
Supplementary Data

Supplementary Data S1

In this supplementary data we describe with mathematical details four descriptors used to classify the

dendritic spines.

S1. 2D SPINE ANALYSIS (2D DESCRIPTOR)

S1.1. Basic theory

In this 2D spine analysis (2dSpAn) descriptor, a grayscale image (I) is used as input. Dendrites with

spines are defined as the object region (O) and the remaining region is considered as the background

(B = I -O). For segmentation of dendritic spines, first, two points are marked on a dendrite (by a researcher)

to identify it. Then, a region of interest (ROI) is estimated around these two points, and denoted as Ri where

R � I‚ i = 1‚ 2‚ . . . ‚ n if n is the total number of ROIs identified from the image. Subsequently an adaptive

binarization algorithm (Otsu, 1975) is used to binarize Ri. After binarization, a set of convolution kernels

proposed by Basu et al. (2007) is applied to segment the dendritic portion of Ri. The convolution kernels Ka

are represented as mutually exclusive set of three tuples, such that Ka : f(a‚ k11‚ k12)‚ (a‚ k21‚ k22) . . .
(a‚ kM1‚ kM2)g, where a represents the angular spread (in degree) of the kernel and M = 360

a . Designed

convolution kernels can be applied with different values a = 90, a = 45, etc. for better segmentation result.

During the segmentation, first kernel ki1 from the first marked point is applied until second point or a

boundary condition is reached. Let the expanded region in this step be R1 � O. Next, second kernel ki2 is

applied from the second marked point, until the first point or a boundary condition is reached. Let the

region expanded after applying ki2 be R2 � O. Then a region R3 = R1 \ R2 is estimated as the intersection of

the two expanded regions generated by two kernels ki1 and ki2. Finally, a spine seed is selected manually as

a point inside a potential dendritic spine region bounded by B and R3. The bounded region, expanded from

Sk using a region growing algorithm (Adams and Bischof, 1994), is marked as segmented spine. The

segmentation result may change with variation of a and binarization threshold.

S1.2. Quantitative assessment of dendrite spine morphology

Here we describe mathematical equations written in 2dSpAn that help us in dendritic spine classification

into one of four categories:

1. Stubby

2. Mushroom

3. Filipodia

4. Spine-head protrusion (in our study we call thin)

The formal definitions of the base, neck, and head of the spine are used by the standard mathematical

notations of digital topology and geometry. First, the base Bk of the dendritic spine Sk is identified as the set

of points (SBase) in R3 such that SBase and Sk are adjacent. The central base point (CBP) of spine Sk,

CBPk = 1
Bk

P
ipi, where jBkj is the cardinality of the set of points in Bk, CBPk 2 R3 [ Sk and pi 2 Bk.

Distance transform (DT) (Borgefors, 1986; Saha et al., 2015) in R is calculated by considering Sk as the

object and (R - Sk) as background. Let the DT values (distance of each point from the background) for any

point p 2 R be O(p). The local scale of an object pixel is defined as the DT value (depth) at the closest

locally deepest pixel. Specifically, a pixel p 2 Sk is said to be locally deepest if 8q 2 Nl(p)‚O(q) � O(p),
where Nl(p) the (2l + 1)3 neighborhood of p‚ l = 2, is used to avoid noisy local maxima. To find the length of

the spine, from the farthest point to CBPk in Sk, DT is computed in Sk by considering CBPk as background

and represent it as Ô. The central head point (CHP) is defined as CHPk = 1
HPk

P
ipi, where HPk � Sk is the



set of locally deepest points in Sk, jHPkj is the cardinality of the set of points in HPk, CHPk 2 Sk, and

pi 2 HPk. The farthest point (FP), p 2 Sk, is defined such that, 8q 2 Sk, Ô(q) � Ô(q) CBP, CHP, and FP

play key roles in estimation of the spine attributes such as length of the spine, neck length, neck width, and

head width. A geodesic path is defined from base to head BHk of the spine Sk, joining the two central points

CHPk and CBPk such that
P

pi2BHk
O(pi) is minimized (in other words BHk is the minimum distance path

between CBPk and CHPk). Likewise, the central path from head to farthest point HFk of the spine Sk is

computed by joining CHPk and FPk such that
P

pi2BHk
O(pi) is minimized (in other words HFk is the

minimum distance path between CHPk and FPk). The neck length is estimated of Sk as NLk = BHk -
O(CHPk). Minimum neck width is estimated as MNW = min8pi2BHk

O(pi). Average head width of the spine

Sk is estimated as AHWk = avg8pi2BHk
O(pi) and the length of the spine is estimated as Lk = jBHkj + jHFkj.

