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S1. Industrial Wastewater Quality

The wastewater was collected from an industrial site in California. Wastewater has the 

following composition shown in Table S1. However, the HgS and Hg2+ quantities varied from 

stream to stream and with time. The wastewater was spiked with an additional 200 ppb of HgS 

(average hydrodynamic diameter 20~30 nm by DLS) and 110 ppb Hg2+ (added as Hg(NO3)2·xH2O 

(x = 1−2)) for adsorption experiments using thiol functionalized membranes, which was needed to 

allow for quantitative measurements of removal efficiencies. The resulting total HgS NP and 

dissolved Hg2+ was approximately 200 ppb and 110 ppb, respectively. The suspension of HgS 

nanoparticls (NPs) (1 ppm) was received on January 25, 2018 from Dr. Gregory V. Lowry 

(Carnegie Mellon University, Pittsburgh, PA).

Table S1. Constituents of wastewater as tested

Name of the Compound Amount (ppm) Method Used

As HgS 80% HgS NPs ≤ 20~30 nm DLS

As Hg2+ 0.001 to 0.050 
Mercury Analyzer and 

ICP-OES

As Na ~357 ICP-OES

As Mg 25~26 ICP-OES

As Ca 52 ICP-OES

As K ~17 ICP-OES

TOC 0~4 TOC Analyzer

TDS <2000 TDS Meter

pH ~7 pH Meter
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S2. Proposed Treatment Process to Remove Mercury from Wastewater

Based on the quality of the industrial effluent water (Table S1) three steps treatment 

process was proposed demonstrated in Figure S1. The first step is primary filtration using PVDF 

membrane to remove large impurities. In the second step PS35 ultrafiltration membrane was used 

to remove HgS NPs and, finally thiol functionalized membrane was used to adsorb dissolved Hg2+ 

from wastewater.

Figure S1: Proposed treatment process for removal of mercury (HgS Nanoparticles, dissolved Hg2+) from 
wastewater. The values of the concentration of HgS and Hg2+ in this graphic is just to represent arbitrary 
concentration. Depending on the source of wastewater x and y can vary.
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S3. Primary Filtration to Remove Particulates from Wastewater using PVDF Membrane

(a)

(b)

Figure S2: (a) Flux profile for DIUF and wastewater using PVDF membrane for initial filtration to remove 
particulates. Effective membrane surface area is 65.03 cm2. (b) Images of membrane used and wastewater 
condition before and after initial filtration.

Before Filtration After Filtration
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Table S2. Detail data of membrane used for HgS nanoparticle separation

Manufacturer Nanostone

Types of membrane Ultrafiltration

Membrane reference PS35

MWCO 20 kDa

pH process limits 2 - 10

Membrane area 13.2 cm2

S4. ATR-FTIR Spectra Analysis of Functionalized Membranes

Analyzing the absorption peaks of fluorocarbons, carboxyl, amine and thiol groups will 

ascertain the functionality of each step. The ATR-FTIR spectrum during measurement was set 

between 400 and 4000 cm-1. The built-in OMNIC software was used with the instrument to set and 

record the parameters of measurement. The resolution was set to a value of 4 cm-1, the number of 

scans was 64 respectively during FTIR measurement. The samples were placed on a diamond 

crystal while recording the signal. The ATR-FTIR spectra of different stages of membrane 

functionalization is represented in Figure S3. All the characteristic peaks are identified by comparing 

to the published data1-6. The characteristic peaks such as C-F bonds (~1170 cm-1), C-F2 bonds 

(~1200 cm-1), and vibration of CH2 bending (~1400 cm-1) of the blank PVDF membrane for are 

shown by the blue line in Figure S31-2. The appearance of peaks around 1700 cm-1 and 1550 cm-1 

in Figure S3 (red line) is due to carbonyl stretch and antisymmetric stretching of carboxyl groups 

(-COOH), respectively, of the polyacrylic acid polymer3-5. In addition, the broad peak in Figure 

S3 (red line) between 2700 and 3400 cm-1 is demonstrating the presence of O-H group from the 

synthesized polymer3. Introduction of EDC/NHS chemistry on PAA-PVDF membrane leads to 

incorporate amine groups on PAA-PVDF functionalized membrane. The ATR-FTIR spectra of 

