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In the first section of this Supporting Information the data sets used in the main article are

inspected and the accuracy achieved by simple linear models is investigated. Section 2 gives a

detailed derivation of the kernel ridge regression algorithm and the method used to include deriva-

tive information. The Sections 3 and 4 discuss hyperparameter choices and training procedures

for kernel ridge regression and neural networks, respectively. In Section 5 the algorithm used to

find minimum energy densities is explained. Section 6 shows the investigations of kernel ridge

regression models using a constant offset term, an alternative approach to the principal component

analysis method employed in the main article. Section 7 details the influence of the principal com-

ponent analysis on the functional derivative predictions. Section 8 contains a plot of the learning

curve. Section 9 shows computational timings for the various machine learning models.
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1 Data Sets

Training and test data are supposed to be created as closely as possible to the data used by Snyder

et al.S1 in order to clearly demonstrate the improved accuracy achieved by including the functional

derivative into the training algorithm. In Sections 1.1 and 1.2 the data sets for N = 1 and N = 2,

respectively, are inspected in greater detail. Additionally, the performance achieved by simple

models is investigated as reference for the more complex models explored in the main article.

The parameter triplets a, b, and c, used to generate the potentials of the training and test set, are

available online in CSV format.

1.1 Data for N = 1

The training set consists of a total of M = 100 densities. Figure S1 shows a typical example of an

input density as well as a histogram of the corresponding kinetic energies. In order to evaluate the
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Figure S1: Left panel: The shaded region shows the variation of densities in the training set for
N = 1. The density corresponding to the first potential in the training set is shown as solid line.
Right panel: A Histogram and the statistical parameters of the distribution of kinetic energies in
the training set.

complexity of the data set we fit simple regression models and test their performance on the test

set. The results for all of these models are summarized in Table S1.

The simplest possible model is a constant model:

T const = b (1)
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Table S1: Absolute error values for the simple models on the N = 1 data set given in kcal/mol.

|∆T |
model mean std max

Constant model 138.3 107.3 847.4
Linear model 2429.8 9924.9 162087.9

Ridge regression 54.3 52.1 417.1

where the least squares solution for the parameter b is given by the mean kinetic energies of the

training examples b=∑
M
j Tj/M. The mean absolute error achieved by this model is known as mean

absolute deviation (MAD) in statistics. A slightly more complex model is given by a standard least

squares linear fit, relating the G = 500 dimensional input densities to the kinetic energy:

T linear(n) =
G

∑
g

w(g)n(g) = w> ·n, (2)

where the index (g) denotes the gth entry of a vector and the parentheses are used to distinguish

grid point indices from training example indices. Note that the absolute error for this model is

significantly higher than for the constant model. This is most likely due to the fact that 100 training

examples are insufficient to fit 500 weight parameters. Ridge regression addresses this problem by

introducing an additional regularization term that is used to penalize large weights in the linear

fit. Since ridge regression is a linear variant of kernel ridge regression used in the main article,

the achieved errors represent an upper bound to the expected performance of KRR. The results

are obtained with a regularization parameter of λ = 10−6 and the ridge regression algorithm as

implemented in the scikit-learn python package.S2

1.2 Data for N = 2

The data set for N = 2 used in Section 3.3 and Section 3.4 of the main article is based on the same

potentials as the data presented the previous section. While the addition of a second particle leads

to higher values for the total kinetic energy, the standard deviation does not increase significantly.

We attribute this to the fact that the second particle is less influenced by the potential and the

S-3



corresponding wave function resembles that of an particle moving freely in a hard wall box. A

summary of this training set is given in Figure S2.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
(x

)

24.8 25.0 25.2 25.4 25.6 25.8

T (Hartree)

0

2

4

6

8

10

C
ou

nt

Mean : 25.20 Hartree
Std : 0.29 Hartree

Max : 25.93 Hartree
Min : 24.72 Hartree

Figure S2: Left panel: The shaded region shows the variation of densities in the training set for
N = 2. The density corresponding to the first potential in the training set is shown as solid line.
Right panel: A Histogram and the statistical parameters of the distribution of kinetic energies.

Table S2 shows the error values achieved by the simple models presented in the previous sec-

tion. The most notable difference to the results for N = 1 is the significant improvement in the

accuracy of the linear model.

Table S2: Absolute error values (in kcal/mol) achieved by the simple models on the N = 2 test set.

|∆T |
model mean std max

Constant model 145.1 111.7 730.5
Linear model 121.2 409.9 6987.7

Ridge regression 34.6 30.8 322.3

In Section 3.3 and Section 3.4 of the main article the kinetic energy is given by a machine

learning correction to the von Weizsäcker functional:

T = T ML +T vW. (3)

The models are therefore not trained on the data set presented in Figure S2 but rather on the differ-

ence between these exact values and the prediction obtained with the von Weizsäcker functional.
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Figure S3: Comparison of the exact kinetic energy values of the N = 2 test set on the x-axis and
the corresponding predictions by the Thomas-Fermi functional (left panel) and the von Weizsäcker
functional (right panel) on the y-axis.

In Figure S3 the kinetic energy predictions of the von Weizsäcker functional and the Thomas-

Fermi functional (for the sake of completeness) are plotted versus the exact solutions in order to

show that the von Weizsäcker model can not describe systems consisting of two spatial orbitals.

