

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Intestinal carriage of carbapenem-resistant Acinetobacter baumannii among patients in the intensive care unit: risk factors and the impact on subsequent infection

Journal:	
	BMJ Open
Manuscript ID	bmjopen-2019-035893
Article Type:	Original research
Date Submitted by the Author:	20-Nov-2019
Complete List of Authors:	Qiao, Fu; Sichuan University West China Hospital, Department of Infection Control Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control Gao, Shan; Zhengzhou University First Affiliated Hospital, Department of Infection Control Cai, Lin; Sichuan University West China Hospital, Intensive Care Unit Zhu, Shichao; Sichuan University West China Hospital, Department of Infection Control Wei, Li; Sichuan University West China Hospital, Department of Infection Control Kang, Yan Tao, Chuanmin; Sichuan University West China Hospital, Department of Laboratory Medicine Zong, Zhiyong; Sichuan University West China Hospital, Department of
	Infection Control; Sichuan University West China Hospital, Center of Infectious Disease
Keywords:	EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Infection control < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

2 3 4	1	Intestinal carriage of carbapenem-resistant Acinetobacter baumannii
5 6		
7 8	2	among patients in the intensive care unit: risk factors and the
9 10 11	3	impact on subsequent infection
12 13	4	Fu Qiao ¹ , Wenzhi Huang ¹ , Shan Gao ² , Lin Cai ³ , Shichao Zhu ¹ , Li Wei ¹ , Yan Kang ³ ,
14 15	5	Chuanmin Tao ⁴ *, Zhiyong Zong ^{1,5} *
16 17 18	6	¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
19 20	7	² Department of Infection Control, The First Affiliated Hospital of Zhengzhou University,
21 22	8	Zhengzhou, China. ³ Intensive Care Unit, West China Hospital, Sichuan University, Chengdu,
23 24 25	9	China. ⁴ Department of Laboratory Medicine, West China Hospital, Sichuan University,
26 27	10	Chengdu, China. ⁵ Center of Infectious Disease, West China Hospital, Sichuan University,
28 29	11	Chengdu, China
30 31 32	12	
33 34	13	Running title: intestinal carriage of CRAB in ICU
35 36	14	
37 38	15	Keywords: carbapenem-resistant; Acinetobacter baumannii; intestinal carriage; intensive care unit.
39 40 41	16	Word count: 3147
42 43	17	*Co-corresponding author
44 45	18	Dr. Chuanmin Tao, Department of Laboratory Medicine, West China Hospital, Sichuan
46 47 48	19	University, Chengdu, China. Email: taocm@scu.edu.cn
49 50	20	Dr. Zhiyong Zong, Center of Infectious Diseases, West China Hospital (Huaxi), Guoxuexiang 37,
51 52	21	Chengdu 610041, China. Phone: 86-28-8542-2637. Fax: 86-28-8542-3212. E-mail:
53 54 55	22	<u>zongzhiyong@gmail.com</u>
56 57		1
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	23	Abstract
5 6 7	24	Objectives: To assess the incidence and the impact of carbapenem-resistant Acinetobacter
8 9	25	baumannii (CRAB) intestinal carriage on subsequent CRAB infection and to study risk factors of
10 11	26	acquiring CRAB intestinal carriage among patients in intensive care unit (ICU).
12 13 14	27	Design: Observational study including a case control study and a retrospective cohort study.
15 16	28	Setting: A 50-bed general ICU of a university hospital, China.
17 18	29	Methods: From May 2017 to April 2018, an observational study was conducted in a 50-bed
19 20 21	30	general ICU of a university hospital in China. Rectal swabs were collected from ICU patients on
22 23	31	admission and thereafter weekly. Risk factors of acquiring CRAB intestinal carriage were analyzed
24 25	32	using multiple logistic regression. Patients with CRAB intestinal carriage were then compared to
26 27 28	33	those without for the incidence of subsequent CRAB infection using Kaplan-Meier survival and
29 30	34	COX multivariate analyses.
31 32	35	Results: CRAB intestinal carriage was detected in 6.87% (66/961; 95% CI 5.27%-8.47%) of
33 34 25	36	patients on ICU admission, whereas 11.97% (115/961; 95% CI 9.91%-14.02%) of patients
35 36 37	37	acquired CRAB intestinal carriage during the ICU stay. Pancreatitis (OR 2.16, 95% CI 1.28–3.67),
38 39	38	hematological disease (OR 2.26, 95% CI 1.42–3.58), gastric tube feeding (OR 3.35, 95% CI 2.03–
40 41	39	5.51), and use of carbapenems (OR 1.84, 95% CI 1.11-3.07) were independent risk factors for
42 43 44	40	acquiring CRAB intestinal carriage. The incidence of subsequent CRAB infection was 1.75-fold
45 46	41	in patients with CRAB intestinal carriage compared to that in patients without (95% CI 1.16–2.62,
47 48	42	P=0.007).
49 50	43	Conclusion: More patients acquired CRAB intestinal carriage during their ICU stay than had on
51 52 53	44	admission. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were
54	45	independent risk factors of acquisition of CRAB intestinal carriage Patients with CRAB intestinal

independent risk factors of acquisition of CRAB intestinal carriage. Patients with CRAB intestinal

1 2		
2 3 4	46	carriage are more likely to develop CRAB infection.
5 6	47	
7 8	48	Strengths and limitations of this study
9 10 11	49	A case control study was performed to analyze risk factors of the acquisition of CRAB intestinal
12 13	50	carriage in ICU.
14 15 16	51	A retrospective cohort study was performed to address whether intestinal CRAB carriage could
16 17 18	52	lead to an increased likelihood of subsequent CRAB infection.
19 20	53	Most influencing factors were considered in the study.
21 22 23	54	Not all screened CRABs were confirmed using Vitek II or other methods.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 34 55 56 57 58 57 58		<text></text>
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

56 Background

Acinetobacter baumannii is one of the most common nosocomial pathogens[1]. A systematic review has revealed that A. baumannii accounted for 11.28% of nosocomial infections in general hospitals in China, making it the third most common nosocomial pathogen[2]. Carbapenems such as meropenem and imipenem are a class of potent antimicrobial agents for treating severe infections caused by Gram-negative bacteria including A. baumannii. However, carbapenem-resistant A. baumannii (CRAB) has emerged worldwide. As early as 2013, the US Centers for Disease Control and Prevention listed multi-drug resistant A. baumannii (MDRAB) including CRAB as a serious threat[3], and the World Health Organization listed CRAB as one of the three most critical threats in a global drug-resistant warning in 2017[4]. The prevalence of A. baumannii and its resistance to carbapenems varies from country to country. For instance, the European Bacterial Resistance Surveillance Report shows that the rate of *Acinetobacter* resistant to carbapenem in Europe in 2017 was 33.4% (95% CI 32%-35%), but it was as high as 96.2% in Croatia (95% CI 92%–98%) [5]. In the US, 49.5% of A. baumannii is resistant to carbapeems, while in Singapore, India, and Pakistan, it is 50%, 85%, and 62-100%, respectively[6,7]. The prevalence of CRAB is also very high in China. The surveillance data released by CHINET (China Antimicrobial Surveillance Network; http://chinets.com/Chinet), a national network in China, have shown that A. baumannii isolates ranked the 5th in the number of microbial isolates from all types of clinical samples in 2018, with 77.1% and 78.1% of A. baumannii isolates resistant to imipenem and meropenem, respectively[8].

Infections caused by CRAB can lead to serious consequences. A previous study has
demonstrated that patients with CRAB infection had longer average length of stay (LOS) in ICUs
(13.1 vs. 10.5 days) and \$11,359 higher average in-hospital costs than those with carbapenem-

> 79 susceptible *A. baumannii* (CSAB) infection[9]. Another previous study has found that the 80 mortality rate of patients with CRAB infection is 2.22-fold that of patients with CSAB 81 infection[10]. A case-control study conducted by our team have also showed that the 28-day 82 survival rate of patients with bloodstream CRAB infection was 66.17%, lower than the 96.95% of 83 those with bloodstream CSAB infection[11].

It is well known that A. baumannii including CRAB usually colonized in the respiratory tract of hospitalized patients, in particular those with mechanical ventilation [12,13]. The colonization of CRAB in the respiratory tract has been found as a major risk factor for subsequent CRAB infection[14]. However, ICU patients may carry CRAB in intestine on admission or acquire CRAB during the ICU stay[15]. Patients with intestinal carriage of multi-drug resistant organisms (MDRO), in particular carbapenem-resistant *Enterobacteriaceae* (CRE), may sever as a reservoir for further dissemination in ICU[16] and could be associated with be associated with an increased risk of subsequent MDRO infections[17]. Therefore, active screening the carriage of CRE, which is usually performed using rectal swabs, has been recommended as a core component of the infection control bundle[7]. However, by contrast to CRE, the prevalence of CRAB intestinal carriage among ICU patients is much less studied and the risk factors of acquisition of CRAB intestinal carriage remains largely unknown. In addition, it remains to be determined whether CRAB intestinal carriage leads to increased risks of subsequent CRAB infection. To address these questions, we therefore conducted this study.

- - 99 Methods

100 Study settings

An observational study was conducted in a 50-bed general ICU of a 4,300-bed university

Page 7 of 37

1

BMJ Open

2	
3	
4	
5	
6 7	
/ 8	
8 9	
10	
11	
12	
13	-
14	
15	
16 17	
17	ſ
19	
20	
21	
22	
23	
24	
25	
26 27	-
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

hospital in China. From May 2017 to April 2018, all patients admitted to the ICU were subjected 102 to collecting a rectal swab within 48 h of admission and thereafter weekly. For patients hospitalized 103 for less than 3 days, a rectal swab was collected only once within 48 h of admission. 104 105 **Inclusion and exclusion criteria** 106 107 Inclusion criteria: This study included all patients who were ≥ 18 years of age, admitted to the ICU, and underwent collection of rectal swabs. 108 Exclusion criteria: 1) patients who did not receive a rectal swab within 48 h of admission to 109 110 ICU; or 2) patients who were eligible for weekly follow-up collection of rectal swabs but did not receive subsequent sampling; or 3) patients with CRAB infection on admission. 111 112 ėų. Ney

Patient and public involvement 113

Patients were involved in this study. 114

115

Definitions 116

Patients with CRAB intestinal carriage were defined as those with CRAB isolated from a 117 118 rectal swab, while patient without CRAB intestinal carriage referred to those whose swabs were all negative for CRAB during the ICU stay. Patients with CRAB isolated from a rectal swab 119 collected within 48 h of ICU admission were defined as those with CRAB intestinal carriage on 120 121 ICU admission. The acquisition of CRAB intestinal carriage referred to a patient who had a CRABnegative rectal swab collected within 48 h of ICU admission but had CRAB from a swab collected 122 123 after 48 h. CRAB infection was defined as the growth of CRAB from clinical specimens in the 124 presence of clinical manifestations of infection[18]. Subsequent CRAB infection referred to

125 CRAB infection developed after the collection of a CRAB-positive rectal swab for patients with
126 CRAB intestinal carriage and CRAB infection developed after 48 h admission to the ICU for
127 patients without CRAB intestinal carriage.