NHS-PAA-PVDF membrane is demonstrated in Figure S3 (green line). The appearance of a 

deformation peak centered at 1650 cm-1 wavelength could be attributed to amide II bending6. The 

sharp peak around 3300 to 3500 cm-1 is due to primary amine stretching. Primary amine produces 

two N-H stretching while secondary amides yields only one. The absorbance spectra of CysM-

PAA-PVDF membrane is depicted in Figure S3 (pink line). The small amide I band is visible 

around wavelength 1650 cm-1, however it is smaller compare to the same peak for NHS-PAA-
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PVDF membrane, due to incorporation of thiol (-SH) groups in the membrane6. In addition, a 

broad peak in the wavelength range of 2450 cm-1 to 3500 cm-1 is clearly visible (pink line), which 

is sharply different than the broad peak of PAA-PVDF membrane (red line). This broad peak is 

due to overlap of amide II stretching peak and mercaptan (S-H stretching) peak, suggesting 

covalent attachment of thiol (-SH) groups on PAA-PVDF membrane.

Figure S3: The ATR-FTIR spectra of different stages of functionalization. The blank PVDF membrane is 
represented by the blue line, The PAA-PVDF membrane (red line) after functionalization of PVDF 
membrane with acrylic acid to introduce carboxylic groups (-COOH), The NHS-PAA-PVDF membrane 
(green line) while introducing EDC/NHS chemistry on PAA-PVDF membrane and, finally the CysM-PAA-
PVDF membrane (pink line) after incorporation of thiol (-SH) groups in PAA-PVDF membrane.
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S5. Reaction Steps of Thiol Membrane

Figure S4: Schematic of reaction steps to functionalize PAA-PVDF membrane with EDC/NHS solution 
followed by incorporation of thiol (-SH) groups by passing a thiol (-SH) precursor (Cys/CysM) solution.
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S6. Adsorption-Desorption Study of Ag+ and Hg2+ Cations on PAA-PVDF Membrane

The PAA-PVDF membrane could adsorb heavy metal ions (Ag+ and Hg2+) from water as 

it has carboxylic groups (-COOH) at the end of the polymer chain. The heavy metal ions (Ag+ and 

Hg2+) can hydrolyze in wide range of pH and enable to attach with carboxylic groups (-COOH) by 

replacing H+ in a suitable pH7. However, this attachment is not permanent and by passing a low 

pH solution through the membrane it could be easily desorbed from the PAA chain of PAA-PVDF 

membrane. In Figure S5, the adsorption-desorption profile is shown for both silver (Figure S5a) 

and mercury (Figure S5b). The results on Figure S5 confirms it is possible to attach and dislodge 

heavy metals in PAA chain of PAA-PVDF membrane. However, this PAA-PVDF membrane is 

not suitable for industrial application as if pH changes the heavy metals can easily detached from 

the PAA chain. It is worth to mention that, not all the Ag+ and Hg2+ cations attached in the PAA 

chain is not desorbed and a small fraction is permanently remain in the polymeric chain.

Figure S5: Results of adsorption-desorption study of heavy metal ions (Ag+ and Hg2+) on PAA-PVDF 
membrane. (a) The adsorption and desorption profile of Ag+ cations on PAA-PVDF membrane. Membrane 
mass gain is 3.99%, water flux = 38.38 LMH at 2.04 bar, water pH = 5.2, flux during Ag+ cations adsorption 
is 37.92 LMH at 2.04 bar. Ag+ solution pH = 4.75. The initial concentration of Ag+ solution is around 20 
ppm. The flux during Ag+ cations desorption is 45.6 LMH at 2.04 bar. Desorption solution pH =3.1, (b) 
The adsorption and desorption profile of Hg2+ cations PAA-PVDF membrane. Membrane mass gain is 
3.16%, water flux = 18.18 LMH at 2.72 bar, water pH = 5.1, flux during Hg2+ cations adsorption is 12.86 
LMH at 2.72 bar. Hg2+ solution pH = 4.7. The initial concentration of Hg2+ solution is around 400 ppb. The 
flux during Hg2+ cations desorption is 21.6 LMH at 2.04 bar. Desorption solution pH =2.9. For both cases 
the effective membrane surface area is 13.2 cm2. The cation solution is passed in convective flow mode 
across the membrane. Silver nitrate (AgNO3) and mercury (II) nitrate hydrate (Hg(NO3)2·xH2O, x= 1-2) 
salts were used to prepare the cationic solution.
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S7. Adsorption Efficiency of Heavy Metals on Thiol Membrane