While the Thomas-Fermi model roughly captures the correct functional correlation, the predictions

by the von Weizsäcker functional exhibit an opposing trend. The accuracy of the Thomas-Fermi

model can be improved further by adding a constant term. Fitting this constant offset using the

training set yields reduced values of 110.9 kcal/mol, 83.1 kcal/mol, and 453.5 kcal/mol for the

mean, the standard deviation and the maximum of the absolute error, respectively.

Due to the opposing functional behavior of the von Weizsäcker model, subtracting the von

Weizsäcker kinetic energy from the exact values leads to an increased variance in the training data

for the machine learning model as depicted in Figure S4.
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Figure S4: Histogram of the kinetic energies in the training set for N = 2 after subtracting the von
Weizsäcker kinetic energy.
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Table S3 shows that this fact is also reflected in the reduced accuracy achieved by the constant

model. Note, however, that both linear models achieve significantly lower mean absolute errors.

We conclude that the von Weizsäcker term captures some of the nonlinear contributions to the

kinetic energy in this data set.

Table S3: Absolute error values ∆T (in kcal/mol), achieved by the simple models trained on the
N = 2 data set after subtracting the von Weizsäcker kinetic energy.

|∆T |
model mean std max

Constant model 378.8 279.4 1543.5
Linear model 87.6 413.5 8067.3

Ridge regression 12.9 13.3 113.6
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2 Kernel Ridge Regression

In this section we provide a detailed derivation of the Kernel Ridge Regression (KRR) algorithm.

In Section 2.1 the KRR method is reviewed and a standard notation valid in both the SI and the

main manuscript is introduced. Section 2.2 shows how this concept can be extended to include

training data for the functional derivative. Note that in both sections the formulas are derived in the

so-called weight space view and transformed only in the last step to the kernel space expressions

used in the main article.

2.1 Standard KRR

The main idea in KRR is that even nonlinear data can be described by a linear model after the

transformation to a higher dimensional vector space,

T ML (n) =
D

∑
d

wdφd (n) = w>φ(n) , (4)

where wd are the fit coefficients and φ denotes the transformation from the input space RG to

a higher dimensional feature space RD. The weights are determined by minimization of a cost

function consisting of the squared error and a regularization term

L =
M

∑
j

(
T ML(n j)−Tj

)2
+λ

D

∑
d

w2
d, (5)

where the parameter λ controls the regularization strength. The cost function is minimized by

setting the derivative with respect to wk equal to zero:

∂L

∂wk
= 2

M

∑
j

(
D

∑
d

wdφd
(
n j
)
−Tj

)
φk
(
n j
)
+2λwk

!
= 0

M

∑
j

D

∑
d

wdφd
(
n j
)

φk
(
n j
)
+λwk =

M

∑
j

Tjφk
(
n j
)
.

(6)
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Derivation with respect to all weights gives a total of D such equations which can be rewritten as a

matrix equation: (
ΦΦ

>+λ ID

)
w = ΦT, (7)

where Φ is a (D×M) matrix whose columns contain the transformed input densities and ID is a

unit matrix of size (D×D). The weights can be calculated by inversion of the matrix on the left

hand side:

w =
(

ΦΦ
>+λ ID

)−1
ΦT. (8)

This expression for w can be rearranged further by the following matrix identity, often referred to

as push-through identity:S3–S5

(
A+P>R−1Q

)−1
P>R−1 = A−1P>

(
R+QA−1P>

)−1
. (9)

Setting A = λ ID, P = Q = Φ> and R−1 = IM yields:

w = Φ

(
Φ
>

Φ+λ IM

)−1
T. (10)

One of the advantages of this rearrangement is that the costly matrix inversion can be performed

either on the (D×D) matrix in equation 8 or the (M×M) matrix in equation 10. As an analog to

the D-dimensional weight vector w the M-dimensional vector α is defined as:

w = ∑
j

α jφ
(
n j
)

with α=
(

Φ
>

Φ+λ IM

)−1
T. (11)

Plugging the weight vector back into the linear model in equation 4 yields:

T ML (n) = T
(

Φ
>

Φ+λ IM

)−1
Φ
>φ(n) =α>Φ

>φ(n) . (12)

Another advantage of applying the push-through identity is that it allows for the so-called kernel

trick, where the scalar product in feature space is replaced with a kernel function φ(ni)
>φ(n j) =
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k
(
ni,n j

)
. After defining the kernel matrix K = Φ>Φ with elements Ki j = k

(
ni,n j

)
and a vector

k(n) = Φ>φ(n) with elements k j(n) = k
(
n j,n

)
the final result can be written as:

T ML (n) = T(K +λ I)−1 k(n) =α>k(n) =
M

∑
j

α jk
(
n j,n

)
. (13)

As shown by Snyder et al.S1 the corresponding prediction for the functional derivative is given by:

∇nT ML(n)
∆x

=
M

∑
j

α j

∆x
∇nk

(
n j,n

)
. (14)

Note that the division by ∆x in the discretized functional derivative is necessary to eliminate the

dependence on the number of grid points G.