Hereunder we show the algorithm that classifies the spines into one of four categories:

for (each segmented spine SK 2 S) do

if (NLk = = 0) then Sk = Stubby

if ((NLk > 0) && Dmax(HPk)
Lk

> c then Sk = filipodia

if (NLk > 0) && (Sk 6¼ Filipodia) && BHk

Lk
< d then Sk = Mushroom

if (NLk > 0) && (Sk 6¼ Filipodia) && (Sk 6¼ Mushroom) then Sk = Spine-Head Protrusions (in our study

we call it as thin)

where HPk are locally deepest points, Dmax(HPk) is the distance between the two farthest locally deepest

points, and d and c are thresholds.

For more in-depth information about 2dSpAn, descriptor see Basu et al. (2016).

S2. SPINE TOOLS (2D DESCRIPTOR)

This descriptor was written in Python 3 language and is based on virtual skeleton and cluster analysis.

For take into consideration purpose of shape analysis and to classify spines into classes, the images of

individual spines were first straightened, which is transformed so that the virtual skeleton of each spine

formed a straight line. Next, the images were rescaled to normalize the spine area, and for each spine d(h),
diameter of the spine as a function of distance from the dendrite, was found. To classify the spines

according to shape, a two-step procedure was used: first, all d(h) functions were clustered, next, the clusters

were manually sorted into three groups (mushroom, stubby, and thin spines) based on average images of the

clusters and visual inspection of spines comprising the clusters. For details about this method see Jasińska

et al. (2016).

S3. NEUROLUCIDA 360 (3D DESCRIPTOR)

This method is based, in part, on the laboratory version of NeuronStudio, originally developed at the

Icahn School of Medicine at Mount Sinai by Wearne and colleagues (Rodriguez et al., 2003, 2006, 2008;

Wearne et al., 2005). Unfortunately no more information about the algorithm was presented in the article,

only the protocols and instructions how to use different tools in this descriptor (Dickstein et al., 2016).

S4.3D SPINE ANALYSIS (3D DESCRIPTOR)

S4.1. Basic theory

This method allows users to mark a specific dendritic spine to segment the spine as three-dimensional

(3D) volume and extract relevant morphometric features with high accuracy and minimal user intervention.

This method is also based on digital topology and geometry but in 3D which means cubic grid represented

by Z3jZ, the set of integers. A grid point referred to as a point or voxel is an element of Z3 and represented

by a triplet of integer coordinates (x‚ y‚ z). An object O is a fuzzy subset f(p‚ lO(p))jp 2 Z3g of Z3, where

lO:Z3 ! [0‚ 1] is the membership function. The support O of an object O is O = fpjp 2 Z3andlO(p) 6¼ 0g;
�O = Z3 - O is the background. Let S denote a set of voxels. A path p in S from p 2 S to q 2 S is a sequence

of voxels Æp = p1‚ p2‚ . . . ‚ pl = qæ in S such that every two successive voxels are adjacent. A link is a path

Æp‚ qæ of exactly two adjacent voxels. The length of a path p = Æp1‚ p2‚ . . . ‚ plæ in a fuzzy object O, denoted

as pO(p).



pO(p) =
Xl - 1

i = 1

1

2
(lO(pi) + lO(pi + 1))jjpi - pi + 1jj‚ (12)

where jjpi - pi + 1jj is the Euclidean distance between p and q. The fuzzy distance (Saha et al., 2002; Saha

and Wehrli, 2004) between two voxels p‚ q 2 Z3 in an object O, denoted by xO(p‚ q), is the length of one

of the shortest paths from p to q: xO(p‚ q) = minp2P(p‚ q)PO(p), where P(p‚ q) is the set of all paths from p

to q. The fuzzy DT (FDT) of an object O is an image (p‚OO(p))jp 2 Z3, where OO : Z3 ! < + j< + is the

set of positive real numbers, including 0, that is the fuzzy distance from the background: OO(p) =
minq2O xO(p‚ q).