Once the PAA-PVDF membrane is functionalized with thiol (-SH) groups it can adsorb 

heavy metals from water. However, not all the thiol groups attached to the membrane will be 

exposed to adsorb heavy metals from water. The complex geometry of the membrane pores, small 

channeling to by-pass the attached thiol groups, inherited defects of the membrane pore structure, 

residence time and fouling with time are the key factors to hinder all the attached thiol groups to 

capture heavy metals from the solution. In order to study the adsorption efficiency of the heavy 

metals on thiol functionalized membranes, a CysM-PAA-PVDF membrane is exposed to capture 

heavy metals from water. Here, Ag+ cations are used as a model compound and Ag+ molar 

attachment to thiol groups is always 1 to 1. The synthetic water is used to avoid interference of 

adsorption of other cations and fouling. The result of the adsorption efficiency is shown in Figure 

S6.

Figure S6: The adsorption efficiency trend to capture Ag+ cations on CysM-PAA-PVDF membrane. The 
membrane mass gain was 9.79%. Effective membrane surface area is 13.2 cm2.The ICP-OES analysis of 
feed, permeate and retentate samples were used to do mass balance in order to calculate Ag+ cations capture. 
Total experiment time was 820 minutes. Silver nitrate (AgNO3) salt is used to prepare the cationic 
solution. The Ag+ cation solution pH ~ 5.8 to 6.8. For, first cycle (red line), solution passed = 186 mL, time 
of operation = 235 minutes, Ag+ cation concentration in feed = 10 ppm, for second cycle (blue line), solution 
passed = 186 mL, time of operation = 310 minutes, Ag+ cation concentration in feed = 30 ppm, for third 
cycle (green line), solution passed = 136 mL, time of operation = 231 minutes, Ag+ cation concentration in 
feed = 30 ppm,, for fourth cycle (pink line), solution passed = 138 mL, time of operation = 241.5 minutes 
Ag+ cation concentration in feed = 20 ppm.
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The study was conducted for 820 minutes (approximately13.5 hours) by passing around 

650 mL Ag+ cation solution to make the experiment more pragmatic. During the whole experiment 

the solution permeability is kept constant to a value around 8 LMH/bar. The permeability is kept 

low to allow more residence time for adsorption of Ag+ cations. In the first cycle, the calculated 

adsorption efficiency is around 77% while passing only 190 mL Ag+ cation solution for 235 

minutes (3.9 hours). However, the adsorption efficiency dropped to 48% during second cycle when 

another 190 mL Ag+ cation solution passed for 310 minutes (5.16 Hours). For the next two cycles 

(third and fourth) the adsorption efficiency is almost constant to around 35% on average. The third 

cycle runs for for 231 minutes (3.85 hours) while passing 136 mL of Ag+ cation solution and fourth 

cycle runs for 241.5 minutes (4 hours) passing 138 mL of solution. Though, it is expected the 

adsorption efficiency should be 100%, however, the factors mentioned earlier of this discussion 

play a pivotal role to reduce the heavy metal capture efficiency, deviating from the model 

membrane performance. It is worth to mention here that at initial stage, pore channeling plays a 

significant role on adsorption efficiency, but in later stage, less accessibility to thiol (-SH) groups 

on pore vicinity and fouling eventually dominates the adsorption efficiency.
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S8. Mercury Adsorption Analysis on CysM-PAA-PVDF Membrane by XPS

The analysis of the XPS spectrum back-up the adsorption of heavy metals (Ag+/Hg2+) on 

thiol (-SH) functionalized PAA-PVDF membrane. Both survey scan and high-resolution scan were 

conducted for XPS analysis. The Beta angles (degrees from vertical) of the XPS instrument was 

as following: monochromator (crystal) 60o, ion gun 58o, flood gun 58o and height adjust 

microscope 45o, respectively. No tilt was used. The step size was 1 eV and 0.1 eV for survey and 

high-resolution scan. The pass energy was 200 eV and 50 eV for survey and high-resolution scan. 