2.2 Including Derivative Information

In a similar fashion, taking the derivative of equation 4 with respect to the input densities, yields

the prediction of the functional derivative in weight space:

∇nT ML(n)
∆x

=
D

∑
d

wd

∆x
∇nφd (n) . (15)

The gth component of the gradient is denoted as:

(
∇nT ML(n)

∆x

)
(g)

=
D

∑
d

wd

∆x

(
∇nφd (n)

)
(g)

=
D

∑
d

wd

∆x
∂φd (n)
∂n(g)

, (16)

where the parentheses are used to distinguish grid point indices from training example indices. Us-

ing this expression, the cost function can be extended to include the squared error of the functional

derivative weighted by an additional hyperparameter κ:

L =
M

∑
j

(
T ML(n j)−Tj

)2
+

κ

G

M

∑
j

G

∑
g

(∇n jT
ML(n j)

∆x

)
(g)

−
(

∇n jTj

∆x

)
(g)

2

+λ ||w||2, (17)
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where
∇n j Tj

∆x are the reference vectors of the discretized functional derivative. The weights are

determined by setting the derivative with respect to wk equal to zero:

∂L

∂wk
=2

M

∑
j

(
D

∑
d

wdφd
(
n j
)
−Tj

)
φk
(
n j
)

+2
κ

G

M

∑
j

G

∑
g

(
D

∑
d

wd

∆x
∂φd

(
n j
)

∂n j,(g)
−
(

∇n jTj

∆x

)
(g)

)
1

∆x
∂φk

(
n j
)

∂n j,(g)
+2λwk

!
= 0.

(18)

Collecting all terms proportional to the weights on the left hand side yields

M

∑
j

D

∑
d

(
wdφd

(
n j
)

φk
(
n j
)
+

κ

G

G

∑
g

wd

(∆x)2

∂φd
(
n j
)

∂n j,(g)

∂φk
(
n j
)

∂n j,(g)

)
+λwk

=
M

∑
j

(
Tjφk

(
n j
)
+

κ

G

G

∑
g

(
∇n jTj

∆x

)
(g)

1
∆x

∂φk
(
n j
)

∂n j,(g)

)
.

(19)

By extending the matrices defined in equation 7 this can again be rewritten as a matrix equation

(
Φext S Φ

>
ext +λ ID

)
w = Φext S Text, (20)

with the extended transformation matrix of shape (D×M(1+G)):

Φext =


φ1(n1) . . . φ1(nM)

∇>n1
φ1(n1)

∆x . . .
∇>nM

φ1(nM)

∆x
... . . . ...

... . . . ...

φD(n1) . . . φD(nM)
∇>n1

φD(n1)

∆x . . .
∇>nM

φD(nM)

∆x

=

=


φ1(n1) . . . φ1(nM) 1

∆x
∂φ1(n1)
∂n1,(1)

. . . 1
∆x

∂φ1(n1)
∂n1,(G)

. . . 1
∆x

∂φ1(nM)
∂nM,(1)

. . . 1
∆x

∂φ1(nM)
∂nM,(G)

... . . . ...
... . . . ... . . . ... . . . ...

φD(n1) . . . φD(nM) 1
∆x

∂φD(n1)
∂n1,(1)

. . . 1
∆x

∂φD(n1)
∂n1,(G)

. . . 1
∆x

∂φD(nM)
∂nM,(1)

. . . 1
∆x

∂φD(nM)
∂nM,(G)

 ,

(21)
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the extended target vector:

Text =

(
T1 . . . TM

∇>n1
T1

∆x . . .
∇>nM

TM

∆x

)>
=

=

(
T1 . . . TM

(
∇n1T1

∆x

)
(1)

. . .
(

∇n1T1
∆x

)
(G)

. . .
(

∇nM TM
∆x

)
(1)

. . .
(

∇nM TM
∆x

)
(G)

)>
,

(22)

and a (M(1+G)×M(1+G)) diagonal matrix containing the scaling factor for the relative impor-

tance of derivative information:

S =

IM 0

0 κ

GIMG

 . (23)

Solving equation 20 for the weight vector w and applying the push-through identity of equation 9

by setting A = λ ID, P = Q = Φ>ext and R−1 = S yields

w =
(

Φext S Φ
>
ext +λ ID

)−1
Φext S Text = Φext

(
Φ
>
extΦext +Λ

)−1
Text, (24)

with the regularization matrix

Λ = λS−1 =

λ IM 0

0 λG
κ

IMG

 . (25)

The weights are again rewritten as

w> = ∑
j

α jφ(n j)
>+

β>j ·
(
∇n jφ(n j)

>)
∆x

, (26)
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where the coefficients α and β are determined by solving the matrix equation



α1

...

αM

β1

...

βM


=
(

Φ
>
extΦext +Λ

)−1



T1

...

TM

∇n1T1
∆x
...

∇nM TM
∆x


= (Kext +Λ)−1 Text. (27)

Note that the individual β j are vectors of length G. The extended kernel matrix Kext is calculated

by applying the kernel trick to the extended transformation matrix Φext:

Kext =

K J′

J H

=



k(n1,n1) . . . k(n1,nM)
∇>n1

k(n1,n1)

∆x . . .
∇>nM

k(n1,nM)

∆x
... . . . ...

