considered when updating 

future targets. 

Estimating milkweed loss 

Milkweed stems are commonly found in natural and managed grasslands, wetlands, and certain 

shrublands, but have been nearly extirpated from crop fields since the implementation of herbicide-

tolerant crop varieties and associated pesticide application5.  We estimated the total number of 

milkweed stems lost due to conversion of grasslands, shrublands, and wetlands to corn and soy 

production in the Midwest using the general approach of Pleasants (2016).   For wetlands converted to 

crop production, we assumed an average initial stem density of 61.37 stems/acre2.   
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For grasslands and shrublands converted to crop production, we first estimated the proportion likely to 

have been enrolled in the Conservation Reserve Program (CRP) prior to conversion using county-

aggregated point data from the National Resources Inventory (NRI)6.  Though county-level NRI data on 

the conversion of CRP to cropland were only available for 2008-15 at the time of analysis, we assume 

the same proportion of conversion from CRP extended throughout our study period of 2008-16.   

Based on Thogmartin et al. (2017) we assumed a value of 3.09 stems/acre for grasslands and shrublands 

not enrolled in the Conservation Reserve Program and a density of 112.14 stems/acre for those lands 

enrolled in CRP.  We then used the NRI-derived percentage of conversion that came from CRP in each 

county to estimate the acres of conversion from CRP and non-CRP and applied the associated stem 

densities.  We also estimated average stems lost per acre based on the following equation: 

 Stem density = 3.09 * (1 – CRP%) + 112.14 * (CRP%) (1) 

where “CRP%” is the proportion of new crop production that came from CRP within each county.  Thus, 

in counties with no conversion of CRP to cropland, the stem density value used for all grasslands and 

shrublands converted to cropland was 3.09.  In counties where nearly all conversion to cropland was 

from CRP, the value was near 112.14.  For most counties, the stem density was an intermediate value, 

reflecting the mixed sources (CRP and non-CRP) of land converted to crop production.   

We then used the same approach as above to estimate the existing 2008 stem populations based on the 

NRI percent of land enrolled in CRP in 2008 and 2008 land use from the CDL.  To estimate relative losses 

in each county, we subsequently divided the number of stems lost by the number existing in 2008. 

To enable equal comparison of total stems and average densities across states, we performed our 

analysis over the entire 13-state region encompassing the main summer breeding range for Monarchs in 

the Midwest2, an area once estimated to support over 85% of the breeding population of monarch 

butterflies prior to the widespread loss of milkweed5.  State level estimates of total stems lost, acres 

converted, and average stem density of converted lands are presented in Supplementary Table 10. 

 

Supplementary Table 11:  Number of milkweed stems lost 2008-16 due to conversion of grasslands, 

shrublands, and wetlands to corn and soybeans, by state. 

State Stems lost 

Acres of 

conversion 

Average stems 

lost per acre 

Illinois 7,818,000 150,000 52.1 

Indiana 1,621,000 82,000 19.8 

Iowa 35,422,000 511,000 69.3 

Kansas 12,065,000 250,000 48.3 

Kentucky 7,689,000 384,000 20.0 

Michigan 1,344,000 59,000 22.8 

Minnesota 11,668,000 241,000 48.4 

Missouri 25,874,000 569,000 45.5 
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Nebraska 23,969,000 430,000 55.7 

North Dakota 41,723,000 492,000 84.8 

Ohio 3,991,000 110,000 36.3 

South Dakota 43,108,000 734,000 58.7 

Wisconsin 4,037,000 92,000 43.9 

13-State Region 220,330,000 4,103,000 53.7 

 

 