Screening for CRAB by rectal swabs

For collecting rectal swabs, ready-to-use transport medium swabs (HBPT004; Hopebio Biotechnology, Qingdao, China) was inserted about 2–3 cm into the patient's anus and then gently rotated. After sampling, the swab was inserted into the ready-to-use transport medium and transported to the laboratory within 2 h. Rectal swabs were inoculated onto modified CHROMagar *Acinetobacter* colorimetric plates (Chromagar; Paris, France) containing 2 mg/L meropenem using the partition-and-streaking method[19,20]. Plates were then cultured at 37°C for 18–24 h[20].

136 Data collection and statistical analysis

In this study, the patient's demographic data, underlying diseases, invasive procedures,
 medical orders, and use of antimicrobial agents were retrieved from the electronic medical record
 system. Two professional statisticians collaborated to clean the data.

We performed two types of comparison. First, a case control study was performed to analyze risk factors of the acquisition of CRAB intestinal carriage in ICU. Patients with ICU acquisition of CRAB intestinal carriage were assigned to the case group, while those without CRAB intestinal carriage during their ICU stay were assigned to the control group. All potential factors were initially subjected to the univariate analysis. Quantitative data were described by the median (interquartile range) and were then analyzed using a rank-sum test. Qualitative data were described by number of cases (composition ratio) and were then analyzed using the chi-square test or Fisher exact probability method when applied. All variables showing P value less than 0.2 in the

Page 9 of 37

BMJ Open

univariate analysis were then included into the multiple logistic regression using the forward
selection stepwise regression method[21,22]. Odds ratio (OR) and 95% confidence interval (CI)
were calculated. The Hosmer-Lemeshow method was used to test the goodness-of-fit of the
multiple logistic model[23].

Second, a retrospective cohort study was performed to address whether intestinal CRAB carriage could lead to an increased likelihood of subsequent CRAB infection. In this cohort study, the exposed group comprised patients with CRAB intestinal carriage either detected on ICU admission or acquired during the ICU stay, while the non-exposed group consisted of those without CRAB intestinal carriage. As the impact of CRAB intestinal carriage on subsequent infection may also be influenced by other factors such as patient demographics, underlying diseases, antimicrobial use and medical operations, we included these factors for analysis instead of evaluating CRAB carriage alone. Survival curves (probability of CRAB infection) in patients with and without CRAB intestinal carriage were mapped using the Kaplan–Meier method[24,25]. After introducing the interaction term of time and each variable (X*ln (T)) into the COX model [24,25], the proportional hazards hypothesis was tested, and the results showed no statistical significance (P < 0.05). Therefore, the COX regression (proportional hazards model) was used for univariate and multivariate analyses. Hazard ratio (HR) and 95% CI were calculated to explore whether CRAB intestinal carriage was a risk factor for subsequent CRAB infection. The Omnibus method was used to test the goodness-of-fit of the multivariate COX model[26]. We also performed subgroup analyses to investigate whether CRAB intestinal carriage on ICU admission and that acquired in ICU had different impact on subsequent CRAB infection using the same statistical method as describe above. For the subgroup analysis, patients with CRAB intestinal carriage on ICU admission and those with ICU acquisition of CRAB intestinal carriage were assigned to two

exposed subgroups, respectively, while those without CRAB intestinal carriage were assigned tothe non-exposed group.

All statistical analyses were performed using SPSS 21.0 (IBM–SPSS Inc; Armonk, NY, US)
with a 0.05 two-sided test level.

Results

Some patients (6.87%) had CRAB intestinal carriage on ICU admission and more (12.85%)
acquired in ICU

From May 1, 2017 to April 30, 2018, a total of 1,605 patients were admitted to the ICU, of which 382 (23.8%) were not screened during their hospital stay. Of which the 382 patients, 323 (84.55%) stayed in the ICU for no more than 2 days, while the other 59 (15.45%) patients were missed for sampling. In addition, 118 patients (118/1,605, 7.4%) were excluded due to inappropriate or incomplete sampling including 104 patients whose first rectal swab was collected 48 h after admission and 14 patients who were not screened weekly. A total of 144 (144/1,605, 8.97%) had CRAB infection on ICU admission and were therefore also excluded. Taken together, a total of 961 patients (620 males, 64.52% and 341 female 35.48%) were included in the analysis, with an average age of 54 (44–68) years (Figure 1).

Among the 961 patients, 66 (6.87%, 95% CI 5.27%–8.47%) had CRAB intestinal carriage on ICU admission. For the remaining 895 patients, 115 acquired (12.85%, 95% CI 10.66%–15.04%) CRAB intestinal carriage during their ICU stay with an average age of 51 (40–70) and a 1.61 male/female ratio (71 male and 44 female).

193 Multiple risks factors of acquiring CRAB intestinal carriage were identified

Page 11 of 37

BMJ Open

The univariate analysis showed that APACHE II score (the patient's disease severity), respiratory failure, renal dysfunction, hematological disease, acute pancreatitis, indwelling central venous catheter, gastric tube feeding, nebulization, and use of vancomycin, aminoglycosides, carbapenems, tigecycline, and antifungal agents are risk factors for the acquisition of CRAB intestinal carriage in the ICU. Multiple logistic regression including all variables with P < 0.2 in the univariate analysis showed that APACHE II score, pancreatitis, hematological diseases, gastric tube feeding, and use of carbapenems were independent risk factors for acquiring CRAB intestinal carriage during the ICU stay (Table 1). For APACHE II score, the model estimated that the increase of the score by 1 point would lead to a 4% increase of the risk of acquiring CRAB intestinal carriage in the ICU. Hosmer-Lemeshow test generated a 0.73 P value (χ^2 =5.25, df=8), suggesting adequate goodness-of-fit of the multiple logistic model.

CRAB intestinal carriage led to increased risks of subsequent CRAB infection

During the study period, 112 of the 961 patients (11.65%, 95% CI 9.63%–13.68%) developed CRAB infections during the ICU stay. As for the infection type, lower respiratory tract infections were the most common (n=82, 73.21%), followed by bloodstream infections (n=9, 8.04%), surgical site infection (n=8, 7.14%), while 13 patients (11.61%) had infections at other sites. CRAB intestinal carriage was a risk factor for subsequent CRAB infection (HR 2.69, 95% CI 1.85–3.92; P < 0.001; Figure 2). The 90-day cumulative probability of no CRAB infection in patients with and without CRAB intestinal carriage was 68.0% (95% CI 60.3%-75.7%) and 24.6% (95% CI 12.2%–37.0%), respectively (P<0.001). In the univariate analysis, CRAB intestinal carriage, APACHE II score, respiratory failure, hepatic insufficiency, hematological disease, pancreatitis, mechanical ventilation, placement of a central venous catheter, gastric tube feeding,

and the use of carbapenems were identified as risk factors for subsequent CRAB infection. In the
COX multivariate analysis, CRAB intestinal carriage was also found to be an independent risk
factor for subsequent CRAB infection (HR 1.75, 95% CI 1.16–2.62; Table 2). Omnibus test
showed a log likelihood difference of 79.82 and generated a less than 0.001 P value, suggesting
adequate goodness-of-fit of the COX model.

To evaluate whether CRAB intestinal carriage on admission and that acquired during the ICU stay has different impact on subsequent CRAB, we performed subgroup analyses. In the subgroup COX multivariate analysis, both CRAB intestinal carriage on admission and that acquired during the ICU stay were an independent risk factor for subsequent CRAB infection (HR 2.08, 95% CI 1.17–3.68 for carriage on admission, Table S1 in the Supplementary file; HR 1.81, 95% CI 1.14– 2.88 for acquired carriage, Table S2). Omnibus test showed log likelihood difference of 66.06 and 74.18, respectively, and generated a less than 0.001 P value in the subgroup analysis, suggesting adequate goodness-of-fit of the COX model.

In addition to CRAB intestinal carriage, the use of ventilator (HR 2.37, 95% CI 1.15–4.89),
liver dysfunction (HR 2.23, 95% CI 1.29–3.85), and the use of carbapenems (HR 2.75, 95% CI 1.74–4.35), were also identified as independent risk factors of subsequent CRAB infection, while
the use of cephalosporins (HR 0.44, 95% CI 0.27–0.73) and cephamycins (HR 0.49, 95% CI 0.28–
0.84) were protective factors (Table 2).

₅ 235

236 Discussion

In this study, we found that in a region with a high CRAB prevalence, 6.87% of patients
(83.3% of those patients were transferred from other hospitals and 25.8% of them were stayed in
emergency ICU before admitted to the ICU) admitted to the ICU had CRAB intestinal carriage on

Page 13 of 37

BMJ Open

ICU admission, while an additional 11.97% of patients acquired CRAB intestinal carriage during the ICU stay. The overall CRAB intestinal carriage rate was therefore 18.84%. This rate was similar with a study conduct in Thailand, in which 5.45% (15/275) of patients had intestinal carriage on ICU admission and 13.59% (28/206) patients acquired CRAB during their ICU stay[15] and with another study in Italy[27], in which 18.92%(74/391) of patients carried CRAB during ICU stay. However, the rate was significantly higher than those in Turkey (7.22%, 55/762)[28], Brazil (13.23%, 43/325)[29], USA (13.46%, 49/364)[30], and South Korea (15.06%, 168/1,115)[14], although other sites such as respiratory secretions were also screened in these studies. This difference may be related to the local CRAB prevalence.