... . . . ...

k(nM,n1) . . . k(nM,nM)
∇>n1

k(nM ,n1)

∆x . . .
∇>nM

k(nM ,nM)

∆x
∇n1k(n1,n1)

∆x . . .
∇n1k(n1,nM)

∆x
∇n1 ·∇>n1

k(n1,n1)

(∆x)2 . . .
∇n1 ·∇>nM

k(n1,nM)

(∆x)2

... . . . ...
... . . . ...

∇nM k(nM ,n1)

∆x . . .
∇nM k(nM ,nM)

∆x
∇nM ·∇>n1

k(nM ,n1)

(∆x)2 . . .
∇nM ·∇>nM

k(nM ,nM)

(∆x)2



=



k(n1,n1) . . . k(n1,nM) 1
∆x

∂k(n1,n1)
∂n1,(1)

. . . 1
∆x

∂k(n1,n1)
∂n1,(G)

. . . 1
∆x

∂k(n1,nM)
∂nM,(1)

. . . 1
∆x

∂k(n1,nM)
∂nM,(G)

... . . . ...
... . . . ... . . . ... . . . ...

k(nM,n1) . . . k(nM,nM) 1
∆x

∂k(nM ,n1)
∂n1,(1)

. . . 1
∆x

∂k(nM ,n1)
∂n1,(G)

. . . 1
∆x

∂k(nM ,nM)
∂nM,(1)

. . . 1
∆x

∂k(nM ,nM)
∂nM,(G)

1
∆x

∂k(n1,n1)
∂n1,(1)

. . . 1
∆x

∂k(n1,nM)
∂n1,(1)

1
(∆x)2

∂ 2k(n1,n1)
∂n1,(1)∂n1,(1)

. . . 1
(∆x)2

∂ 2k(n1,n1)
∂n1,(1)∂n1,(G)

. . . 1
(∆x)2

∂ 2k(n1,nM)
∂n1,(1)∂nM,(1)

. . . 1
(∆x)2

∂ 2k(n1,nM)
∂n1,(1)∂nM,(G)

... . . . ...
... . . . ... . . . ... . . . ...

1
∆x

∂k(n1,n1)
∂n1,(G)

. . . 1
∆x

∂k(n1,nM)
∂n1,(G)

1
(∆x)2

∂ 2k(n1,n1)
∂n1,(G)∂n1,(1)

. . . 1
(∆x)2

∂ 2k(n1,n1)
∂n1,(G)∂n1,(G)

. . . 1
(∆x)2

∂ 2k(n1,nM)
∂n1,(G)∂nM,(1)

. . . 1
(∆x)2

∂ 2k(n1,nM)
∂n1,(G)∂nM,(G)

... . . . ...
... . . . ... . . . ... . . . ...

1
∆x

∂k(nM ,n1)
∂nM,(1)

. . . 1
∆x

∂k(nM ,nM)
∂nM,(1)

1
(∆x)2

∂ 2k(nM ,n1)
∂nM,(1)∂n1,(1)

. . . 1
(∆x)2

∂ 2k(nM ,n1)
∂nM,(1)∂n1,(G)

. . . 1
(∆x)2

∂ 2k(nM ,nM)
∂nM,(1)∂nM,(1)

. . . 1
(∆x)2

∂ 2k(nM ,nM)
∂nM,(1)∂nM,(G)

... . . . ...
... . . . ... . . . ... . . . ...

1
∆x

∂k(nM ,n1)
∂nM,(G)

. . . 1
∆x

∂k(nM ,nM)
∂nM,(G)

1
(∆x)2

∂ 2k(nM ,n1)
∂nM,(G)∂n1,(1)

. . . 1
(∆x)2

∂ 2k(nM ,n1)
∂nM,(G)∂n1,(G)

. . . 1
(∆x)2

∂ 2k(nM ,nM)
∂nM,(G)∂nM,(1)

. . . 1
(∆x)2

∂ 2k(nM ,nM)
∂nM,(G)∂nM,(G)



.

(28)
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Using the new weights from equation 26 for the prediction of the kinetic energy of a previously

unseen density n in equation 4 yields:

T ML(n) =
M

∑
j

α jk(n j,n)+
M

∑
j

G

∑
g

β j,(g)

∆x
∂k(n j,n)

∂n j,(g)
=

M

∑
j

α jk(n j,n)+
M

∑
j

β>j ·∇n jk(n j,n)
∆x

. (29)

The corresponding prediction of the derivative is given by:

(
∇nT ML(n)

∆x

)
(g)

=
M

∑
j

α j

∆x
∂k(n j,n)

∂n(g)
+

M

∑
j

G

∑
g′

β j,(g′)

(∆x)2
∂ 2k(n j,n)

∂n j,(g′)∂n(g)
, (30)

or similarly in the vector notation used in the main article by:

∇>n T ML(n)
∆x

=
M

∑
j

α j

∆x
∇
>
n k(n j,n)+

M

∑
j

β>j ·
(
∇n j ·∇>n k(n j,n)

)
(∆x)2 . (31)
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3 KRR Hyperparameter Search

The hyperparameters for the KRR models are determined using 5-fold cross validation on a rectan-

gular search grid. A total of 29 points, log-uniformly distributed between 10 and 500, are used for

the length scale parameter σ , and 5 points, log-uniformly distributed between 10−10 and 10−14,

for the regularization parameter λ . Both the mean absolute error for the kinetic energy and the

functional derivative are evaluated using cross validation. The hyperparameters are chosen such

that the sum of these two errors is minimized. Note that this choice is biased toward the derivative

score as the mean absolute error on the derivative is typically significantly larger.

