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Supplementary results 

Validation of the motion tracking system 
First, we estimated the spatial registration error for realigning the participants into a common 
coordinate system (Supplementary Figure 1 A). The mean between-sensor error of the location of 
participant #2 over dyads was generally approximately 3 cm over the entire experiment, with the tail of 
the distribution (over time) reaching approximately 10 cm. However, some outlier points were 
observed, where error was >15 cm. Next, we calculated the correlations of motion estimated based on 
the two Kinect sensors for all 25 joints in the model (Supplementary Figure 1 B). For the joints that were 
visible to both Kinects (indicated by a white background), the correlations are significantly higher than 
chance. The correlations are particularly high for the head and the upper body (r~0.8). The correlations 
are reduced gradually (but remain significant) toward the tip of the right hand and are at chance level 
for the left hand that was usually on the lap of the participants—a pattern that was reversed for the left-
handed dyad. The body parts that were occluded by the table or the body of the participants (indicated 
by a dark gray background) were at chance level, as expected, while the partially occluded middle of the 
spine (light gray) was still correlated between sensors. 

To validate the performance of the Kinects to more traditional wearable sensors, we compared the face 
orientation data from the head IMUs and Kinects (Supplementary Figure 1 C and D). Because the 
reference frame of the IMU angles (magnetic field of the earth) and the Kinects (physical orientation of 
Kinect #2) are different, we focus here only on the correlation of the angle timecourses rather than 
direct difference in the angles. The correspondence of the orientations is very high for almost all 
participants recorded by Kinect #1 (r-values approximately 0.8–0.9). Correlations are reduced for most 
participants recorded by Kinect #2 (r-values approximately 0.4–0.7) while for a few participants the 
orientation correspondence was relatively poor (r~0.1–0.3) reducing the overall similarity of the data 
(r=0.61±0.23 over all participants). The replicability of the acceleration timecourses was lower 
(r=0.37±0.14) probably due to the short durations of the event-like accelerations compared with the 
smooth and continuous orientation and location changes, and the differences in sampling rate and 
sensitivity to small and short accelerations between the sensor types.  
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Supplementary Figure 1: Kinect–Kinect and Kinect–IMU data reliability. A: Distribution of spatial distance 
(RMS error) between the head location estimates of the two Kinects after registration as a fraction of samples 
over time. The black line indicates the across-subjects mean distribution of error magnitudes and the shaded 
area indicates the 95% confidence interval of the mean. B: The means of motion correlations over X, Y and Z 
motion components between the two Kinect sensors are shown as smoothed violin plot histograms over 
participants. Means of the distributions are indicated by gray crosses and medians by black squares. Expected 
visibility of each joint based on visual occlusions due to either the table or the body of the participant is 
indicated by the background colors from white (visible in both) to dark gray (completely occluded in one of the 
sensors). The left-handed dyad is marked with a black dot in each distribution. Null correlations with shuffled 
participants’ data are indicated by black horizontal lines (solid line – mean correlation over null participants, 
dashed lines – minimum and maximum correlations in the null distribution). C and D: Binned histogram violing 
plots showing the distribution of correlations of estimated angle (C) and linear accelerations (D) of the 
participants’ head between the Kinects and IMUs. The two Kinects are plotted separately to show the 
dependence of each data type on the location of the Kinect sensor. The distribution of values is depicted by the 
vertical histograms and the means and the medians of the distributions are indicated by gray crosses and black 
squares, respectively. The distributions are complemented by standard box plot components (horizontal lines 
are min and max values and box indicates the interval between 25th and 75th percentiles). The raw data for each 
participant is indicated by a dot. 
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Classification of gaze behavior based on face orientation and location 
The accuracy of classification of gaze behaviors based on the head location and orientation data 
depended on the features included in the classifier. As is seen in the confusion matrices ( 
Supplementary Figure 2 A), based on only the yaw of the face, only eye contact was predicted with a 
high accuracy while the other classes were confused with eye contact and each other. Similarly, over 
participants, the prevalence of gaze behaviors in individual subjects was well-predicted only for eye 
contact from yaw information alone. 

 
 Supplementary Figure 2: Performance of classifiers as a function of features. A Confusion matrices showing 

accuracy for the classes on the diagonal and, on the rows, which categories each class is confused with. Based 
on only yaw, only eye contact is successfully recognized. When pitch and location data is added, all accuracies 
are increased and confusion reduces. B Estimated proportion of gaze behaviors based on the classifiers in full 
data as a function of the true proportion in the training data. Similarly to panel A, the correspondence of 
estimated and true prevalence of participant’s gaze behaviors improves for all classes as features are added. 
The right-most panels show the same results as Figure 3 in the paper. 

The proportion of timepoints in all dyadic combinations of annotated behaviors (looking at partner or 
looking away for both individuals of a dyad) in all trials of the training data are summarized in 
Supplementary Table 1. 