Interestingly, we found that gastric tube feeding is a risk factor for both acquiring CRAB intestinal carriage of CRAB in ICU, which is consistent with the findings of Kiddee et al[15], in which tube feeding was also a high-risk factor for carriage of Gram-negative bacilli. This may suggest an entry point of CRAB into human intestine. In this study, 73.0% (84/115) of patients who acquired CRAB intestinal carriage using tube feeding. During the study, we performed a one-day snapshot sampling of the feeding tubes (at the tube port), feeding contents and containers for preparing feeding contents in the ICU and found the presence of CRAB in the tube feeding content (24.0%, 6/25), at the tube port (33.3%, 3/9) and the tube feeding containers (7.1%, 1/14), indicating contamination. This may be a key point for intervention in the ICU.

We also found that patients with CRAB intestinal carriage were more likely to develop subsequent CRAB infection than those without carriage. The survival curve in this study showed that the cumulative infection rates in 90 days in patients with and without CRAB intestinal carriage were 75.4% and 32%, respectively, similar to those reported in other studies[30]. However, the HR was 1.75, which is much lower than those in previous studies[15,30,31]. This may be due to

the fact that healthcare associated infections in our ICU were mainly caused by lower respiratory infections, which accounting for more than 70% of infections, while we only screened the colonization of the intestines. Interestingly, we found that the use of cephalosporins and cephamycins led to lower risks of subsequent CRAB infection, while carbapenem use led to increased risks. The association between CRAB and carbapenem use has been documented before[30,32]. CRAB is usually resistant to cephalosporins and cephamycins. The use of cephalosporins and cephamycins may reflect the fact that patients did not receive carbapenems and could therefore result in reduced selection pressure for CRAB.

There are a few limitations in this study. First, this is a single center study and the findings may not be generalized. Second, we used a modified CHROMagar Acinetobacter chromogenic plate to screen CRAB from rectal swabs. Not all screened CRABs were confirmed using Vitek II or other methods and there may be false negative results. Nonetheless, at the beginning of this study, we confirmed that the 58 CRAB strains grown on the chromogenic medium were indeed all A. baumannii by MALDI-TOF-MS and were all non-susceptible to imipenem or meropenem as determined using the agar dilution method recommended by the Clinical and Laboratory Standards Institute (CLSI)[20]. Third, we only collected the patients' rectal swabs for investigating CRAB carriage. Studies have shown concurrent swab collection of skin, oropharyngeal, and airway secretions in addition to rectal swabs, may improve sensitivity. However, the sample sizes in these studies were small with only 21 and 34 cases, respectively [12,33]. Nonetheless, for practical reasons and the aim to study CRAB intestinal carriage, we only collected rectal swabs. Last, this study failed to collect for the first rectal swab specimen within 48 h of ICU admission from 23.8% of the patients. Nonetheless, 84.55% of these patients stayed in the ICU for less than 48 h.

Page 15 of 37

BMJ Open

1 2		
2 3 4	286	In conclusion, some patients had CRAB intestinal carriage but more acquired during their ICU
5 6	287	stay. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were independent
7 8	288	risk factors of the acquisition of CRAB intestinal carriage. Patients with CRAB intestinal carriage
9 10 11	289	were more likely to have subsequent CRAB infection than those without.
12 13	290	
14 15	291	Acknowledgments
16 17 18	292	We would like acknowledge the physicians and allied health staff of the ICU and the Department
19 20	293	of Electronic Medical Record system of West China Hospital.
21 22	294	
23 24 25	295	Author contributions
25 26 27	296	Fu Qiao, Zhiyong Zong and Chuanmin Tao contributed to study conception and design. Shichao
28 29	297	Zhu and Yan Kang contributed to acquisition of data. Lin Cai collected rectal swabs and
30 31	298	transported to the laboratory. Fu Qiao, Wenzhi Huang and Shan Gao analyzed and interpreted data.
32 33 34	299	Li Wei inoculated rectal swabs onto plates cultured for 18-24h. Fu Qiao, Zhiyong Zong and
35 36	300	Chuanmin Tao drafted the manuscript. All authors revised the manuscript for important intellectual
37 38	301	content. All authors read and approved the final manuscript.
39 40 41	302	
42 43	303	Funding
44 45	304	The work was supported by grants from the National Natural Science Foundation of China (project
46 47 48	305	no. 81772233, 81661130159 and 81861138055), West China Hospital of Sichuan University
49 50	306	(1.3.5 project for disciplines of excellence, project no. ZYYC08006) and the Newton Advanced
51 52	307	Fellowship, Royal Society, UK (NA150363).
53 54 55	308	
56 57		
58 59		1.
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Competing interests

The authors declare that they have no competing interests.

Patient consent for publication

Not required.

Ethics approval

This project was approved by the Ethics Committee of West China Hospital of Sichuan University.

BMJ Open

Availability of data and materials

The datasets during the current study available from the corresponding author on reasonable

67.0

request.

References

Wong D, Nielsen TB, Bonomo RA, et al. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017;30:409-47. doi:10.1128/CMR.00058-16

Wang J, Liu F, Tartari E, et al. The Prevalence of Healthcare-Associated Infections in Mainland China: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol 2018;**39**:701–9. doi:10.1017/ice.2018.60

CDC. The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and Prevention. 2019.https://www.cdc.gov/drugresistance/biggest_threats.html (accessed 7 Aug 2019). Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/ (accessed 7 Aug 2019).

- 5 European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe - Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm: ECDC: 2018.
- 6 Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist 2018;11:1249-60. doi:10.2147/IDR.S166750

BMJ Open

2 3 Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, 340 7 4 341 Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. WHO. 5 2017.http://www.who.int/infection-prevention/publications/guidelines-cre/en/ (accessed 7 Aug 342 6 343 2019). 7 344 8 CHINET Data Cloud. http://chinets.com/Chinet (accessed 7 Aug 2019). 8 9

9 345 9 Lemos EV, de la Hoz FP, Alvis N, *et al.* Impact of carbapenem resistance on clinical and
 346 economic outcomes among patients with Acinetobacter baumannii infection in Colombia. *Clin* 347 *Microbiol Infect* 2014;20:174–80. doi:10.1111/1469-0691.12251

- 12 348
 10 Lemos EV, de la Hoz FP, Einarson TR, *et al.* Carbapenem resistance and mortality in patients
 349 with Acinetobacter baumannii infection: Systematic review and meta-analysis. *Clinical* 350 *Microbiology and Infection* 2014;20:416–23. doi:10.1111/1469-0691.12363
- 16 351 11 Huang W, Qiao F, Wang Y, *et al.* Risk factors and prognosis of patients with bloodstream
 17 352 infection due to carbapenem-resistant Acinetobacter baumannii. *Chinese Journal of Infection* 18 353 *Control* 2015;14:668–71.
- ¹⁹ 354 12 Nutman A, Lerner A, Schwartz D, *et al.* Evaluation of carriage and environmental
 ¹⁹ 355 contamination by carbapenem-resistant Acinetobacter baumannii. *Clinical microbiology and* ¹⁰ 356 *infection : the official publication of the European Society of Clinical Microbiology and Infectious* ¹³ 357 *Diseases* 2016;**22**:949.e5-949.e7. doi:10.1016/j.cmi.2016.08.020
- 358 13 Cheng VCC, Chen JHK, So SYC, *et al.* Use of fluoroquinolones is the single most important
 359 risk factor for the high bacterial load in patients with nasal and gastrointestinal colonization by
 360 multidrug-resistant Acinetobacter baumannii. *European Journal of Clinical Microbiology & Infectious Diseases* 2015;**34**:2359–66. doi:10.1007/s10096-015-2489-4
- 362 362 14 An JH, Kim Y-H, Moon J-E, *et al.* Active surveillance for carbapenem-resistant Acinetobacter
 363 baumannii in a medical intensive care unit: Can it predict and reduce subsequent infections and
 364 the use of colistin? *Am J Infect Control* 2017;45:667–72. doi:10.1016/j.ajic.2017.01.016
- 365
 365
 365
 366
 366
 366
 367
 368
 368
 368
 369
 369
 360
 360
 361
 362
 363
 364
 365
 365
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
 368
- 17 McConville TH, Sullivan SB, Gomez-Simmonds A, et al. Carbapenem-resistant 40 372 41 Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in 373 42 critically PLoS ONE 374 ill patients. an observational study. 2017;**12**:e0186195. 43 375 doi:10.1371/journal.pone.0186195 44
- 376 18 Liu JY, Wu YH, Cai M, *et al.* Point-prevalence survey of healthcare-associated infections in
 377 Beijing, China: a survey and analysis in 2014. *J Hosp Infect* 2016;**93**:271–9.
 47 378 doi:10.1016/j.jhin.2016.03.019
- ⁴⁸ 379
 ⁴⁹ 380
 ⁵⁰ 381
 ⁴⁹ Med 2013;**33**:193-5. doi:10.3343/alm.2013.33.3.193
- 382 20 Wei L, Qiao F, Lin J, *et al.* Modified CHROMagar Acinetobacter chromogenic culture
 383 combined with MALDI-TOF-MS for rapid screening of carbapenem-resistant Acinetobacter
 384 baumannii from human gut. *Chin J Nosocomiol* 2018;28:2893–7.
- 55 385 21 Hosmer DW, Lemeshow S. Applied Logistic Regression, Second Edition. 2nd edition. New
- 56 57
- 58