As a first test we investigate if the extended KRR model yields similar tendencies for the

hyperparameters when the number of training examples is increased as reported for standard KRR

in Ref. S1. Figure S5 shows that the rough grid search in fact displays a similar trend toward

smaller values for both σ and λ for an increasing training set size M. As expected for a machine

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ

M = 40 M = 60 M = 80 M = 100

10−2

10−1

100

M
AE

 [k
ca

l/m
ol

]

10 −10
10 −11

10 −12
10 −13

10 −14

λ

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ

10 −10
10 −11

10 −12
10 −13

10 −14

λ

10 −10
10 −11

10 −12
10 −13

10 −14

λ

10 −10
10 −11

10 −12
10 −13

10 −14

λ

101

102

M
AE

 d
er

iv
at

iv
e 

[k
ca

l/m
ol

]

Figure S5: Mean absolute error of the kinetic energy (top row) and the functional derivative (bot-
tom row) as a function of the hyperparameters σ and λ for an increasing number of training
examples M and κ = 1.

learning model, both errors decrease with the number of training examples. Chemical accuracy,
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defined as a mean absolute error for the kinetic energy below 1 kcal/mol, is already reached using

M = 40 training examples for a broad range of hyperparameters. This improvement over the

M = 80 necessary training examples reported by Snyder et al.S1 is attributed to the inclusion of

derivative information. The lowest summed error on the M = 100 set is achieved for σ = 30.58

and λ = 10−12.

The influence of the weighting parameter κ is investigated by repeating the grid search on

M = 100 training examples for various values of κ . Figure S6 shows the cross validation score for

both the kinetic energy and the functional derivative for κ ∈ {0.1,1,10,100,1000}.
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Figure S6: Mean absolute error of the kinetic energy (top row) and the functional derivative (bot-
tom row) for the different values of the hyperparameters κ , σ and λ on the M = 100, N = 1 training
set.

Note that the blank regions in Figure S6 denote areas where the matrix inversion in equation

24, more precisely the Cholesky factorization used to solve equation 27, failed due to numerical

noise. As expected, the larger values of κ lead to an increased parameter range with low errors on

the functional derivative and conversely a decreased parameter range with the lowest errors for the

kinetic energy. Note, however, that the parameter region in which chemical accuracy is reached

increases for large κ values. The overall lowest summed error is reached for κ = 0.1, σ = 17.49
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and λ = 10−11. Nevertheless, the weighting parameter is set to κ = 1 for all of the hyperparameter

investigations, since it is difficult to judge the relative importance of the errors for the presented

application.

Figure S7 shows the results of the hyperparameter search for the N = 2 data set. The best

performance is achieved for values of σ = 35.16, λ = 10−12 and σ = 26.59, λ = 10−12 for the

standard and extended KRR models, respectively. The hyperparameters for standard KRR are cho-

sen based solely on the MAE of the kinetic energy and a value of κ = 1.0 is used for extended

KRR. Again, the inclusion of derivative information significantly improves the error on the ki-

netic energy for a wide range of hyperparameters, yielding chemical accuracy on all points of the

hyperparameter grid.

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ

Standard KRR

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ
Extended KRR

10−10 10−11 10−12 10−13 10−14

λ

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ

10−10 10−11 10−12 10−13 10−14

λ

 10.0
 17.5
 30.6
 53.5
 93.5

163.5
285.9
500.0

σ

10−1

100

M
AE

 [k
ca

l/m
ol

]

104

M
AE

 d
er

iv
at

iv
e 

[k
ca

l/m
ol

]

10−2

10−1

M
AE

 [k
ca

l/m
ol

]

100

101

M
AE

 d
er

iv
at

iv
e 

[k
ca

l/m
ol

]

Figure S7: Cross validation scores of the grid search for both the standard KRR model (left) and
the extended KRR model (right) on the N = 2 training set.
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4 Neural Network Hyperparameters and Training Behavior

This section summarizes all the hyperparameters used during the training of the convolutional

neural network models for the sake of reproducibility, but without discussing their influence on the

actual training behavior or the final model performance.