Uncertainty and limitations in estimating milkweed loss 

While our estimated milkweed loss numbers rely on the available data from the scientific literature, 

there remains substantial uncertainty in the magnitude of milkweed loss reported here.  To help 

characterize this we calculated the standard errors for our estimates using reported error values for 

number of stems per acre from Pleasants (2016) and Thogmartin et al. (2017) for areas of wetlands, 

shrublands, CRP grasslands, and non-CRP grasslands based on the area of each from the estimates 

above2,5.  In addition to that associated with the assumed stem densities, there also remain other 

sources of uncertainty that are not captured, as well as variation in the degree to which our data are 

representative. For example, many of the milkweed stem density values were based on observations in 

Midwestern states located at the interior of the modeled region, and thus values for milkweed s tems 

and losses may be more uncertain and variable around the periphery of the region5.  In addition, our 

estimates account for only common milkweed (Asclepias syriaca), and thus total and relative loss of all 

milkweed species may vary.  Although recent field surveys suggest syriaca milkweeds outnumber the 

next most prevalent comparable variety by almost 10 to 1 in conservation grasslands in Minnesota, 

Wisconsin, and Iowa7, other areas like Kansas and Missouri have higher occurrences of less common 

species like Asclepias viridis, and thus our estimates will be less representative of the changes occurring 

there8.  Lastly, the estimates for milkweed stem densities are expected to vary widely from parcel to 

parcel and across landscape types, and thus the numbers presented here may represent overestimates 

in some areas and underestimates in others.   
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Supplementary Note 2 

Comparison to other results 

Comparison with other national data products 

Our results are similar in direction but generally lesser in magnitude than other national assessments of 

cropland expansion.  Compared to the National Land Cover Dataset (NLCD) we find nearly identical 

average annual rates of expansion, but approximately twice as much annual abandonment.  The limited 

abandonment reported in the NLCD further exemplifies the difficulties in identifying abandonment from 

remote sensing data as described below. When compared to the National Resources Inventory (NRI), we 

report substantially lower levels of gross expansion and abandonment.  This suggests the methodology 

of the NRI may be more sensitive to detecting conversion than that of either our CDL-derived or the 

NLCD satellite-based analyses.  The USDA Census of Agriculture (CoA) reports the largest annual average 

rates of change of 1.39 million acres per year for the last 10 years.  These farmer-reported data, often 

considered the gold standard of agricultural land use information9, corroborate the independently 

assessed measurements and also suggest that producers are both aware of and acknowledge their 

active expansion of cultivated extent.  Overall, the four national products compared here — the NRI, 

NLCD, CoA, and our study — report annual average rates of net cropland expansion of between 822,000 

and 1.39 million acres, which represents a relative convergence and consensus on the extent of cropland 

area expansion during the last decade in the US. 

Other common datasets used for comparison include national estimates from the United Nations’ 

FAOSTAT database10 and the USDA NASS annual surveys11.  Data from the FAO regarding arable land and 

cropland extent for the US are based upon USDA CoA estimates for “total cropland” in the US.  However, 

this broad USDA classification also includes subcategories of idle cropland and cropland-pasture, 

thereby cushioning its estimate of active cropland extent.  Furthermore, there have been shifts within 

the definition and presentation of the cropland-pasture category of the CoA survey instrument over 

time12.  These changes have led to discontinuity in land’s classification as either cropland or pasture 

across time, thereby further muddling the use of USDA CoA estimates of total cropland and the 

associated FAOSTAT data points as indicators for active cropland area.  Thus we made comparisons to 

only the specific categories in the USDA Census of Agriculture that best reflect active cropland extent — 

the sum of planted, failed, and fallow cropland — rather than the aggregated metric of total cropland 

reported by USDA and reflected by the FAO data.     