York. NY & 2000. John Wilev Sons : https://onlinelibrary.wiley.com/doi/book/10.1002/0471722146 22 Esterly JS, Griffith M, Qi C, et al. Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother 2011;55:4844–9. doi:10.1128/AAC.01728-10 23 Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model. Theory Methods 1980;**9**:1043-69. Communications in **Statistics** _ and doi:10.1080/03610928008827941 24 Lee Y-T, Wang Y-C, Kuo S-C, et al. Multicenter Study of Clinical Features of Breakthrough Acinetobacter Bacteremia during Carbapenem Therapy. Antimicrob Agents Chemother 2017;61. doi:10.1128/AAC.00931-17 25 Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. 2000 edition. Springer 2000. 26 Lin DY, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 1993;80:557-72. doi:10.1093/biomet/80.3.557 27 Mammina C, Bonura C, Vivoli AR, et al. Co-colonization with carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii in intensive care unit patients. Scand J Infect Dis 2013;45:629-34. doi:10.3109/00365548.2013.782614 28 Karaaslan A, Soysal A, Altinkanat Gelmez G, et al. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. Journal of Hospital Infection 2016;92:67-72. doi:10.1016/j.jhin.2015.09.011 29 DalBen MF, Basso M, Garcia CP, et al. Colonization pressure as a risk factor for colonization by multiresistant Acinetobacter spp and carbapenem-resistant Pseudomonas aeruginosa in an intensive care unit. Clinics (Sao Paulo, Brazil) 2013;68:1128-33. doi:10.6061/clinics/2013(08)11 30 Latibeaudiere R. Rosa R. Laowansiri P. et al. Surveillance cultures growing carbapenem-Resistant Acinetobacter baumannii predict the development of clinical infections: a retrospective cohort study. Clin Infect Dis 2015;60:415-22. doi:10.1093/cid/ciu847 31 Tseng W-P, Chen Y-C, Chen S-Y, et al. Risk for subsequent infection and mortality after hospitalization among patients with multidrug-resistant gram-negative bacteria colonization or infection. Antimicrobial Resistance & Infection Control 2018;7:93. doi:10.1186/s13756-018-0388-z 32 Blanco N, Harris AD, Rock C, et al. Risk Factors and Outcomes Associated with Multidrug-Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. Antimicrobial Agents and Chemotherapy 2017;62. doi:10.1128/AAC.01631-17 33 Marchaim D, Navon-Venezia S, Schwartz D, et al. Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii. J Clin Microbiol 2007;45:1551-5. doi:10.1128/JCM.02424-06 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends

Figure 1. Patient selection flow algorithm

carriage, while the dashed line represents those without.

Figure 2. Survival curves of patients with and without CRAB intestinal carriage (cumulative

probability of no CRAB infection). The solid line represents patients with CRAB intestinal

.nfx ul line repro.

1	
2	
3	426
4 5	
6	427
7	
8 9	428
10	400
11	429
12 13	430
14	100
15	
16 17	
18	
19	
20 21	
21	
23	
24	
25 26	
27	
28	
29 30	
31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
41	
42	
43 44	
45	
46	
47 48	
49	
50	
51 52	
52 53	
54	
55	
56 57	
58	

59

60

Characteristics	Patients with acqu	Patients with acquiring CRAB intestinal carriage			Multivariate analysis	
	Yes (n=115)	No (n=780)	OR (95% CI)	Р	OR (95% CI)	ŀ
Demographics	\checkmark					
Sex, male	71 (61.74%)	502 (64.36%)	1.12 (0.75–1.68)	0.590		
Ethnicity, Han Chinese	108 (93.91%)	712 (91.28%)	1.47 (0.66–3.29)	0.338		
Age (median)	51 (40–70)	56 (45–68)	/	0.207		
Jnderlying disease						
Myocardial infarction	1 (0.87%)	4 (0.51%)	1.7 (0.19–15.36)	0.500		
Peripheral vascular disease	11 (9.57%)	62 (7.95%)	1.22 (0.62–2.40)	0.550		
Cerebrovascular disease	4 (3.48%)	36 (4.62%)	0.74 (0.26–2.13)	0.582		
Dementia	1 (0.87%)	0 (0%)		0.130		
Connective tissue disease	1 (0.87%)	12 (1.54%)	0.56 (0.07-4.36)	0.887		
Peptic Ulcer	5 (4.35%)	25 (3.21%)	1.37 (0.51–3.66)	0.720		
Hemiplegia	0 (0%)	1 (0.13%)	/	1.000		
Hypertension	36 (31.30%)	180 (23.08%)	1.52 (0.99–2.33)	0.054		
Tuberculosis	1 (0.87%)	12 (1.54%)	0.56 (0.07-4.36)	0.887		
COPD	10 (8.70%)	54 (6.92%)	1.28 (0.63–2.59)	0.490		

T-1.1. 1 D: 1- f- .4. £ ... 41. : _ : _ : CDAD intertional 1----the ICLL at

BMJ Open

		2			
Carbapenems	82 (71.30%)	295 (37.82%)	4.09 (2.66–6.27)	<0.001	1.84 (1.11–3.07)
Aminoglycosides	12 (10.43%)	31 (3.97%)	2.81 (1.40-5.65)	0.002	
Vancomycin	13 (11.30%)	32 (4.10%)	2.98 (1.51-5.86)	0.001	
Cephalosporin	35 (30.43%)	312 (40.00%)	0.66 (0.43-1.00)	0.049	0.59 (0.37-0.95)
Antimicrobial use					
Bronchoscope	1 (0.87%)	21 (2.69%)	0.32 (0.04–2.38)	0.390	
Nebulizer fiberoptic	73 (63.48%)	368 (47.18%)	1.95 (1.30–2.92)	0.001	
Tube feeding	84 (73.04%)	280 (35.90%)	4.84 (3.13-7.49)	<0.001	3.35 (2.03-5.51)
Indwelling catheter	110 (95.65%)	742 (95.13%)	1.13 (0.43–2.92)	0.810	
Ventilator	101 (87.83%)	666 (85.38%)	1.23 (0.68–2.23)	0.490	
CVC	78 (67.83%)	424 (54.36%)	1.77 (1.17–2.68)	0.010	
Surgery	82 (71.30%)	645 (82.69%)	0.52 (0.33-0.81)	0.004	0.40 (0.24–0.68)
Medical operation					
Pancreatitis	35 (30.43%)	77 (9.87%)	3.99 (2.52–6.34)	<0.001	2.16 (1.28–3.67)
Hematological disease	71 (61.74%)	268 (34.36%)	3.08 (2.06-4.62)	<0.001	2.26 (1.42-3.58)
Liver dysfunction	5 (4.35%)	37 (4.74%)	0.91 (0.35–2.37)	0.850	
Diabetes	21 (18.26%)	102 (13.08%)	1.48 (0.89–2.49)	0.132	
Heart failure	7 (6.09%)	19 (2.44%)	2.99 (1.28-7.01)	0.060	
Kidney failure	11 (9.57%)	31 (3.97%)	2.56 (1.25-5.24)	0.010	
Respiratory failure	40 (34.78%)	163 (20.90%)	2.02 (1.33-3.07)	0.001	

Fluoroquinolones	26 (22.61%)	137 (17.56%)	1.37 (0.85–2.20)	0.190		
Antifungal agents	49 (42.61%)	138 (17.69%)	3.45 (2.29–5.22)	<0.001		
Cephamycins	16 (13.91%)	253 (32.44%)	0.34 (0.19–0.58)	<0.001		
Lincomycin	3 (2.61%)	61 (7.82%)	0.32 (0.10-1.02)	0.040		
Tigecycline	19 (16.52%)	69 (8.85%)	2.04 (1.18-3.54)	0.010		
АРАСНЕ ІІ	21.5 (17–26)	17 (12–22)	/	<0.001	1.04 (1.01–1.07)	0.013
Charlson score	2 (1–5)	3 (2–4)	/	0.063		
Sharing room with other patients with	20 (17.39%)	153 (19.62%)	0.86 (0.52–1.44)	0.573		
CRAB intestinal carriage						
	1. 01/0					

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multiple logistic analysis are highlighted in bold.

 BMJ Open

	Subsequent CRAB infection during the ICU stay		Univariate analysis		Multivariate analysis		
Item	Yes (n=112)	No (n=849)	HR (95% CI)	Р	HR (95% CI)	Р	
CRAB intestinal carriage	51 (45.54%)	130 (15.31%)	2.69 (1.85-3.92)	<0.001	1.75 (1.16-2.62)	0.00	
Demographics							
Sex, male	72 (64.29%)	548 (64.55%)	1.01 (0.68–1.48)	0.979			
Ethnicity, Han Chinese	106 (94.64%)	774 (91.38%)	1.68 (0.74–3.83)	0.215			
Age (median)	53 (42–67)	55 (44-68)	1.00 (0.99–1.01)	0.940			
APACHE II	21 (17–26)	17 (12–22)	1.06 (1.03-1.08)	<0.001			
Charlson score	3 (1–5)	3 (1.5–4)	0.99 (0.90-1.09)	0.869			
Underlying disease							
Myocardial infarction	0 (0%)	6 (0.71%)	0.05 (0-6037.12)	0.615			
Peripheral vascular disease	13 (11.61%)	66 (7.77%)	1.27 (0.71-2.27)	0.418			
Cerebrovascular disease	4 (3.57%)	36 (4.24%)	1.02 (0.37-2.77)	0.971			
Dementia	0 (0%)	1 (0.12%)	0.05 (0-5419.76)	0.609			
Connective tissue disease	1 (0.89%)	12 (1.41%)	0.72 (0.10-5.12)	0.739			
Peptic ulcer	4 (3.57%)	27 (3.18%)	1.07 (0.39–2.91)	0.891			
Hemiplegia	1 (0.89%)	0 (0%)	5.24 (0.73–37.73)	0.100			
Hypertension	28 (25.00%)	199 (23.44%)	1.06 (0.69–1.63)	0.792			
Tuberculosis	2 (1.79%)	12 (1.41%)	1.12 (0.28-4.54)	0.874			
COPD	11 (9.82%)	55 (6.48%)	1.46 (0.79–2.73)	0.231			
Respiratory failure	47 (41.96%)	170 (20.02%)	2.14 (1.47–3.12)	<0.001			
Kidney failure	9 (8.04%)	42 (4.95%)	1.61 (0.81–3.18)	0.171			
Heart failure	4 (3.57%)	27 (3.18%)	1.28 (0.47–3.47)	0.631			
Diabetes	15 (13.39%)	118 (13.90%)	0.85 (0.50-1.47)	0.570			
Liver dysfunction	17 (15.18%)	34 (4.00%)	3.07 (1.83-5.15)	<0.001	2.23 (1.29-3.85)	0.004	
Hematological disease	60 (53.57%)	314 (36.98%)	1.71 (1.18–2.49)	0.005			
Pancreatitis	29 (25.89%)	107 (12.60%)	1.85 (1.21-2.83)	0.004			