The neural network models are trained by minimizing the following cost function:

L =
ιT

M

M

∑
j
||T ML(n j)−Tj||2 +

ιτ

MG

M

∑
j
||τML(n j)−τ j||2

+
κ

MG

M

∑
j

∥∥∥∥∥∇n jT
ML(n j)

∆x
−

∇n jTj

∆x

∥∥∥∥∥
2

+λ ||w||2.
(32)

Most choices for the hyperparameters are shared by all of the models. The remaining hyperparam-

eters are listed in Table S4. Since the relative weighting of contributions in the cost function is

Table S4: Summary of the hyperparameters used for training of the neural networks.

model N data seta vWb M epochs ιT ιτ λ Nconstant Ndecay
CNN 1 recreated - 100 100 000 0.2 - 0.00025 21 800 1000

ResNet 1 recreated - 100 100 000 0 1 0.00025 21 800 1000
ResNet 2 recreated Yes 100 100 000 0 1 0.00025 21 800 1000
ResNet 2 generated Yes 1000 30 000 0 1 0.000025 40 000 2000
ResNet 2 generated Yes 10 000 3000 0 1 0.000025 40 000 2000
ResNet 2 generated Yes 100 000 300 0 1 0.0000001 40 000 2000

arecreated refers to the fact that the parameters for the potentials are taken from Ref. S1 whereas generated refers
to new randomly generated parameters.

bDenotes that the von Weizsäcker predictions have been subtracted before training.

over determined by four scaling factors, the weighting parameter κ is set to a fixed value of κ = 1.

The network parameters are determined with the Adam optimizer,S6 a variation of the steepest

descent algorithm, with the tensorflowS7 default hyperparameters of β1 = 0.9, β2 = 0.999, and

ε = 10−7. The gradient of the cost function with respect to the weights and biases is calculated

using a batch size of 100 examples. This corresponds to the whole training set for the investiga-

tions in Section 3.1 through Section 3.3 of the main article. If the norm of the gradient surpasses a

threshold value of 100 it is rescaled to a length of 100. This process is referred to as clip by norm
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in tensorflow. Starting from an initial learning rate of 10−4 the learning rate stays constant for the

first Nconstant training steps and is then reduced by a factor 0.9 every Ndecay steps.
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Figure S8: Plot of the learning rate schedule.

Figure S8 shows the learning rate schedule used for training the convolutional neural networks.

The number of training steps on the x-axis refers to the number of weight updates and is given by

the number of epochs times M divided by the batch size.
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Figure S9: Plot of the mean absolute error of the kinetic energy during the training of the neural
network models.

In Figure S9 the mean absolute errors for the kinetic energy on the training set are plotted

as a function of the training progress. It shows that in addition to the lower final error reached

by ResNets trained on larger data sets, the variation in the error curve during the training is also

reduced. For all of the presented models the final training error in Figure S9 is significantly lower
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than the reported test errors. The generalization properties can be improved by using additional

training data as shown in Section 3.4 of the main article.
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Figure S10: Plot of the mean absolute error of the kinetic energy derivative during the training of
the neural network models.

Figure S10 shows the mean absolute error for the functional derivative as a function of the

training process. Comparing Figure S9 and S10 shows that the early stages of the training are

dominated by a reduction in the derivative error. In part due to the decreasing learning rate, the

derivative error stops improving roughly at the half-way point of the training process while the

kinetic energy error keeps decreasing.
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5 Finding Minimum Energy Densities

5.1 Iteration on the Density and Local Principal Component Analysis

The direct minimization algorithm used to find the minimum energy density is a standard steepest

descent optimization using a Lagrange multiplier µ to ensure the correct number of particles N.

The corresponding Lagrange function is given by:

L [n] = E[n]−µ

(∫
ndx−N

)
, (33)

where the total energy functional E[n] for noninteracting particles is simply the sum of kinetic

energy T [n] and potential energy:

E[n] = T [n]+
∫

nV dx. (34)

The steepest descent update rule with step size η is given by:

ni+1 = ni−η
δL

δn
= ni−η

(
δT [n]

δn
+V −µ

)
, (35)

where the Lagrange multiplier µ is chosen such that the norm
∫

ni+1 dx = N is ensured. Assuming

that ni is properly normalized, this is equivalent to

∫ (
δT [n]

δn
+V −µ

)
dx !

= 0 (36)

µ =

∫ (
δT
δn +V

)
dx∫

1dx
. (37)

The introduction of a projection operator P for the functional derivative as suggested by Snyder et

al.:S1

ni+1 = ni−ηP
[

δT [n]
δn

+V −µ

]
, (38)
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yields a similar result for the Lagrange multiplier µ:

µ =

∫
P
[

δT [n]
δn +V

]
dx∫

P[1]dx
. (39)

Note that the local principal component analysis (PCA) of Ref. S1 uses the difference of the density

at the current step ni and a subset of the training densities as basis for the projection operator. Since

the integral over the difference of two valid densities is zero, the same will be true for all functions

projected onto this subspace. The correct norm for the density ni+1 is therefore ensured without

the need for a Lagrange multiplier.

5.2 Iteration on the Variable ϕ

In Section 3.3 and Section 3.4 of the main article a basis of sine functions is used to restrict the

search space instead of the local PCA. This necessitates additionally enforcing a nonnegativity

constraint, which is typically achieved by iterating on the variable ϕ =
√

n instead of the density

n. The steepest descent update rule for ϕ is given by:

ϕi+1 = ϕi−η
δL

δϕi
= ϕi−η

δL

δni

δni

δϕi
= ϕi−2ηϕi

(
δT
δn

+V −µ

)
, (40)

where the Lagrange multiplier µ is again chosen such that the norm
∫

ni+1 dx =
∫

ϕ2
i+1 dx = N is

ensured:

∫
ϕ

2
i+1 dx =

∫ (
ϕi−2ηϕi

(
δT
δn

+V −µ

))2

dx

=
∫

ϕ
2
i dx−4η

∫
ϕ

2
i

(
δT
δn

+V −µ

)
dx+4η

2
∫

ϕ
2
i

(
δT
δn

+V −µ

)2

dx. (41)
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Assuming that ϕi is properly normalized
∫

ϕ2
i dx =

∫
ϕ2

i+1 dx = N this simplifies to:

−4η

∫
ϕ

2
i

(
δT
δn

+V −µ

)
dx+4η

2
∫

ϕ
2
i

(
δT
δn

+V −µ

)2

dx !
= 0

∫
ϕ

2
i

(
δT
δn

+V −µ

)
dx = η

∫
ϕ

2
i

(
δT
δn

+V −µ

)2

dx.