Similarly, we did not compare results with those from NASS annual surveys of planted areas 11, as the 

annual survey data cannot be reliably used to estimate total cropland change due to multiple 

confounding factors.  First, these surveys contain incomplete spatial coverage, and only report the 

planted area of specific crops for select counties in which they are economically important.  For 

example, in 2017, corn planted acreage was reported for only 1635 of the 3070 counties across the US, 

despite corn being harvested in over 2600 counties according to the more comprehensive Census of 

Agriculture. Second, the annual NASS Surveys report only select principle crops rather than all crops, 

which thereby reduces the total area of cropped land enumerated.  Third, the Surveys report only 

planted area, which is not an appropriate indicator of total cropland extent or the total footprint used 
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for cropland.  To fully capture the footprint of cultivated agriculture (i.e. the area used for cropland), 

one would need to add to planted area the area of cropland that is annually tilled but not planted (i.e. 

fallow) as well as the areas of “prevented planting,” which are croplands where farmers were unable to 

seed a crop and instead collected an insurance payment for their missed planting.  The metrics of 

planted area and prevented planting are also heavily influenced by the weather and other local variables 

at the time of planting each year, and thereby fluctuate widely.  Lastly, unlike the estimates based on 

the NRI, NLCD, and CDL, the NASS Survey planted area estimates provide only a measure of net area 

each year, rather than a spatially explicit tracking of land which would afford measurement of gross (to 

and from) land use changes.  

Comparison to Lark et al. 2015 

Compared to previous analyses of the CDL, we found 6.4 million acres of new cropland expansion during 

2008-12, which is less than the 7.3 million acres of cropland expansion reported by Lark et al (2015) for 

the same period13.  While some differences stem from updates to input data and methods (see 

Supplementary Methods), most is due to the longer period considered during classification in the 

current study.  For example, land converted to crop production in 2008-12 and subsequently abandoned 

during 2012-16 would be captured in our intermittent cropland category rather than our crop expansion 

category, thus reducing the amount of conversion reported for 2008-12 in this study.  

Notes about cropland abandonment 

It remains a challenge to map and quantify recent cropland abandonment using remote-sensing derived 

land cover maps, due to multiple factors14,15.  First, without knowing future, yet-to-be determined land 

use, it is not possible to distinguish short term fallowing or idling of land from longer term abandonment 

or removal from production, unless the destination use is a permanent land cover like urban 

development.  Second, the time needed for growth and establishment of subsequent noncrop land 

covers like shrubland and forest similarly preclude estimating the amount of recent cropland that has 

been returned to these ecosystems in contemporary analyses.  Lastly, the remaining bare ground and 

successive vegetative growth signals of newly abandoned croplands can appear spectrally similar to that 

of cropland, making it challenging to identify noncropland that immediately follows cropland when 

performing annual classifications.  As such, future research that seeks to improve the characterization of 

recent abandonment (including grassland restoration mapping) might well focus on using linked time 

series analysis or continuous change detection methods as well as longer periods of analysis.  

The overall area of abandonment we identified for 2008-16 is only slightly larger than that found for 

2008-12 by Lark et al. 2015.  In addition to lower rates of abandonment in recent years, much of the 

land identified as abandoned in the previous study was subsequently recultivated during the 2012-16 

period and thus, more appropriately, was included in our pool of intermittent cropland. 

Loss of cropland to urban expansion is difficult to measure since it frequently occurs over a period 

greater than one year, and during this process progresses through multiple land cover types.  For 

example, we found large patches of orange groves in Florida that were cleared and subsequently left 
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vacant prior to development outside Fort Lauderdale and Miami. Other studies with an explicit focus on 

urban expansion may thus provide a better estimate of the rates of crop to urban conversion6,16.     

Additional challenges related to measuring abandonment may stem from the CDL data themselves.  The 

CDL has increasingly captured more cropland over time, which, if uncorrected, leads to an 

overestimation of crop expansion and an underestimation of cropland abandonment.  We adjusted for 

this bias toward overestimating expansion by using the NLCD to correct the few areas of potential 

expansion falsely identified by the CDL as noncropland in earlier years17.  However, a corresponding 

approach to correct for missed cropland that had been subsequently abandoned does not exist as it 

would require application of the NLCD to all possible lands (rather than the small pool of potential 

conversion locations). 
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Supplementary Note 3 