Surgery	83 (74.11%)	711 (83.75%)	0.76 (0.49–1.16)	0.199		
CVC	83 (74.11%)	470 (55.36%)	2.03 (1.33-3.10)	0.001		
Ventilator	103 (91.96%)	719 (84.69%)	2.15 (1.09-4.26)	0.027	2.37 (1.15-4.89)	0.019
Indwelling catheter	109 (97.32%)	808 (95.17%)	1.91 (0.61-6.03)	0.269		
Tube feeding	80 (71.43%)	332 (39.10%)	2.40 (1.58-3.62)	<0.001		
Nebulizer fiberoptic	72 (64.29%)	413 (48.65%)	1.13 (0.76–1.67)	0.542		
Bronchoscope	5 (4.46%)	18 (2.12%)	1.31 (0.53-3.21)	0.561		
Antimicrobial use						
Cephalosporin	20 (17.86%)	236 (27.80%)	0.51 (0.31-0.82)	0.006	0.44 (0.27-0.73)	0.001
Vancomycin	3 (2.68%)	35 (4.12%)	0.67 (0.21-2.12)	0.496		
Aminoglycosides	1 (0.89%)	23 (2.71%)	0.25 (0.04–1.82)	0.173		
Carbapenems	82 (73.21%)	351 (41.34%)	3.05 (2.01-4.64)	<0.001	2.75 (1.74-4.35)	<0.00
Fluoroquinolones	32 (28.57%)	154 (18.14%)	1.00 (0.66–1.52)	0.986		
Antifungal agents	23 (20.54%)	157 (18.49%)	1.02 (0.64–1.61)	0.944		
Cephamycins	16 (14.29%)	196 (23.09%)	0.48 (0.28-0.81)	0.006	0.49 (0.28-0.84)	0.01(
Lincomycin	5 (4.46%)	35 (4.12%)	0.94 (0.38–2.31)	0.897		
Tigecycline	13 (11.61%)	65 (7.66%)	1.40 (0.78–2.49)	0.259		
DPD, chronic obstructive pulm triables with $P < 0.05$ in the mu	•					

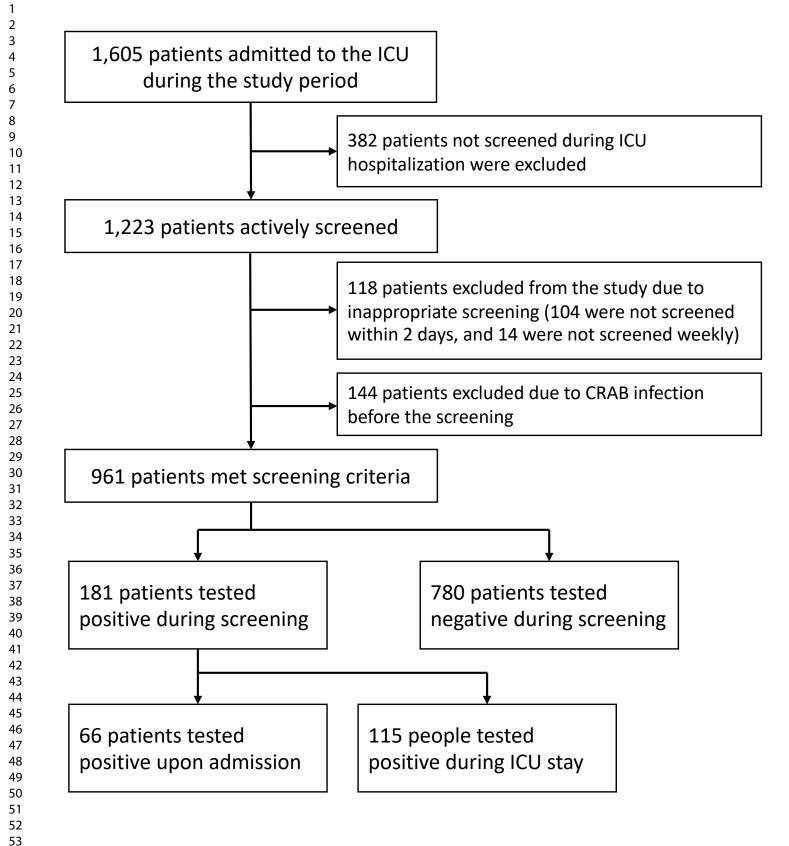
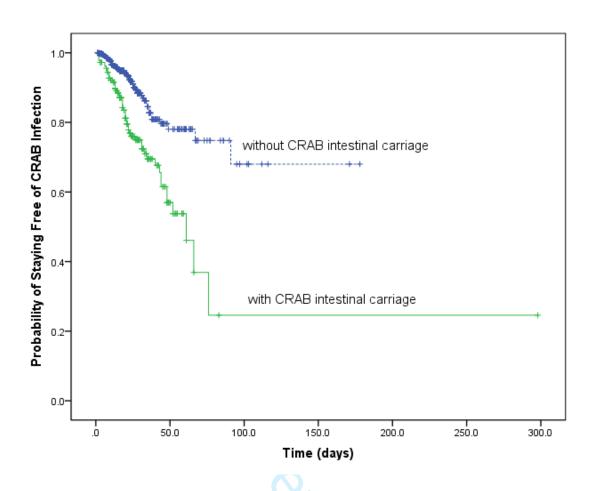



Figure 1. Patient selection flow algorithm

Figure 2. Survival curves of patients with and without CRAB intestinal carriage (cumulative probability of no CRAB infection). The solid line represents patients with CRAB intestinal carriage, while the dashed line represents those without.

Supplementary files

Table S1 Variables associated with developing subsequent CRAB infection during the ICU stay (exposed group was those patients with intestinal carriage on ICU admission)

Item	Subsequent CRAB infection during the ICU stay		CU Univariate analysis	Univariate analysis		Multivariate analysis	
	Yes (n=80)	No (n=766)	HR (95% CI)	Р	HR (95% CI)	Р	
CRAB intestinal carriage	19 (23.75%)	47 (6.14%)	2.98 (1.78-5.00)	<0.001	2.08 (1.17-3.68)	0.012	
Demographics							
Sex, male	50 (62.50%)	499 (65.14%)	1.09 (0.70-1.72)	0.696			
Ethnicity, Han Chinese	77 (96.25%)	697 (90.99%)	2.66 (0.84-8.45)	0.096			
Age (median)	54 (42-68)	55 (44-68)	1.00 (0.99-1.02)	0.527			
APACHE II	20 (15-26)	17 (12-22)	1.07 (1.04-1.10)	<0.001	1.04 (1.01-1.07)	0.020	
Charlson score	3 (1-5)	3 (2-4)	1.03 (0.91-1.15)	0.659			
Underlying disease							
Myocardial infarction	0 (0%)	5 (0.65%)	0.93 (0.23-3.80)	0.923			
Peripheral vascular disease	11 (13.75%)	57 (7.44%)	1.61 (0.85-3.04)	0.143			
Cerebrovascular disease	3 (3.75%)	33 (4.31%)	1.01 (0.32-3.21)	0.983			
Dementia	0 (0%)	0 (0%)	/	/			
Connective tissue disease	1 (1.25%)	11 (1.44%)	0.91 (0.13-6.52)	0.921			
Peptic ulcer	3 (3.75%)	23 (3.00%)	1.06 (0.33-3.36)	0.923			
Hemiplegia	1 (1.25%)	0 (0%)	4.30 (0.59-31.23)	0.149			
Hypertension	18 (22.50%)	173 (22.58%)	1.07 (0.63-1.80)	0.810			
Tuberculosis	1 (1.25%)	12 (1.57%)	0.65 (0.09-4.68)	0.669			
COPD	11 (13.75%)	45 (5.87%)	2.19 (1.16-4.13)	0.016	2.42 (1.23-4.76)	0.011	

Respiratory failure	34 (42.50%)	143 (18.67%)	2.52 (1.61-3.93)	< 0.001		
Kidney failure	5 (6.25%)	35 (4.57%)	1.22 (0.49-3.02)	0.667		
Heart failure	2 (2.50%)	21 (2.74%)	0.93 (0.23-3.80)	0.923		
Diabetes	11 (13.75%)	101 (13.19%)	1.00 (0.53-1.89)	0.998		
Liver dysfunction	14 (17.50%)	32 (4.18%)	3.42 (1.92-6.11)	<0.001	2.12 (1.15-3.93)	0.016
Hematological disease	42 (52.50%)	261 (34.07%)	2.05 (1.32-3.18)	0.001		
Pancreatitis	17 (21.25%)	84 (10.97%)	1.78 (1.04-3.05)	0.035		
Medical operation						
Surgery	62 (77.50%)	638 (83.29%)	0.94 (0.56-1.60)	0.830		
CVC	61 (76.25%)	414 (54.05%)	2.18 (1.30-3.65)	0.003		
Ventilator	72 (90.00%)	648 (84.60%)	1.80 (0.87-3.74)	0.115		
Indwelling catheter	78 (97.50%)	729 (95.17%)	2.03 (0.50-8.28)	0.325		
Tube feeding	54 (67.50%)	265 (34.60%)	2.34 (1.46-3.75)	< 0.001		
Nebulizer fiberoptic	51 (63.75%)	349 (45.56%)	1.34 (0.85-2.12)	0.213		
Bronchoscope	5 (6.25%)	17 (2.22%)	2.39 (0.97-5.93)	0.060		
Antimicrobial use						
Cephalosporin	15 (18.75%)	210 (27.42%)	0.57 (0.33-1.00)	0.051		
Vancomycin	2 (2.50%)	28 (3.66%)	0.70 (0.17-2.84)	0.615		
Aminoglycosides	1 (1.25%)	15 (1.96%)	0.46 (0.06-3.32)	0.443		
Carbapenems	58 (72.50%)	284 (37.08%)	3.77 (2.30-6.16)	<0.001	2.70 (1.56-4.67)	<0.001
Fluoroquinolones	21 (26.25%)	127 (16.58%)	1.29 (0.78-2.14)	0.316		
Antifungal agents	17 (21.25%)	123 (16.06%)	1.19 (0.70-2.04)	0.525		
Cephamycins	12 (15.00%)	179 (23.37%)	0.54 (0.29-1.00)	0.049		
Lincomycin	3 (3.75%)	32 (4.18%)	0.75 (0.24-2.39)	0.632		
Tigecycline	8 (10.00%)	53 (6.92%)	1.34 (0.64-2.77)	0.438		