(42)

Since the step size η is an arbitrary positive number the integrals on both sides have to be equal to

zero, which yields

µ =

∫
ϕ2

i

(
δT
δn +V

)
dx∫

ϕ2
i dx

. (43)

Inspired by the local PCA method, the basis of sine functions is introduced using a projection

operator acting on the functional derivative:

ϕi+1 = ϕi−ηP
[

δL

δϕi

]
= ϕi−ηP

[
2ϕi

(
δT
δn

+V −µ

)]
. (44)

The norm of ni+1 is then given by

∫
ϕ

2
i+1 dx=

∫
ϕ

2
i dx−2

∫
ηϕiP

[
2ϕi

(
δT
δn

+V −µ

)]
dx+

∫
η

2
(

P
[

2ϕi

(
δT
δn

+V −µ

)])2

dx.

(45)

Again assuming that
∫

ϕ2
i dx =

∫
ϕ2

i+1 dx = N yields:

∫
ϕiP
[

ϕi

(
δT
δn

+V −µ

)]
dx = η

∫ (
P
[

ϕi

(
δT
δn

+V −µ

)])2

dx. (46)

Using the same arguments as before and the fact that P is a linear operator the multiplier µ can be

calculated via

µ =

∫
ϕiP
[
ϕi

(
δT
δn +V

)]
dx∫

ϕiP [ϕi]dx
. (47)
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6 Kernel Ridge Regression with Offset

The main problem of the iterative calculation of minimum energy densities is that the search algo-

rithm is likely to leave the valid region, i.e. the region where the machine learning model offers

correct predictions. Snyder et al.S1 solved this by restricting the search space using a projection

onto the subspace of training densities. Denzel and KästnerS8 suggested a different solution for a

similar problem in machine learning accelerated molecular geometry optimization. The extrapo-

lation behavior of kernel based machine learning models can be tuned by introducing a constant

offset:

T ML(n) = b+
M

∑
j

α jk(n j,n). (48)

In Figure S11 the effect of this offset term is demonstrated for a one-dimensional example. The

models predict an output value of b for examples far away from the training data. Using larger

values, therefore, offers the possibility of introducing an energy penalty for these out-of-training

examples and thereby ensuring that the iterative search is restricted to the region spanned by the

training examples. Note that this one-dimensional model trained on M = 4 examples does not

display the problems encountered in the G = 500 dimensional model trained on just M = 100

examples discussed in the main article.
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Figure S11: Kernel ridge regression of the function y(x) = (x+ 1
4 sin(πx))2 using different offset

values b. The model shown in the left panel is trained only on function values yi, whereas the
training data for the model in the right panel also includes derivative information dyi/dx. Both
models use a length scale of σ = 0.5 and parameters κ = 1 and λ = 10−8.

As a first test the model errors on the N = 1 data set are evaluated. The results of a small

S-23



grid search for the parameters b ∈ {max(Tj),max(Tj)+5,max(Tj)+10} and σ ∈ {2.5,5.0,10.0}

are summarized in Table S5. All presented models use the extended KRR formalism and κ = 1,

λ = 10−12 for the remaining hyperparameters. Table S5 shows that the largest value for the length

scale parameter of σ = 10.0 yields the best accuracy for both the kinetic energy and the functional

derivative. The value of the offset parameter b has a smaller influence on the model performance

than the length scale parameter.

Table S5: Absolute error values on the test set for extended KRR models with offset term given in
kcal/mol.

|∆T | |∆δT
δn |

b σ mean std max mean std max
max(Tj) 2.5 0.256 2.253 61.617 55.932 95.658 1746.875
max(Tj) + 5 2.5 1.005 7.484 158.321 84.234 225.494 3929.710
max(Tj) + 10 2.5 2.260 16.813 338.897 183.468 477.609 8025.145
max(Tj) 5.0 0.014 0.098 2.502 20.638 34.946 391.505
max(Tj) + 5 5.0 0.006 0.033 0.732 17.325 28.796 339.674
max(Tj) + 10 5.0 0.012 0.102 2.162 14.902 25.382 306.731
max(Tj) 10.0 0.002 0.010 0.165 6.650 9.340 105.226
max(Tj) + 5 10.0 0.002 0.008 0.130 6.520 9.148 103.361
max(Tj) + 10 10.0 0.001 0.007 0.111 6.394 8.972 101.919

The results for the iteratively found densities are summarized in Table S6. All three models

with length scale σ = 10.0 show a large number of minimization runs that leave the region spanned

by the training examples, leading to extremely large mean absolute error values. While the results

for σ = 2.5 suggest a better behavior during the minimization (at least for b = max(Tj)+ 5 and

b = max(Tj)+10), the final errors achieved by these models are clearly limited by the poor model

performance shown in Table S5. A length scale of σ = 5.0, therefore, represents a balanced trade-

off between model error and the ability to restrict the search space. In fact, the performance for

b = max(Tj)+10 and σ = 5.0 is comparable to the results achieved using the principal component

analysis presented in the main article. However, in general this method is not practical for large

scale applications as it is difficult to determine a set of hyperparameters during training which will

lead to models suitable for a usage in iterative minimizations. This problem does not arise in the
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original application of this approach in geometry optimization tasks as the training set is constantly

extended by additional ab-initio calculations during minimization.