XPS spectra were calibrated (charge correction) to a C1s peak value of 284.8 eV. The XPS survey 

scan after adsorption of Hg2+ on CysM-PAA-PVDF membrane is demonstrated in Figure S7a 

showing the presence of Hg and S peaks over the top surface of the membrane. In addition of Hg 

and S peaks, the other observed peaks are for the elements C, N, O and F. The characteristic peaks 

of all the elements (Hg, S, C, N, O and F) are identified by comparing to the available literature 

data2, 6, 8-10. The leftmost peak identified in Figure S7 around 100 eV is representing the Hg4f. The 

appearance of this peak is due to the binding of Hg with S of thiol (-SH) group yielding HgS. This 

is basically doublet peaks at binding energies of 101 and 106 eV which could be attributed to Hg 

4f7/2 and Hg 4f5/2, shown separately in Figure S7b6, 8-9. The next peak around binding energy of 

164 eV could be assigned to R-SH binding or to presence of sulfur (S2p) from thiol (-SH) groups8-9. 

Further observed peak around binding energy of 225 eV could be assigned to S2s peak as in this 

region the expected peak is for Molybdenum (Mo3d). However, in the examined sample there is 

no scope of presence of Molybdenum. However, it is worth to mention that S2s region strongly 

overlaps with Mo3d, when sulfur is present as sulfate. The next peak around binding energy of 

286 eV is attributed to C1s peak2, 10. This is due to the presence of carbon in PVDF membrane, as 

well as, for the functionalization with AA and cross-linker MBA during incorporation of 

carboxylic (-COOH) groups in membrane. The N1s peak at binding energy of 400 eV is for N as 

amide (-NH2) in cross-linker MBA2, 10. The O1s peak at binding energy of 532 eV is due to the 

presence of O in carboxyl groups (-COOH)2, 10. The final identified peak at binding energy of 689 

eV is for F1s2. This peak represents organic F which is present in fluorocarbon groups (-CF2-) of 

PVDF membrane.



S-12

Figure S7: The XPS spectrum of CysM-PAA-PVDF membrane after sorption of Hg2+ from industrial 
effluent water. (a) The survey scan is showing the presence of elements Hg, S, C, N, O and F (from left to 
right), (b) The high-resolution scan shows elemental Hg confirmed by doublet peaks (Hg4f7 and Hg4f5).
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S9. Results of EDX Analysis of CysM-PAA-PVDF Membrane

Figure S8: (a) The SEM image of CysM-PAA-PVDF membrane after adsorption of Ag+ cations from the 
solution by convective flow mode, (b) the EDX analysis shows the presence of Ag on the surface of CysM-
PAA-PVDF membrane along with C, F, O and S. The inset picture is also showing the atomic percentage 
of C, F, O, S and Ag. The membrane mass gain was 4.49%. The feed concentration was around 90 ppm.

(a)

(b)
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Table S3. Summary of the EDX scanning results for the top surface of CysM-PAA-PVDF membrane after 
adsorption of Ag+ cations from the water. The membrane mass gain was 4.49%. The feed concentration of 
Ag+ cation solution was around 90 ppm was passed through the membrane in convective flow mode. The 
solution pH was around 4.8-5.3. The solution was prepared by using AgNO3 salt. The atomic composition 
of Carbon (C), fluorine (F), oxygen (O), sulfur (S), and silver (Ag) were measured in different locations of 
the membrane sample during EDX analysis.