Yield model interpretation  

Yield model predictions are best interpreted as mean expected yields 2008-17 based on the land’s 

biophysical characteristics and a given county’s dominant management practices. Each model integrates 

primarily static biophysical variables and their long-term relationship to observed yields.  Since ten years 

of yield data were considered equally, predictions best represent the average value of the 

corresponding time period and do not account for potential improvements arising from subsequent 

genetic or management advances within the study period. Thus we report only relative yield patterns 

between new and existing croplands, which are less likely to be affected by these advances since they 

are adopted quickly and uniformly.  
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Supplementary Methods 

Estimating conversion accuracy  

We used the data reported in the CDL error supermatrices to estimate the accuracy of a conversion 

between noncropland and cropland.  Initially, NASS calculates the accuracy for specific land cover 

classes within each state according to the general formula: 

 Class accuracyx =  
Pixels correct𝑥

Pixels  total𝑥
  (2) 

for each specific crop x, where pixels correct is the number of mapped pixels that match the reference 

data in a given region, and pixels total is either the total number of reference data observations (for 

calculating producer’s accuracy) or mapped pixels (for calculating user’s accuracy) for each class.  

Producer's accuracies measure errors of omission; they indicate how likely a feature is to be correctly 

captured by the remote sensing product. User's accuracies reflect errors of commission, which indicate 

how likely a mapped class correctly resembles features on the landscape (Congalton and Green, 2008).  

Aggregating land cover classes to broader thematic classes improves accuracy by lowering thematic 

specificity 20,21.  To understand how well the CDL data used as input can distinguish general cropland 

from noncropland areas, we calculated how frequently each specific class of the CDL is correctly mapped 

within the appropriate cropland or noncropland domain.  This metric indicates, for example, how 

accurately a pixel mapped as corn can be used to identify general cropland.  We refer to this as the 

superclass accuracy for each specific class, and derived it as: 

 
Superclass accuracy𝐶,𝑥 = 

Pixels in correct superclass𝑥

Pixels assessed𝑥
 (3) 

for each specific crop x included in the superclass or domain C (e.g., cropland or noncropland).   The 

superclass producer’s accuracy indicates how frequently a specific crop on the landscape, such as corn, 

was mapped by the CDL as any type of crop in the cropland domain.  The superclass user’s accuracy 

represents how likely a pixel mapped as a specific crop was actually any type of crop (i.e. cropland) on 

the landscape.   

These superclass accuracies were then used to estimate the likelihood that a conversion was correct by 

multiplying the state- and class-specific superclass accuracy of each converted pixel for the specific year 

and class preceding and following conversion (eq 3).   

 Expected Accuracy = SAyoc * SA(yoc-1) (4) 

where SA is the superclass accuracy and yoc is the year of conversion.  This approach provides a 

thematically and temporally explicit estimate of the expected accuracy for each land use change 

identified.    



37 
 

Detecting land conversion 

The land cover change detection process was divided into four sequential stages: 1) pre-processing, 

which consisted of compiling the original trajectories of land cover through time; 2) specific class 

refinements, which involved editing individual pixels and trajectories to account for known common 

misclassification issues; 3) core processing, which included spatiotemporal filtering, categorization of the 

unique landcover trajectories into five broad land use change classes, and application of a minimum 

mapping unit to the broad classes; and 4) post-processing, which consisted of identifying the years of 

conversion and the specific landcover classes before and after each conversion occurred 

(Supplementary Fig. 16) 

 

 

 

Supplementary Figure 18:  Overview of the general workflow for detecting land conversion using the 

Cropland Data Layer and National Land Cover Database.  Processing was broken down into four general 

stages: pre-processing, specific class refinements, core processing, and post-processing.  
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1) Pre-processing   

We used the USDA Cropland Data Layer (CDL) as the primary input for detecting land conversion.  The 

CDL is an annual 30m resolution, crop-specific land cover map that provides coverage for all states in the 

conterminous U.S. beginning in 2008, with crop-specific accuracies generally ranging from 85-95%1.  As a 

first processing step, we reclassified all CDL datasets available at the time of analysis (2008-17) into a 

binary classification of either cropland or noncropland according to Supplementary Table 8.   We then 

combined all ten reclassed CDL datasets to create a single ‘trajectory’ dataset containing 1024 (i.e. 2^10) 

unique values, one for each permutation of input values.  These trajectories represented the unique 

combinations of land use across time.  