Table S6: Absolute kinetic energy error values for the iteratively found densities in kcal/mol as
well as the integrated absolute error of the densities.

|∆T | |∆n|×104

b σ mean std max mean std max
max(Tj) 2.5 15.143 52.469 381.315 17861.5 55933.6 259048.3
max(Tj) + 5 2.5 2.884 12.282 209.400 13.5 38.8 534.0
max(Tj) + 10 2.5 4.364 16.793 265.146 20.2 49.9 607.7
max(Tj) 5.0 258.283 105.156 514.125 6199.3 7862.7 25692.3
max(Tj) + 5 5.0 0.128 0.838 17.815 2.4 5.5 80.5
max(Tj) + 10 5.0 0.075 0.642 15.196 1.2 3.5 71.0
max(Tj) 10.0 5468.034 257.717 5958.720 5674.8 392.5 7273.1
max(Tj) + 5 10.0 3787.131 243.600 4265.972 5226.8 405.1 6817.0
max(Tj) + 10 10.0 2365.444 215.082 2814.292 4748.9 417.8 6292.2
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7 Influence of the Local PCA on the Functional Derivative

Figure S12 shows the effect of the local PCA projection on the functional derivative prediction

of the various models on the sample potential of Figure 2 of the main article. The corresponding
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Figure S12: Projected functional derivative (top row) predicted by the machine learning models as
well as the difference to the exact solution (bottom row) for the projection parameters m = 30 and
various values of l (columns).

integrated absolute error values for the projected functional derivatives are summarized in Table S7.

Note that both the exact and the machine learning predicted functional derivatives are projected.

Table S7: Absolute error values for the projected functional derivative on the N = 1 test set given
in kcal/mol.

|∆Pm=30,l=5(n)δT
δn | |∆Pm=30,l=10(n)δT

δn | |∆Pm=30,l=15(n)δT
δn |

model mean std max mean std max mean std max
KRR 147.5 177.8 1326.2 2008.1 879.6 4951.6 7874.8 3132.0 17518.6

ext. KRR 0.6 1.1 15.8 1.7 2.2 26.0 2.3 2.8 30.9
CNN 6.5 10.3 119.1 21.6 20.1 317.4 25.2 22.0 359.5

ResNet 1.9 2.5 54.1 4.7 4.4 81.4 7.6 5.8 85.0
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8 Learning Curve

Figure S13 shows the learning curve, that is the accuracy of the models as a function of the number

of the training examples, for the presented machine learning models. The errors are evaluated on

the N = 1 test set while the first M = 40, 60, 80, and 100 training examples are used as training

examples.
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Figure S13: Errors on the N = 1 test set achieved by the various models as a function of the number
of training examples M.

We use the hyperparameters given by Snyder et al. for the standard KRR method. A description

of the method for optimizing the extended KRR hyperparameters as well as a detailed analysis of

the results are given in Section 3. The hyperparameters for both KRR models are summarized in

Table S8. For all of the neural network training runs the same hyperparameters as presented in
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Section 4 is used and the batch size is reduced to the number of training examples M.

Figure S13 shows a general trend of decreasing error with increasing number of training exam-

ples. Once again the advantage of including derivative information becomes apparent as all three

models trained on derivatives achieve chemical accuracy for the smallest training set size M = 40.

Note the slight increase in the kinetic energy error for the ResNet when the number of training

examples M is increased from 60 to 80. This variation in the performance is to be expected due

to the random initialization of the weights at the beginning of the training process. A detailed

comparison of neural network learning curves could therefore only be done after averaging the

results over several training runs.

Table S8: Hyperparameters used in the training of the KRR models for different training set sizes
M.

KRR ext. KRR

M σ λ ×1014 σ λ ×1012

40 238 57600 61.49 10
60 95 10000 35.16 10
80 48 4489 30.58 1

100 43 12 30.58 1
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9 Computational Timing

Figure S14 shows the computational time required by the various models for evaluating a sin-

gle density of the test set. All times are measured by averaging over 100 runs on a workstation

equipped with an Intel i7-920 and without GPU acceleration for tensorflow. Note that the individ-

ual evaluation times could be improved significantly by further optimization in the computational

implementation and more specialized hardware. Nevertheless, this graph clearly shows that the

computational effort for the kernel based methods increases with the number of training examples

while the neural network models maintain a constant evaluation time.
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Figure S14: Evaluation time of the various models averaged over 100 runs as a function of the
number of training examples.
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