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21 22 23	
22	
23	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold. is in

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16	
15	
16	
17	
18	
19	
20	
21	
22 23	
24	
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1

		intestinal c	arriage)			
Item	Subsequent CRAB infection during the ICU stay		Univariate analysis		Multivariate analysis	
	Yes (n=93)	No (n=802)	HR (95% CI)	Р	HR (95% CI)	Р
CRAB intestinal carriage	32 (34.41%)	83 (10.35%)	3.02 (1.97-4.64)	<0.001	1.81 (1.14-2.88)	0.012
Demographics						
Sex, male	60 (64.52%)	513 (63.97%)	0.99 (0.65-1.51)	0.954		
Ethnicity, Han Chinese	87 (93.55%)	731 (91.15%)	1.01 (0.99-1.02)	0.398		
Age (median)	54 (44-68)	55 (45-68)	1.42 (0.62-3.24)	0.410		
APACHE II	21 (18-26)	17 (12-22)	1.07 (1.05-1.10)	<0.001	1.04 (1.01-1.07)	0.016
Charlson score	3 (1-5)	3 (2-4)	1.04 (0.93-1.15)	0.490		
Underlying disease						
Myocardial infarction	0 (0%)	5 (0.62%)	0.05 (0-28290)	0.656		
Peripheral vascular disease	11 (11.83%)	62 (7.73%)	1.36 (0.72-2.54)	0.344		
Cerebrovascular disease	4 (4.30%)	36 (4.49%)	1.11 (0.41-3.03)	0.835		
Dementia	0 (0%)	1 (0.12%)	0.05 (0-24060)	0.651 🥌		
Connective tissue disease	1 (1.08%)	12 (1.50%)	0.75 (0.10-5.35)	0.770		
Peptic ulcer	4 (4.30%)	26 (3.24%)	1.31 (0.48-3.58)	0.597		
Hemiplegia	1 (1.08%)	0 (0%)	3.99 (0.55-28.87)	0.17		
Hypertension	25 (26.88%)	191 (23.82%)	1.22 (0.77-1.92)	0.405		
Tuberculosis	2 (2.15%)	11 (1.37%)	1.19 (0.29-4.85)	0.805		

Table S2. Variables associated with developing subsequent CRAB infection during the ICU stay (exposed group was those patients with ICU acquisition of CRAB

 BMJ Open

COPD	10 (10.75%)	54 (6.73%)	1.44 (0.75-2.78)	0.275		
Respiratory failure	44 (47.31%)	159 (19.83%)	2.70 (1.79-4.07)	<0.001	1.99 (1.29-3.06)	0.002
Kidney failure	7 (7.53%)	35 (4.36%)	1.92 (0.89-4.15)	0.097		
Heart failure	3 (3.23%)	24 (2.99%)	1.52 (0.48-4.83)	0.475		
Diabetes	11 (11.83%)	112 (13.97%)	0.74 (0.40-1.39)	0.351		
Liver dysfunction	13 (13.98%)	29 (3.62%)	3.11 (1.73-5.61)	< 0.001		
Hematological disease	49 (52.69%)	290 (36.16%)	1.91 (1.27-2.87)	0.002		
Pancreatitis	20 (21.51%)	92 (11.47%)	1.81 (1.10-2.97)	0.019		
Medical operation						
Surgery	70 (75.27%)	666 (83.04%)	0.90 (0.56-1.45)	0.658		
CVC	68 (73.12%)	434 (54.11%)	1.86 (1.17-2.94)	0.008		
Ventilator	85 (91.40%)	683 (85.16%)	1.93 (0.94-4.00)	0.075		
Indwelling catheter	91 (97.85%)	761 (94.89%)	2.34 (0.58-9.52)	0.235		
Tube feeding	67 (72.04%)	300 (37.41%)	2.72 (1.72-4.29)	< 0.001		
Nebulizer fiberoptic	64 (68.82%)	388 (48.38%)	1.56 (1.00-2.42)	0.050		
Bronchoscope	5 (5.38%)	18 (2.24%)	2.00 (0.81-4.93)	0.133		
Antimicrobial use						
Cephalosporin	18 (19.35%)	213 (26.56%)	0.66 (0.40-1.11)	0.114		
Vancomycin	2 (2.15%)	33 (4.11%)	0.52 (0.13-2.12)	0.363		
Aminoglycosides	0 (0%)	16 (2.00%)	0.05 (0.00-14.57)	0.297		
Carbapenems	68 (73.12%)	319 (39.78%)	3.50 (2.21-5.54)	<0.001	2.17 (1.30-3.63)	0.003
Fluoroquinolones	28 (30.11%)	144 (17.96%)	1.49 (0.96-2.33)	0.079		
Antifungal agents	16 (17.20%)	141 (17.58%)	0.92 (0.53-1.57)	0.749		
Cephamycins	15 (16.13%)	187 (23.32%)	0.57 (0.33-1.00)	0.049		
Lincomycin	4 (4.30%)	34 (4.24%)	0.82 (0.30-2.24)	0.703		

0.947

 Tigecycline
 7 (7.53%)
 57 (7.11%)
 1.03 (0.47-2.22)

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold.

For peer review only

1 2 3 4 5	Reporting checklist for cohort study.								
6 7 8 9	Based on the STROBE cohort guidelines.								
10 11 12	Instructions to	o auth	iors						
13 14	Complete this che	cklist b	y entering the page numbers from your manuscript w	here readers will find					
15 16 17	each of the items	listed b	elow.						
18 19 20	Your article may n	not curre	ently address all the items on the checklist. Please mo	odify your text to					
21 22	include the missin	g inforr	nation. If you are certain that an item does not apply,	please write "n/a" and					
23 24 25	provide a short ex	planatio	on.						
25 26 27 28	Upload your comp	oleted c	hecklist as an extra file when you submit to a journal.						
29 30 31	In your methods s	ection,	say that you used the STROBE cohortreporting guide	elines, and cite them					
32 33	as:								
34 35 36	von Elm E, Altmar	n DG, E	gger M, Pocock SJ, Gotzsche PC, Vandenbroucke J	P. The Strengthening					
37 38	the Reporting of C)bserva	tional Studies in Epidemiology (STROBE) Statement	guidelines for					
39 40 41	reporting observat	tional st	tudies.						
42 43 44			Reporting Item	Page Number					
45 46 47	 45 46 Title and abstract 47 								
48 49 50	Title	<u>#1a</u>	Indicate the study's design with a commonly used	2					
50 51 52 53			term in the title or the abstract						
54 55	Abstract	<u>#1b</u>	Provide in the abstract an informative and	2					
56 57 58			balanced summary of what was done and what						
59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml					

1 2			was found	
2 3 4 5 6 7 8 9 10 11 12 13	Introduction			
	Background /	<u>#2</u>	Explain the scientific background and rationale for	4-5
	rationale		the investigation being reported	
	Objectives	<u>#3</u>	State specific objectives, including any	5
14 15 16			prespecified hypotheses	
17 18 19	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the	7-8
23 24			paper	
25 26 27	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	5-6
28 29			including periods of recruitment, exposure, follow-	
30 31 32			up, and data collection	
33 34	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and	6
35 36 37			methods of selection of participants. Describe	
38 39 40			methods of follow-up.	
40 41 42	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and	n/a
43 44 45 46			number of exposed and unexposed	Not matched studies
47 48	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors,	6-8
49 50			potential confounders, and effect modifiers. Give	
51 52 53			diagnostic criteria, if applicable	
54 55 56	Data sources /	<u>#8</u>	For each variable of interest give sources of data	6-8
57 58	measurement		and details of methods of assessment	
59 60		For p	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	tml

Page 35 o	of 37
-----------	-------

1 2 3 4 5 6 7 8 9			(measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	
10 11 12 13 14	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	8
15 16 17	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
18 19				Including all the
20 21 22				patients admitted to
23 24				the ICU in the study
25 26				period.
27 28 29	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in	7
29 30 31	variables	<u>#11</u>		,
32 33	vanables		the analyses. If applicable, describe which	
34 35			groupings were chosen, and why	
36 37	Statistical	<u>#12a</u>	Describe all statistical methods, including those	7-8
38 39 40 41 42 43	methods		used to control for confounding	
	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	8
44 45	methods		and interactions	
46 47	Statistical	<u>#12c</u>	Explain how missing data were addressed	n/a
48 49 50	methods			No missing data
51 52				No missing data.
53 54	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was	n/a
55 56 57	methods		addressed	Not applicable
58 59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	ml

Page 36 of 37

1 2	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
3 4 5 6	methods			Not done.
7 8 9 10 11	Results			
	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	9
12 13 14			study—eg numbers potentially eligible, examined	
15 16			for eligibility, confirmed eligible, included in the	
17 18			study, completing follow-up, and analysed. Give	
19 20			information separately for for exposed and	
21 22 23 24			unexposed groups if applicable.	
25 26 27	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
28 29 30 31 32 33 34 35 36 37	Participants	<u>#13c</u>	Consider use of a flow diagram	Figure 1
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	19-23
			demographic, clinical, social) and information on	
			exposures and potential confounders. Give	
38 39			information separately for exposed and unexposed	
40 41 42 43 44 45 46 47 48 49 50 51 52 53			groups if applicable.	
	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data	n/a
			for each variable of interest	No missing data.
	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total	Figure 2
			amount)	
54 55 56	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	19-23
57 58			measures over time. Give information separately	
59 60			eer review only - http://bmjopen.bmj.com/site/about/guidelines.xh	

1 2			for exposed and unexposed groups if applicable.	
3 4	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	19-23
5 6 7			confounder-adjusted estimates and their precision	
8 9			(eg, 95% confidence interval). Make clear which	
10 11			confounders were adjusted for and why they were	
12 13 14			included	
15 16 17	Main results	<u>#16b</u>	Report category boundaries when continuous	n/a
18 19 20			variables were categorized	Continuous variables
21 22 23				were not categorized.
24 25	Main results	<u>#16c</u>	If relevant, consider translating estimates of	n/a
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51			relative risk into absolute risk for a meaningful time	Not applicable
			period	
	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	Supplementary files
			subgroups and interactions, and sensitivity	
			analyses	
	Discussion			
	Key results	<u>#18</u>	Summarise key results with reference to study	11-13
			objectives	
	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account	13
			sources of potential bias or imprecision. Discuss	
52 53			both direction and magnitude of any potential bias.	
54 55 56	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering	11-13
57 58			objectives, limitations, multiplicity of analyses,	
59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	ml