Location C (At%) F (At%) O (At%) S (At%) Ag (At%)

1 67.87 21.42 10.49 0.15 0.07

2 66.53 22.63 10.56 0.19 0.10

3 66.54 19.89 13.20 0.24 0.13

Average 66.98 21.31 11.42 0.19 0.10

Standard 
Deviation 0.77 1.37 1.54 0.05 0.03
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S10. Materials

All chemicals used during the laboratory-scale membrane fabrication and other studies 

were of reagent grade and used as received without further purification. Acrylic acid (AA), 98% 

extra pure and stabilized (ACROS ORGANICS, France); N,N′-Methylenebisacrylamide (MBA), 

for electrophoresis, 99+% (ACROS ORGANICS, Belgium); potassium persulfate (KPS), min. 99% 

(EM SCIENCE, Germany). Fluoraldehyde™ o-Phthaldialdehyde Reagent solution, (Product 

Number (PN): 26025) (Thermo Scientific, Rockford, IL, USA), sodium hydroxide (NaOH) 

solution (1.0 N), (PN: BDH7222) (VWR Analytical, USA), sodium chloride (NaCl) salt, PN: 

BDH9286 (VWR Chemicals, Ohio, USA), calcium chloride (CaCl2) salt, ACS Grade, PN: 

BDH9224, (VWR International, PA, USA), sulfuric acid (H2SO4) solution (1.0 N), PN: BDH7232 

(VWR Analytical, USA), Nitric acid 68,0 - 70,0%, AR Select® ACS for trace metal analysis, 

(Macron Fine Chemicals, Center Valley, PA, USA). Ethanol, 99.5%, (PN: EX0276-3) (EMD 

Millipore Corporation, USA), ammonium persulfate ((NH₄)₂S₂O₈), 98+% (Acros Organic, Geel, 

Belgium), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), ≥ 98.0% 

(Sigma-Aldrich, St Louis, MO, USA), and N-hydroxysucinimide (NHS), (C4H5NO3), >98.0% 

(TCI, Tokyo, Japan). Cysteamine hydrochloride (MEA), ≥ 98.0% (Sigma-Aldrich, St Louis, MO, 

USA), L-Cysteine Hydrochloride; Monohydrate (Cys), (C3H7NO2.HCl.H2O), PN: C-6852 (Sigma-

Aldrich, St Louis, MO, USA). Mercury (II) nitrate hydrate (Hg(NO3)2·xH2O, x= 1-2), ACS 98.0% 

(Alfa Aesar, Ward Hill, MA, USA). Silver Nitrate (AgNO3), Crystal, 99.8-100.5% (PN: JT3429-

04), (J. T. Baker, Phillipsburg, NJ, USA). Commercial scale membranes of polyvinylidene fluoride 

(PVDF, microfiltration 250~400 nm pore size, thickness with backing is around of 174 ± 8 μm 

(PVDF layer ≈ 70~76 μm) and porosity around 36 - 44%) (PV700 produced in collaboration with 

Nanostone Water, Inc., USA). Membrane surface area of 13.2 cm2 were used.
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S11. EDC/NHS Functionalization of PAA-PVDF Membrane and Flux Pattern

Figure S9: The cumulative amount of NHS added to a PAA-PVDF membrane (surface area 13.2-cm2) 
during passing a mixture of 5.0 mM NHS and 5.0 mM EDC solution (pH = 6.3) by convective flow through 
the membrane. The flux pattern during this EDC/NHS incorporation is shown on the right y-axis. The 
pressure during experiment was kept around 6.9 ± 0.3 bar. TOC analysis of feed and permeate samples was 
used to measure the incorporation. The estimated maximum capacity for incorporation was determined 
based on mass gained by the membrane during PAA functionalization.
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S12. Cysteamine (CysM) Incorporation in NHS-PAA-PVDF membrane and Flux Pattern

Figure S10: CysM incorporation into an NHS-PAA-PVDF membrane (surface area 13.2-cm2) during 
passing a 1.0-g/L, CysM solution (pH = 7.5) by convective flow through the membrane. The flux pattern 
during this CysM incorporation is shown on the right y-axis. The pressure during experiment was kept 
around 6.9 ± 0.3 bar. TOC analysis of samples of the feeds and permeates was used to determine the amount 
of CysM incorporation. The NHS-PAA-PVDF membrane used was obtained by the convective-flow of 
EDC/NHS solution through the membrane. The estimated maximum capacity for incorporation was 
determined using the mass gained by the membrane during PAA functionalization.
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