In case of segmentation of dendrite and dendritic spine, we can define the dendrite as fuzzy object

ODendrite and spine as OSpine. The main challenges are

1. separating the fuzzy objects OSpine from ODendrite, which are fused at various unknown locations and

scales, and

2. morphologically defining spine compartments in the segmented fuzzy objects OSpine.

The first challenge is solved using the multiscale opening (MSO) algorithm (Saha and Udupa, 2001) in

two steps.

Step 1: Segmentation of the combined region OSpine [ ODendrite from the background.

Step 2: Separation of OSpine and ODendrite.

The first step is trivially achieved using simple thresholding (Saha et al., 2016) and connectivity analysis

(Zhiyon et al., 2012). Let O be the fuzzy segmentation of the combined region that is obtained in Step 1. In

all subsequent analyses, the support O of O is considered as the ‘‘effective image space.’’ Let I:O !
[Imin‚ Imax] be the image intensity function over O. In the second step, segmentation is modeled as the

opening of two fuzzy objects mutually fused at different unknown locations and scales in the shared

intensity space, I. Here, the main challenge is to determine the local size of the suitable morphological

operator that can separate spines from the dendrite. The developed MSO algorithm combines FDT (Saha

et al., 2010) and fuzzy connectivity (Udupa and Saha, 2003) to iteratively open the two objects in I.

S4.2. MSO algorithm

The idea of the MSO algorithm (Saha et al., 2016) is to gradually erode the assembly of two fused

objects until they become mutually disconnected and create two separate objects. The first iteration starts

with two sets of seed voxels, SSpine and SDendrite, and a set of common separators, SS . The initial FDT map

OSpine‚ 0 for the first object is computed from O, except that the voxels in SDendrite [ SS are added to the

background. The FDT map ODendrite‚ 0 for the other object is calculated in the same way. The sets SSpine,

SDendrite, and SS are mutually exclusive. The coupling of two objects is described by the intensity overlap of

dendritic segment and the spines, which are fused with each other at different unknown locations and

scales. Let lDendrite and lSpine denote the dendrite and spine membership functions, defined as the following:

lDendrite(p) =
0 if I(p) < ISpine

I(p) - ISpine

IDendrite - ISpine
if ISpine � I(p) < IDendrite

1 if I(p) � IDendrite

8<
: ‚

lSpine(p) =

0 if I(p) < Imin

1 if Imin � I(p) < ISpine
IDendrite - I(p)
IDendrite - ISpine

if ISpine � I(p) < IDendrite

0 if I(p) � IDendrite

8>><
>>:

‚

where I : O! [Imin‚ Imax] is the image intensity function over O. ISpine and IDendrite are the representative

spine and dendrite intensities that define the transition between pure and shared intensity space. Let

PDendrite � O and PSpine � O be the set of voxels that belong to the pure intensity band for dendrite and

spine, respectively. Thus, the set of voxels that fall within the shared intensity band is OShared = O - PDendrite

- PSpine. A fuzzy representation of the composite object is obtained by taking the fuzzy union of the two

membership functions. The iterative approach of the MSO of two structures takes several iterations to grow

the path continuity of an object, starting from its seed voxels (commonly added in large-scale regions) to a



peripheral location with fine-scale details. After the iterative propagation of the MSO algorithm, the

dendrite region is segmented as a single connected component. OSpine represents one or more disjointed

spine regions (Ri), such that OSpine =
SK
i = 1

Ri, where K is the total number of disjointed spine segments in

OSpine, and each such segmented spine region Ri contains at least one spine seed p 2 SSpine.