1			results from similar studies, and other relevant	
2 3			evidence.	
4 5				
6 7	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of	13
8 9			the study results	
10 11 12	Other			
13 14	Information			
15 16	Funding	#22	Give the source of funding and the role of the	14
17 18	Funding	<u>#22</u>		14
19 20			funders for the present study and, if applicable, for	
21 22			the original study on which the present article is	
23 24			based	
25 26				
27 28	None The STRO	BE chec	klist is distributed under the terms of the Creative Cor	nmons Attribution
29 30	License CC-BY.	This che	ecklist can be completed online using https://www.good	dreports.org/, a tool
31 32	made by the <u>EQU</u>	JATOR	Network in collaboration with Penelope.ai	
33 34				
35				
36 37				
38 39				
40 41				
42 43				
44 45				
46 47				
48				
49 50				
51 52				
53 54				
55 56				
57				
58 59		Гаин	oor roviou only http://bmionon.hmi.com/site/shout/suidelin-subt	ml
60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	

BMJ Open

Intestinal carriage of carbapenem-resistant Acinetobacter baumannii among patients in the intensive care unit: risk factors and the impact on subsequent infection

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035893.R1
Article Type:	Original research
Date Submitted by the Author:	01-Apr-2020
Complete List of Authors:	Qiao, Fu; Sichuan University West China Hospital, Department of Infection Control Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control Gao, Shan; Zhengzhou University First Affiliated Hospital, Department of Infection Control Cai, Lin; Sichuan University West China Hospital, Intensive Care Unit Zhu, Shichao; Sichuan University West China Hospital, Department of Infection Control Wei, Li; Sichuan University West China Hospital, Department of Infection Control Kang, Yan; Sichuan University West China Hospital, Intensive Care Unit Tao, Chuanmin; Sichuan University West China Hospital, Intensive Care Unit Tao, Chuanmin; Sichuan University West China Hospital, Department of Laboratory Medicine Zong, Zhiyong; Sichuan University West China Hospital, Department of Infection Control; Sichuan University West China Hospital, Center of Infectious Disease
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases
Keywords:	EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Infection control < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

2 3 4	1
5 6 7 8	2
8 9 10 11	3
12 13	4
14 15	5
16 17	6
18 19	7
20 21	8
22 23 24	0
24 25 26	9
27 28	10
29 30	11
31 32	12
33 34	13
35 36	14
37 38	15
39 40	16
41 42	17
43 44 45	18
45 46 47	19
48 49	
50 51	20
52 53	21
54 55	22
56 57	
58 59	
60	

Intestinal carriage of carbapenem-resistant Acinetobacter baumannii
among patients in the intensive care unit: risk factors and the
impact on subsequent infection
Fu Qiao ¹ , Wenzhi Huang ¹ , Shan Gao ² , Lin Cai ³ , Shichao Zhu ¹ , Li Wei ¹ , Yan Kang ³ ,
Chuanmin Tao ⁴ *, Zhiyong Zong ^{1,5*}
¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
² Department of Infection Control, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China. ³ Intensive Care Unit, West China Hospital, Sichuan University, Chengdu,
China. ⁴ Department of Laboratory Medicine, West China Hospital, Sichuan University,
Chengdu, China. ⁵ Center of Infectious Disease, West China Hospital, Sichuan University,
Chengdu, China
Running title: intestinal carriage of CRAB in ICU
Keywords: carbapenem-resistant; Acinetobacter baumannii; intestinal carriage; intensive care unit.
Word count: 3147
*Co-corresponding author
Dr. Chuanmin Tao, Department of Laboratory Medicine, West China Hospital, Sichuan
University, Chengdu, China. Email: taocm@scu.edu.cn
Dr. Zhiyong Zong, Center of Infectious Diseases, West China Hospital (Huaxi), Guoxuexiang 37,
Chengdu 610041, China. Phone: 86-28-8542-2637. Fax: 86-28-8542-3212. E-mail:
<u>zongzhiyong@gmail.com</u>

BMJ Open

2 3 4	23	Abstract
5 6 7	24	Objectives: To assess the incidence and the impact of carbapenem-resistant Acinetobacter
, 8 9	25	baumannii (CRAB) intestinal carriage on subsequent CRAB infection and to study risk factors of
10 11	26	acquiring CRAB intestinal carriage among patients in intensive care unit (ICU).
12 13 14	27	Design: Observational study including a case control study and a retrospective cohort study.
15 16	28	Setting: A 50-bed general ICU of a university hospital, China.
17 18	29	Methods: From May 2017 to April 2018, an observational study was conducted in a 50-bed
19 20 21	30	general ICU of a university hospital in China. Rectal swabs were collected from ICU patients on
21 22 23	31	admission and thereafter weekly. A case control study was performed to analyze risk factors of the
24 25 26 27	32	acquisition of CRAB intestinal carriage in ICU using multiple logistic regression. A retrospective
	33	cohort study was performed to address whether intestinal CRAB carriage could lead to an
28 29 30	34	increased likelihood of subsequent CRAB infection using sub-distribution hazard model
31 32	35	regarding death in the ICU as a competing risk event.
33 34	36	Results: CRAB intestinal carriage was detected in 6.87% (66/961; 95% CI 5.27%-8.47%) of
35 36 37	37	patients on ICU admission, whereas 11.97% (115/961; 95% CI 9.91%-14.02%) of patients
38 39	38	acquired CRAB intestinal carriage during the ICU stay. Pancreatitis (OR 2.16, 95% CI 1.28-3.67),
40 41	39	hematological disease (OR 2.26, 95% CI 1.42-3.58), gastric tube feeding (OR 3.35, 95% CI 2.03-
42 43 44	40	5.51), and use of carbapenems (OR 1.84, 95% CI 1.11-3.07) were independent risk factors for
45 46	41	acquiring CRAB intestinal carriage. The incidence of subsequent CRAB infection was 2.24-fold
47 48	42	in patients with CRAB intestinal carriage compared to that in patients without (95% CI 1.48–3.39,
49 50	43	P<0.001).
51 52 53	44	Conclusion: More patients acquired CRAB intestinal carriage during their ICU stay than had on

45 admission. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were

carriage are more likely to develop CRAB infection. Strengths and limitations of this study A case control study was performed to analyze risk factors of the acquisition of CRAB intestinal carriage in ICU. A retrospective cohort study was performed to address whether intestinal CRAB carriage was associated with subsequent CRAB infection. Most influencing factors were considered in the study. Not all screened CRABs were confirmed using Vitek II or other methods. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

57 Background

Acinetobacter baumannii is one of the most common nosocomial pathogens in Asia and South America[1]. A systematic review has revealed that A. baumannii accounted for 11.28% of nosocomial infections in general hospitals in China, making it the third most common nosocomial pathogen[2]. And carbapenem-resistant A. baumannii (CRAB) has emerged worldwide. As early as 2013, the US Centers for Disease Control and Prevention listed multi-drug resistant A. *baumannii* (MDRAB) including CRAB as a serious threat[3], and the World Health Organization listed CRAB as one of the three most critical threats in a global drug-resistant warning in 2017[4]. The prevalence of A. baumannii and its resistance to carbapenems varies from country to country. For instance, the European Bacterial Resistance Surveillance Report shows that the rate of Acinetobacter resistant to carbapenem in Europe in 2017 was 33.4% (95% CI 32%–35%), but it was as high as 96.2% in Croatia (95% CI 92%–98%) [5]. In the US, 49.5% of *A. baumannii* is resistant to carbapeems, while in Singapore, India, and Pakistan, it is 50%, 85%, and 62-100%, respectively[6,7]. The prevalence of CRAB is also very high in China. The surveillance data released by CHINET (China Antimicrobial Surveillance Network; http://chinets.com/Chinet), a national network in China, have shown that 77.1% and 78.1% of *A. baumannii* isolates resistant to imipenem and meropenem, respectively[8].

Infections caused by CRAB can lead to serious consequences. A previous study has demonstrated that patients with CRAB infection had longer average length of stay (LOS) in ICUs (13.1 vs. 10.5 days) and \$11,359 higher average in-hospital costs than those with carbapenemsusceptible *A. baumannii* (CSAB) infection[9]. Another previous study has found that the mortality rate of patients with CRAB infection is 2.22-fold that of patients with CSAB infection[10]. A case-control study conducted by our team have also showed that the 28-day

survival rate of patients with bloodstream CRAB infection was 66.17%, lower than the 96.95% of
those with bloodstream CSAB infection[11].

It is well known that A. baumannii including CRAB may colonized in the respiratory tract of hospitalized patients, in particular those with mechanical ventilation[12,13]. The colonization of CRAB in the respiratory tract has been found as a major risk factor for subsequent CRAB infection[14]. However, ICU patients may carry CRAB in intestine on admission or acquire CRAB during the ICU stay[15]. Patients with intestinal carriage of multi-drug resistant organisms (MDRO), in particular carbapenem-resistant *Enterobacteriaceae* (CRE), may sever as a reservoir for further dissemination in ICU[16] and could be associated with be associated with an increased risk of subsequent MDRO infections [17]. Therefore, active screening the carriage of CRE, which is usually performed using rectal swabs, has been recommended as a core component of the infection control bundle[7]. However, by contrast to CRE, the prevalence of CRAB intestinal carriage among ICU patients is much less studied and the risk factors of acquisition of CRAB intestinal carriage remains largely unknown. In addition, it remains to be determined whether CRAB intestinal carriage leads to increased risks of subsequent CRAB infection. To address these questions, we therefore conducted this study.

97 Methods

98 Study settings

An observational study was conducted in a 50-bed general ICU of a 4,300-bed university hospital in China. From May 2017 to April 2018, all patients admitted to the ICU were subjected to collecting a rectal swab within 48 h of admission and thereafter weekly. For patients hospitalized for less than 3 days, a rectal swab was collected only once within 48 h of admission.