2) Specific class refinements  

Next, we used the original crop-specific CDLs to modify a selection of the 1024 binary land use 

trajectories to help account for known issues and uncertainties in the raw CDL input datasets.  These 

modification masks were created by generating class-specific data layers based on the original CDLs and 

then spatially tagging them to the cropland/noncropland trajectories.  Using this approach, we were 

able to leverage and maintain the thematic richness of the original CDLs (which often contain over 100 

classes each year) while maintaining a tractable number of trajectories based on the annual binary 

cropland/noncropland maps.  These refinement masks were applied to the trajectory dataset 

immediately after the pre-processing stage in order to maintain spatial alignment throughout the 

subsequent processing steps.  All of the applied modification masks were designed to reduce errors via 

the removal of false positive signals (i.e. identification of conversion when it is likely that no conversion 

occurred) or via compensation for false negatives (i.e. failure to identify conversions that likely 

occurred).   

Adjusting for potential missed abandonment 

The fallow/idle cropland class of the CDL is intended to capture cultivated or tilled land that was not 

planted to a specific crop in a given year but still actively managed as cropland.  This type of annual 

fallow land is often found in rotations with crops such as wheat, and commonly used as a water 

conservation practice in the western U.S.  However, land identified as fallow can also indicate the start 

of an abandonment process if it is not followed by crop production in a subsequent year.  Thus, by 

considering fallow/idle to be an active cropland class in our schema, some areas of conversion to 

noncropland (i.e. abandonment) could have been missed if a crop was followed by the fallow/idle class 

and never subsequently planted.  To account for this, we reinspected all pixels of potential stable 

cropland or intermittent cropland to see whether an abandonment involving a fallow/idle classification 

may have occurred.  Specifically, if an individual pixel i) contained only cropland classes in its initial 

years, ii) was subsequently classified as fallow, and iii) remained fallow or noncrop for the rest of the 

time series (i.e. unidirectional conversion), then the initial fallow/idle year was treated as the first 

noncropland year and the trajectory was labeled as abandonment.  This corrective mask was applied to 

the trajectory dataset prior to the subsequent masks described below to allow those later corrections to 

supersede this refinement. 
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Adjusting for potential false expansion and false abandonment 

We used additional rule-based processing to help remove areas identified as conversion (i.e. expansion 

or abandonment) that were likely to be misclassifications, based either on a low probability of that type 

of transition occuring or on low accuracy in distinguishing specific types of land cover involved in the 

change.   

Pixels which would otherwise meet our criteria for a conversion (see below) but which contained a tree 

crop — specifically cherries (66), peaches (67), apples (68), grapes (69), other tree crops (71), citrus (72), 

pecans (74), almonds (75), walnuts (76), pears (77), pistachios (204), prunes (210), olives (211), oranges 

(212), nectarines (218), plums (220), or apricots (223) — in any year prior to and following the 

conversion year were relabeled as stable cropland due to the likelihood of that pixel being part of an 

orchard and the potential false conversion signal arising from the replanting or regrowth cycle.  

Similarly, any potential conversion pixel that contained rice (class 3) in any year prior to and following a 

potential conversion was relabeled as stable cropland due to the persistent nature of paddy agriculture.  