Supplementary Table 1: Prevalence of all combinations of gaze behaviors across all trials 

Partner 
Partner 

Target 
Target 

Partner 
Target 

Away 
Partner 

Away 
Target 

Away 
Away 

Total 

11.7% 66.8% 8.6% 7.8%  2.9% 2.1% 100.0% 
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Relation of face and body orienting 
Both face and body orientation showed significant correlation of effort and joint orienting behavior 
(Supplementary Figure 3). Faces were oriented more directly toward the communication partner as 
evidenced by the effect being closer to the origin (bottom-left corner, corresponding to direct joint face-
to-face orienting) in the bottom panel than in the top panel. This reduced orienting of the body is 
particularly evident for Participant #1 of the dyads, presumably due to the way the participants are 
seated in the room. Generally, body and face orientations were correlated for all participants 
(Supplementary Figure 4), but the range of body angle was more limited than that of face angles 
particularly for Participant #1 of each dyad (displayed in green in Supplementary Figure 4).  

 

Supplementary Figure 3: Correlation of ratings of effort and 
joint orientation of the body and the face with unsmoothed 
data. The effort ratings correlate with the time participants 
jointly orient their bodies (top) as well as faces (bottom) toward 
the communication partner. The effect is shifted toward higher 
angles in the body results compared with the face results, 
particularly for participant 1. 
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Supplementary Figure 4: Correspondence of face and body directions. 
Heatmaps show the face direction of all participants as a function of the body direction. Distribution of angles 
for participant #1 is displayed in green and participant #2 in red for each dyad. While the face directions 
generally show a larger range of values than body (head is turned more than the body), the movements are 
highly correlated for nearly all participants.  
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Supplementary discussion 

Limitations 
Unexpectedly, we saw few differences in the interpersonal synchrony between conditions or as a 
function of behavioral ratings compared with the effects in the proxemic measures. The experimental 
conditions, particularly during the gameplay trials, introduce anticorrelations (or delayed synchrony) due 
to the turn-taking behavior, which could mask some of the differential synchrony effects across dyads. 
Methodologically, calculating the windowed cross-correlations requires some critical choices to be 
made, such as the sliding window size within which the cross-correlations are calculated and the 
maximum time delay at which synchrony is estimated, which might differ between conditions if 
particular turn-taking structure is enforced by the task. Moreover, the method produces a 2-dimensional 
matrix of correlation values that needs to be summarized for easier interpretation. Various measures 
could be used to find a representative value for the synchrony over the trials or the entire experiment. 
Previously, peak-picking algorithms have been suggested [1] to find the most appropriate synchrony 
values at a near-zero lag. However, the assumption of near-zero lag could be violated by the gameplay 
task, where the turn-taking introduces non-zero lags that depend on the pace of the gameplay. We did 
see (near) zero-lag synchrony in all conditions, but the synchrony was lower during gameplay, where we 
also saw synchrony peaks at non-zero lags. Because the pace of gameplay could be different between 
dyads, these additional peaks might be misaligned between participants and this difference in pace of 
turn-taking might also be of interest in some situations. In the future, it may be of interest to 
characterize what particular types of (delayed) synchrony and experimental conditions could reveal 
differences related to subjective evaluations of interactions. However, exploring the most sensitive time 
delays, time windows and methods for summarizing the data is beyond the scope of the current study.  

In the current implementation of the tracking system, the transformations between Kinect sensors were 
calculated based on one of the participants. This was done due to a lack of landmarks that would be 
trackable by the Kinects. Additionally, although the Kinects were fixed to stands, there were sometimes 
small movements to the sensors between successive measurement days, which required a separate 
transformation matrix to be estimated for each data set separately. While the transformations were 
similar for all participants, using the same mean transformation for all subjects yielded results that were 
slightly inferior to the individual ones for the majority of the subjects. In the future, adding reflective 
landmarks visible to the IR camera of all Kinect sensors could improve the registration results and free 
the sensor placing. 

While the spatial location tracking worked consistently with the two Kinects, the facial orientation 
tracking proved to be sensitive to errors in some participants with the current spatial layout. On 
average, both Kinects’ facial orientation estimates were correlated with the data from the IMUs, but the 
results differed in their accuracy: one sensor gave very consistent estimates for 17 of the 18 participants 
while the second sensor’s estimates were generally less accurate. To optimize the accuracy of the 
system, the distance to the tracked person as well as the orientation of the face in relation to the Kinect 
should be optimized carefully when using such setups for facial orientation tracking. 

In addition to the spatial limitations, while for some dyads the temporal sampling rate stayed relatively 
constant at the 30 frames per second reported by the manufacturer, for other dyads the sampling rate 
varied considerably sometimes dropping well below the theoretical maximum. With these technical 
issues in mind, quality control experiments should be designed any time a new system is installed or 
changes have been made to an existing installation to maximize the data quality. 
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Finally, the correspondence of the acceleration data between the Kinects and the IMUs was relatively 
low compared with the orientation correspondence. This is likely caused by the higher sensitivity to 
short accelerations and the higher sampling rate of the IMUs compared with the Kinects, which has 
been reported previously [2]. In addition, the IMU data of four participants contained a sustained 
acceleration lasting for a several minutes apparently caused by a problem in subtracting the acceleration 
due to gravity by the sensor software (these accelerations were not apparent in the raw acceleration 
data). To remove these effects, we calculated the correlations in the time window not affected by these 
obvious artefactual accelerations. Checking for such artefactual accelerations or misestimations of 
locations in the Kinect as well as IMU data require careful quality control, which should ideally be 
automated in the future. 
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