S4.3. Morphological definitions for the spine regions

Once the spines are segmented from the dendrite, the challenge is to assess the morphological attri-

butes accurately. In this study, several key morphological features of 3D dendritic spines are defined.

Specifically, four key spine features that are related to the base and head of a spine are defined using

standard notations of digital topology and geometry (Borgefors, 1986; Saha et al., 2015). The base of

spine, for a given spine Ri [ OSpine, is defined as the set of points Bi [ ODendrite such that 8p 2 Bi, 9q 2 Ri

is adjacent to p. The CBP, for a given spine Ri [ OSpine, is the centroid of the base of the spine

Ri (i.e., CBPi = 1
jBij
P
8p 2 Bip, where j � j is the cardinality of a set).

The head and tip of a spine are defined using the FDT (Borgefors, 1986; Saha et al., 2015) Oi of Ri. A

locally deepest point in a spine Ri is a point p 2 Ri such that 8q 2 Nl(p)Oi(q) � Oi(p), where Nl(p) is the

(2l + 1)3 neighborhood of p. Here, l = 2 is used to avoid noisy local maxima. The center of the head CHi of a

spine Ri is the locally deepest point in the spine. If multiple locally deepest points criterion, their centroid is

used. The tip of a spine Ti of a spine Ri is a point Ti 2 Ri that is farthest from its CBPi. In a situation

wherein multiple points of Ri satisfy the farthest distance criterion, their centroid is used. CBPi, CHi, and Ti

play key roles in estimating spine attributes, such as length of the spine, neck length, neck width, and head

width, for each individual spine Ri. The geodesic path from base to head BHi of the spine Ri is estimated by

joining the two central points CBPi and CHi such that
P
8p2BHi

Oi(p) is minimized. Likewise, the central

path from head to spine tip HTi of the spine Ri is computed by joining CHi and Ti, such that
P
8p2HTi

Oi(p)
is minimized. The neck length NLi of Ri is NLi = BHi -Oi(CHi). Minimum neck width MNWi of Ri,

MNWi = min8p2BHi
(Oi(p)). Average head width AHWi of the spine Ri, AHWi = avg8p 2 HPi(Oi(p)) such that

HPi is the set of all locally deepest points in Ri. Finally, the length of the spine Li is estimated as

Li = jBHij + jHTij.
For more general information about 3D spine analysis (3dSpAn) descriptor, see Basu et al. (2018).

S5. VITERBI ALGORITHM DESCRIPTION

The Viterbi algorithm was introduced by Viterbi (1967) as a decoding algorithm for convolution codes

over noisy digital communication links. It is a dynamic programming algorithm to find the most likely

sequence of hidden states. In hidden Markov model (HMM), the observation is independent of all the other

observations. In this situation, Viterbi algorithm only uses the information of the previous state of a hidden

state and does not consider the dependency among observations. Of course, some authors introduce

approaches in which the dependency among observations are considered. For this purpose, the extension of

HMM called autoregressive HMM (ARHMM) is considered (Rezaei Tabar et al., 2018).

SUPPLEMENTARY DATA S2

In this supplementary data, we describe in detail how to prepare data from experiment to use in the

ARHMM algorithm. Our data should be saved as matrix, each column representing one timestamp, each

row representing a single dendritic spine. Each dendritic spine numerically encodes the spine classes (e.g.,

stubby class ‘‘s’’ was encoded as 1, mushroom class ‘‘m’’ as 2, etc.). After this we could finally proceed to

run the descriptor using the following parameters:

data, the matrix with the data;

level, how many classes are used (in our study we use 4 and 5);

transition probability matrix, a square matrix n · n, where n is the number of timestamps. Here, since we

had three timestamps, the matrix was of shape 3 · 3. Since each row represents transition probability

from a given state, the sum of the values in a row must be equal to 1;



initial probability vector, vector with probabilities, of size n, representing the initial probability of each

state (sum must be equal to 1);

number of iterations, total number of iterations;

dependence matrix, this matrix is defined as P(OtjSt‚ Ot - 1 = i). In other words, it represents the probability

of getting particular observation Ot given the previous observation Ot - 1 and current hidden state St.