Land that has been developed into urban or built-up infrastructure is unlikely to revert back to 

cultivated agriculture due to the substantial capital invested, the standing infrastructure, or soil 

degradation.  Therefore, we did not allow developed land classes — specifically developed/low intensity 

(122), developed/medium intensity (123), and developed/high intensity (124) — to be considered as 

conversion to cropland under the assumption that any such signatures likely reflect a misclassification in 

the underlying data.  

Alfalfa is the most frequently confused class in the cropland domain18 and is often confused with 

nonalfalfa hay or grassland/pasture, both considered noncropland classes.  Therefore, to prevent 

misclassified alfalfa pixels from inducing a false conversion signal, we required presence of an addit ional 

type of crop sometime after the conversion to alfalfa occurred. 

Lastly, we created a broad class-specific filter to address pixels that contained low classification accuracy 

or that were classes that were frequently confused for the duration of the time series.  If a pixel 

contained only landcover classes included in the designated fuzzy list — specifically alfalfa (36), other 

hay/non alfalfa (37), fallow idle cropland (61), shrubland (152), or grassland/pasture (176) — then it was 

removed as a conversion pixel because of the low confidence of conversion, low accuracy, and/or 

spectral similarity of landcover classes pre- and postconversion.   

Incorporating the National Land Cover Dataset (NLCD).    

We also used the independent NLCD dataset to help further refine conversion estimates by requiring 

agreement between the NLCD and the CDL-based trajectories.  For areas of potential cropland 

expansion identified by the CDL, we required that the area was not classified as a cultivated crop (82) in 

either of the two previous NLCD datasets.   For areas of potential cropland abandonment identified by 

the CDL, we required that the area was classified as either cultivated cropland (82) or pasture/hay (81) 

in at least one of the two previous NLCD datasets.   
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For potential abandonment, if there was no cultivated crop (82) or pasture/hay (81) in the two previous 

NLCD datasets, then we assumed that this pixel was not previously cropped consistently and therefore 

had no potential for abandonment.  Such pixels were thus reclassified as noncropland.  

Incorporating the 2007 Cropland Data Layer 

The 2007 CDL dataset does not have full continental coverage and thus was excluded as one of the CDL 

inputs when creating the trajectories dataset.  However, we leveraged these data for context wherever 

they were available.  To use the 2007 CDL, the dataset was first reclass ified to the binary 

cropland/noncropland scheme.  This binary dataset was then referenced with all pixels preliminarily 

identified as potential conversion in 2009.  For areas of potential cropland expansion, if the binary 2007 

CDL was cropland then it disagreed with the potential cropland expansion pattern and the area was 

relabeled as cropland.  Likewise, for areas of potential abandonment, if the binary 2007 CDL was 

noncropland then it disagreed with the potential abandonment pattern and the area was relabeled as 

noncropland. 

3) Core processing     

The core processing stage involved the creation of the broad land use change dataset and consisted of 

three steps, implemented in sequence:  first, application of a spatial filter on the modified trajectories; 

next, categorization of unique landcover permutations into one of five broad land use transition classes; 

and finally, implementation of a minimum mapping unit to the broad LUC dataset.  

Spatial filtering 

The first step in the core processing sequence was to apply a spatial filter to the modified trajectories 

from the specific class refinement stage.  The spatial filter was used to clean the dataset by reducing 

within-field salt-and-pepper potential misclassifications associated with CDL classifier confusion as well 

as potential edge-of-field confusion associated with mixed pixels. To determine which filter best 

modeled the landscape, we explored multiple parameters of two spatial filters. The first spatial filter we 

explored was the majority filter with number of neighbors and replacement threshold as the two 

parameters.  The arguments for the number of neighbors parameter were four (orthogonal) and eight (a 

three-by-three window).  Based on observations in several test regions, the four-neighbor option better 

retained original field shapes and reduced unnecessary smoothing at field corners.   

