Supporting information

Synthesis and Efficacy of the N-carbamoyl-methionine copper on the growth performance, tissue mineralization, immunity and enzymatic antioxidant capacity of Nile tilapia (*Oreochromis niloticus*)

Fan Luo†, Wenxiong Wang§, Meiquan Chen†, Zhanjia Zheng†, Dandan Zeng†, Murtaza Hasan†*, Zhihuan Fu†*, and Xugang Shu†‡*

† School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P.R. China.

[‡] Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.

§Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong

Ω Department of Biochemistry and Biotechnology, The Islamia University Bahawalpur, 61300, Pakistan

*Corresponding authors:

Murtaza Hasan PhD (Post Doc)

Department of Biochemistry and Biotechnology,

The Islamia University, Bahawalpur, Pakistan

Email. murtaza@iub.edu.pk
Email. murtaza@zhku.edu.cn

Professor Xugang Shu

School of Chemistry and Chemical Engineering,

Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P.R. China.

Email: xgshu@21cn.com

Phone: 86-020-8900-3114, Fax: 86-020-8900-3114.

Supporting information content:

- 1. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in muscle of *Oreochromis niloticus*.
- 2. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in liver of *Oreochromis niloticus*.
- 3. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in gill of *Oreochromis niloticus*.
- 4. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in intestine of *Oreochromis niloticus*.

Effects of different Cu sources as the experimental diets on metal elemental concentration changes in muscle of *Oreochromis niloticus*

Table S1. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in muscle of *Oreochromis niloticus*

Experimental	Concentration (mg/kg)			
diets	Cu	Zn	Fe	Mn
Blank group	3.90±0.22b	20.92±2.20b	23.52±6.49b	1.71±0.23b
CuSO ₄ group	3.47 ± 0.14^{a}	21.91±0.17 ^b	23.06±3.95b	1.10±0.06a
NCM-Cu group	4.99±0.21°	15.97±0.55a	16.94±2.23a	1.00±0.05a

All the data means \pm SD (n=3) in triplicate, means in the same column with different superscript letters are significantly different (P<0.05).

1. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in liver of *Oreochromis niloticus*

Table S2. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in liver of *Oreochromis niloticus*

Experimental	Concentration (mg/kg)			
diets	Cu	Zn	Fe	Mn
Blank group	113.80±21.60 ^a	51.94±2.06b	315.08±7.95b	3.92±0.45b
CuSO ₄ group	144.57±13.73 ^b	46.55±3.78 ^b	322.15±4.29b	3.30 ± 0.32^{a}
NCM-Cu group	154.34±19.00 ^b	43.27±2.79a	300.74±6.18a	3.34 ± 0.24^{a}

All the data means \pm SD (n=3) in triplicate, means in the same column with different superscript letters are significantly different (P<0.05).

2. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in gill of *Oreochromis niloticus*

Table S3. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in gill of *Oreochromis niloticus*

Experimental	Concentration (mg/kg)			
diets	Cu	Zn	Fe	Mn
Blank group	5.75±0.08b	69.30±4.23ab	195.50±32.76	7.21±0.18
CuSO ₄ group	5.49±0.35a	74.35±2.17 ^b	209.69±4.44	6.54±0.79
NCM-Cu group	7.18 ± 0.05^{c}	67.99 ± 6.89^a	178.16±58.57	6.94±0.65

All the data means \pm SD (n=3) in triplicate SD (n=3) in triplicate, means in the same column with different superscript letters are significantly different (P<0.05).

3. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in intestine of *Oreochromis niloticus*

Table S4. Effects of different Cu sources as the experimental diets on metal elemental concentration changes in intestine of *Oreochromis niloticus*

Experimental	Concentration (mg/kg)			
diets	Cu	Zn	Fe	Mn
Blank group	7.39±0.50a	74.85±1.13b	129.15±2.58b	15.61±0.78b
CuSO ₄ group	8.29 ± 0.36^{b}	75.13±0.55b	101.57±3.48 ^a	12.29±0.07a
NCM-Cu group	8.48 ± 0.17^{b}	70.15 ± 1.76^{a}	155.56±30.68°	12.41±0.86a

All the data means \pm SD (n=3) in triplicate, means in the same column with different superscript letters are significantly different (P<0.05).