Again sum of each row must be equal to 1. The size of the matrix is k · n, where k is the number of spine

classes and n is the number of columns.

Hereunder we show how the matrices and vectors look like and what values were used to plot curves on

Figures 2–4.

Transition probability matrix,

0:4 0:4 0:2
0:7 0:2 0:1
0:2 0:5 0:3

2
664

3
775;

initial probability vector, [0.3;0.4;0.3];

dependence matrix,

for 4 classes,

0:3 0:2 0:3 0:2
0:4 0:1 0:4 0:1
0:2 0:5 0:1 0:2

2
664

3
775;

for 5 classes,

0:3 0:2 0:2 0:2 0:1
0:4 0:1 0:2 0:1 0:2
0:2 0:3 0:1 0:2 0:2

2
664

3
775.

SUPPLEMENTARY DATA S3

In this supplementary data, we show results with comments about shape analysis based on parameters that

were given from 3dSpAn descriptor after segmentation and classification by this descriptor. Principal com-

ponent analysis method was used (separately) on all three timestamps for parameters (volume, length, head

width, and neck length) calculated by 3dSpAn descriptor. For the first two features (components) in timestamps

t0 and t10, the reduced representation we cover *72.7% of the variance. For timestamp t40 for first two features

(components), we cover 71.8% of the variance. These results are very similar/close to results that we have in

our previous study (Urban et al., 2019). This can be explained by number of parameters that describe dendritic

spines (in 3D we have 4 parameters and in two-dimension [2D] we have 11 parameters).

In fuzzy partition coefficient (fpc), we could observe that the highest value was for only one center—in

contrast to many centers from 2D as in Urban et al. (2019). Also, here we do not have the highest value (1)

but only *0.9. The difference can be that 3D classification does not take into account subpopulations of the

dendritic spines (e.g., longer and shorter dendritic spines for filipodia class). Because of this result, it can be

hard (or even useless) to use hierarchical clustering where one of the parameters that we must give is

number of centers. Also, the curve for fpc is logarithmic going down (more centers mean less fpc value).

One of the explanations of this situation is too small data set (300 dendritic spines), second is that four

parameters describing each dendritic spine can also be too small [in Urban et al. (2019), data set was for

2000 dendritic spines and 11 parameters but for only 1 timestamp t0].

SUPPLEMENTARY DATA S4

In this supplementary data, we present the estimated transition probability matrix for version 5 (square

dark gray line from Fig. 2B):

0:0000 0:4570 0:5429

0:9966 0:0033 0:0000

0:0000 0:0549 0:9451

2
664

3
775



and the estimated dependence probability matrix for version 4 (light gray vline from Fig. 3A):

0:3457 0:1345 0:4150 0:1049

0:2385 0:1382 0:4382 0:1851

0:4719 0:2654 0:1353 0:1274

2
664

3
775:

The matrix for transition can be explained that first row (and first column) is t0, second row (and column)

is t10, and third row (and column) is t40. The transition is between states that are in our study timestamps.

The transition probability is the conditional probability, it means that we are now at time t given the

previous state was at time t - 1, the zero probability (first row, first column) means that the transition

probability from being at state t0 at time t given being at state t0 at time t - 1 is 0.

The dependence matrix is constructed this way: first row is t0, second row is t10, and third row is t40.

Column is dendritic spine class: first column is stubby, second column is mushroom, third column is

filipodia, and last column is not existing. Probability that the dendritic spine from time point t0 with class

stubby will still be in class stubby in time point t10 with probability 0.2385. This information can be used

for example in building networks.

For 3dSpAn for four classes (gray square line from Fig. 4B), the best estimated transition and depen-

dence probability matrices are as follows, respectively:

0:0000 0:9725 0:0275

0:6754 0:3120 0:0126

0:0000 0:6098 0:3902

2
664

3
775

0:8108 0:0415 0:0079 0:1398

0:4824 0:1807 0:1010 0:2359

0:4884 0:0536 0:4580 0:0000

2
664

3
775:
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