The arguments for the replacement threshold for the majority filter were half versus majority 

thresholds.  The half threshold more aggressively removed smaller features on the landscape than the 

majority threshold because of the lower threshold required for replacement.   In general, we observed 

that these small patches were frequently composed of mixed pixels at the interface of crop and noncrop 

patches and often falsely identified conversions, and therefore it was desirable to remove them. 

We also explored an alternative moving window filter with different kernel sizes (3 X 3) and (5 X 5) as 

the parameters.  It was observed that larger kernel sizes created more homogenous patches, which 

resulted in a smoother modeled landscape with a reduction in spatial complexity and smaller features.  

These filters created fewer structurally complex patches and removed a larger number of smaller 
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patches relative to the majority filter because no minimum threshold was required for replacement.  

Although there were benefits to a more aggressive spatial filter that made patches more uniform in 

shape and composition, we chose the majority filter with eight neighbors and half threshold over the 

moving window filters because the output of the majority filter with chosen parameters preserved more 

heterogenous patches on the landscape and maintained a greater number of small features like 

conversion patches, small waterbodies (e.g., prairie potholes in North Dakota), roads, riparian areas, etc. 

Broad Land Use Change (LUC) classification 

The second step in the core processing sequence was to classify each of the unique trajectory values as 

one of five broad LUC categories.  A trajectory was classified as cropland expansion if it contained a 

single sequence of two noncrop years followed by two crop years.  Similarly, trajectories were classified 

as abandonment if they contained two crop years followed by two noncrop years within the study 

period.  If the broad LUC categories were either expansion or abandonment, the year of the conversion 

was also attached to the record.  If the trajectory sequence contained all cropland labels or all 

noncropland labels or contained just a single opposite crop/noncrop label, then the trajectory was 

classified as stable cropland or stable noncropland, respectively.  All other trajectory permutations, 

including those which contained two or more conversions, were subsequently classified as intermittent 

cropland.  Note that for 2009, an exception to the classification requirements for expansion and 

abandonment were required due to the lack of nationwide CDL coverage prior to 2008, and therefore 

we required only one year of preconversion cropland or noncropland CDL data.  However, this impact 

was mitigated by later incorporating the 2007 CDL for all states in which it was available as well as 

requiring consistency with the two previous NLCD datasets (see step 2 refinements above).  

Minimum Mapping Unit (MMU) 

The third and final step in the core processing sequence involved applying an MMU of five acres to the 

broad LUC dataset.   This MMU involved removing patches of broad LUC smaller than five acres and 

replacing them with the trajectories (and associated LUC classes) of the nearest pixel neighbors.  

Without replacement, the total area of land and each broad LUC class would be underestimated, and 

certain LUC types (e.g., small patches of conversion) could be systematically underrepresented.  To 

perform the replacement, we filled the voided pixels using a nearest neighbor approach19.   

While testing various MMU parameters between zero and 15 acres, we found that larger MMU 

threshold sizes generally reduced the number of false conversions detected but increased the number 

of true conversions missed by the classification process.  Based on observations using high resolution 

aerial imagery, we selected an MMU size of five acres to strike a balance between maintaining 

important features on the landscape (e.g., roads, broad LUC change categories, water bodies, riparian 

areas, hedgerows, highway rights-of-way) while still removing small patches of likely misclassification 

(e.g., edge-of-field mixed pixels and CDL misclassifications).   

4) Post-processing 

The fourth and final stage of LUC detection consisted of identifying the years of conversion and the 

specific landcover classes preceding and following conversion.  In all, six datasets were created in this 
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stage — three for each conversion type (i.e., expansion and abandonment), which tracked the year of 

conversion, the land cover preceding a conversion, and the land cover immediately following 

conversion.  To ensure consistency with the LUC product results, the attributes of these layers were 

derived from original CDL datasets that were modified with the same processing as above.  For any 

areas of missing or mismatched data due to a replacement during spatial filtering, a  final chained 

nearest neighbor operator with progressively larger neighborhoods was used to select the nearest valid 

land cover class. 
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