59

60

1		
2 3 4	103	
5 6	104	Inclusion and exclusion criteria
7 8 9	105	Inclusion criteria: This study included all patients who were ≥ 18 years of age, admitted to
9 10 11	106	the ICU, and underwent collection of rectal swabs.
12 13	107	Exclusion criteria: 1) patients who did not receive a rectal swab within 48 h of admission to
14 15 16	108	ICU; or 2) patients who were eligible for weekly follow-up collection of rectal swabs but did not
17 18	109	receive subsequent sampling; or 3) patients with CRAB infection on admission.
19 20	110	
21 22	111	
23 24 25	112	Definitions
26 27	113	Patients with CRAB intestinal carriage were defined as those with CRAB isolated from a
28 29	114	rectal swab, while patient without CRAB intestinal carriage referred to those whose swabs were
30 31 32	115	all negative for CRAB during the ICU stay. Patients with CRAB isolated from a rectal swab
33 34	116	collected within 48 h of ICU admission were defined as those with CRAB intestinal carriage on
35 36	117	ICU admission. The acquisition of CRAB intestinal carriage referred to a patient who had a CRAB-
37 38 39	118	negative rectal swab collected within 48 h of ICU admission but had CRAB from a swab collected
40 41	119	after 48 h. CRAB infection was defined as the growth of CRAB from clinical specimens in the
42 43	120	presence of clinical manifestations of infection[18]. Subsequent CRAB infection referred to
44 45	121	CRAB infection developed after the collection of a CRAB-positive rectal swab for patients with
46 47 48	122	CRAB intestinal carriage and CRAB infection developed after 48 h admission to the ICU for
49 50	123	patients without CRAB intestinal carriage.
51 52	124	Screening for CRAB by rectal swabs
53 54 55 56	125	For collecting rectal swabs, ready-to-use transport medium swabs (HBPT004; Hopebio
57		

Biotechnology, Qingdao, China) was inserted about 2–3 cm into the patient's anus and then gently
rotated. After sampling, the swab was inserted into the ready-to-use transport medium and
transported to the laboratory within 2 h. Rectal swabs were inoculated onto modified CHROMagar *Acinetobacter* colorimetric plates (Chromagar; Paris, France) containing 2 mg/L meropenem using
the partition-and-streaking method[19,20]. Plates were then cultured at 37°C for 18–24 h[20].

132 Data collection and statistical analysis

In this study, the patient's demographic data, underlying diseases, invasive procedures, medical orders, and use of antimicrobial agents were retrieved from the electronic medical record system. Two professional statisticians collaborated to clean the data.

We performed two types of comparison. First, a case control study was performed to analyze risk factors of the acquisition of CRAB intestinal carriage in ICU. Patients with ICU acquisition of CRAB intestinal carriage were assigned to the case group, while those without CRAB intestinal carriage during their ICU stay were assigned to the control group. All potential factors were initially subjected to the univariate analysis. Quantitative data were described by the median (interquartile range) and were then analyzed using a rank-sum test. Qualitative data were described by number of cases (composition ratio) and were then analyzed using the chi-square test or Fisher exact probability method when applied. All variables showing P value less than 0.2 in the univariate analysis were then included into the multiple logistic regression using the forward selection stepwise regression method[21,22]. Odds ratio (OR) and 95% confidence interval (CI) were calculated. The Hosmer-Lemeshow method was used to test the goodness-of-fit of the multiple logistic model[23].

Second, a retrospective cohort study was performed to address whether intestinal CRAB

Page 9 of 36

BMJ Open

carriage could lead to an increased likelihood of subsequent CRAB infection. In this cohort study, the exposed group comprised patients with CRAB intestinal carriage either detected on ICU admission or acquired during the ICU stay, while the non-exposed group consisted of those without CRAB intestinal carriage. As the impact of CRAB intestinal carriage on subsequent infection may also be influenced by other factors such as patient demographics, underlying diseases, antimicrobial use and medical operations, we included these factors for analysis instead of evaluating CRAB carriage alone. Survival curves (probability of CRAB infection) in patients with and without CRAB intestinal carriage were mapped using the Fine and Gray model regarding death in the ICU as a competing risk event [24,25]. After introducing the interaction term of time and each variable (X*ln (T)) into the COX model [24,25], the proportional hazards hypothesis was tested, and the results showed no statistical significance (P < 0.05). Therefore, sub-distribution hazard model was used to obtain sub-distribution hazard ratios (SDHRs) and to explore whether CRAB intestinal carriage was a risk factor for subsequent CRAB infection for competing events (R package "cmprsk")The Akaike information criteria (AIC) was used to select the multivariate model[26]. We also performed subgroup analyses to investigate whether CRAB intestinal carriage on ICU admission and that acquired in ICU had different impact on subsequent CRAB infection using the same statistical method as describe above. For the subgroup analysis, patients with CRAB intestinal carriage on ICU admission and those with ICU acquisition of CRAB intestinal carriage were assigned to two exposed subgroups, respectively, while those without CRAB intestinal carriage were assigned to the non-exposed group.

- All statistical analyses were performed using SPSS 21.0 (IBM–SPSS Inc; Armonk, NY, US)
 and R version 3.5.3 with a 0.05 two-sided test level.

172 Patient and public involvement

- Patients were not involved in this study.

Results

176 Some patients (6.87%) had CRAB intestinal carriage on ICU admission and more (12.85%)

177 acquired in ICU

From May 1, 2017 to April 30, 2018, a total of 1,605 patients were admitted to the ICU, of which 382 (23.8%) were not screened during their hospital stay. Of which the 382 patients, 323 (84.55%) stayed in the ICU for no more than 2 days, while the other 59 (15.45%) patients were missed for sampling. In addition, 118 patients (118/1,605, 7.4%) were excluded due to inappropriate or incomplete sampling including 104 patients whose first rectal swab was collected 48 h after admission and 14 patients who were not screened weekly. A total of 144 (144/1,605, 8.97%) had CRAB infection on ICU admission and were therefore also excluded. Taken together, a total of 961 patients (620 males, 64.52% and 341 female 35.48%) were included in the analysis, with an average age of 54 (44-68) years (Figure 1).

Among the 961 patients, 66 (6.87%, 95% CI 5.27%–8.47%) had CRAB intestinal carriage on
ICU admission. For the remaining 895 patients, 115 acquired (12.85%, 95% CI 10.66%–15.04%)
CRAB intestinal carriage during their ICU stay with an average age of 51 (40–70) and a 1.61
male/female ratio (71 male and 44 female).

7 191

192 Multiple risks factors of acquiring CRAB intestinal carriage were identified

The univariate analysis showed that APACHE II score (the patient's disease severity),
respiratory failure, renal dysfunction, hematological disease, acute pancreatitis, indwelling central

Page 11 of 36

BMJ Open

venous catheter, gastric tube feeding, nebulization, and use of vancomycin, aminoglycosides, carbapenems, tigecycline, and antifungal agents are risk factors for the acquisition of CRAB intestinal carriage in the ICU. Multiple logistic regression including all variables with P < 0.2 in the univariate analysis showed that APACHE II score, pancreatitis, hematological diseases, gastric tube feeding, and use of carbapenems were independent risk factors for acquiring CRAB intestinal carriage during the ICU stay (Table 1). For APACHE II score, the model estimated that the increase of the score by 1 point would lead to a 4% increase of the risk of acquiring CRAB intestinal carriage in the ICU. Hosmer-Lemeshow test generated a 0.73 P value (χ^2 =5.25, df=8), suggesting adequate goodness-of-fit of the multiple logistic model.

205 CRAB intestinal carriage led to increased risks of subsequent CRAB infection

During the study period, 112 of the 961 patients (11.65%, 95% CI 9.63%–13.68%) developed CRAB infections during the ICU stay. As for the infection type, lower respiratory tract infections were the most common (n=82, 73.21%), followed by bloodstream infections (n=9, 8.04%), surgical site infection (n=8, 7.14%), while 13 patients (11.61%) had infections at other sites. CRAB intestinal carriage was a risk factor for subsequent CRAB infection (HR 2.82, 95% CI 1.94–4.09; P < 0.001; Figure 2). The 90-day cumulative probability of no CRAB infection in patients with and without CRAB intestinal carriage was 69.5.0% (95% CI 43.5%-95.5%) and 22.3% (95% CI 14.7%–29.9%), respectively (P<0.001). In the univariate analysis, CRAB intestinal carriage, APACHE II score, respiratory failure, liver dysfunction, hematological disease, pancreatitis, mechanical ventilation, placement of a central venous catheter, gastric tube feeding, and the use of carbapenems were identified as risk factors for subsequent CRAB infection. In the COX multivariate analysis, CRAB intestinal carriage was also found to be an independent risk

factor for subsequent CRAB infection (HR 2.24, 95% CI 1.48–3.39; Table 2). Omnibus test
showed a log likelihood difference of 79.82 and generated a less than 0.001 P value, suggesting
adequate goodness-of-fit of the COX model.

To evaluate whether CRAB intestinal carriage on admission and that acquired during the ICU stay has different impact on subsequent CRAB, we performed subgroup analyses. In the subgroup COX multivariate analysis, both CRAB intestinal carriage on admission and that acquired during the ICU stay were an independent risk factor for subsequent CRAB infection (HR 3.42, 95% CI 1.88–6.22 for carriage on admission, Table S1 in the Supplementary file; HR 1.81, 95% CI 1.15– 2.86 for acquired carriage, Table S2). Omnibus test showed log likelihood difference of 66.06 and 74.18, respectively, and generated a less than 0.001 P value in the subgroup analysis, suggesting adequate goodness-of-fit of the COX model.

In addition to CRAB intestinal carriage, liver dysfunction (HR 2.33, 95% CI 1.30–4.17), and the use of carbapenems (HR 2.21, 95% CI 1.40–3.49), were also identified as independent risk factors of subsequent CRAB infection, while the use of cephalosporins (HR 0.45, 95% CI 0.28– 0.73) and cephamycins (HR 0.53, 95% CI 0.31–0.90) were protective factors (Table 2).

Discussion

In this study, we found that in a region with a high CRAB prevalence, 6.87% of patients (83.3% of those patients were transferred from other hospitals and 25.8% of them were stayed in emergency ICU before admitted to the ICU) admitted to the ICU had CRAB intestinal carriage on ICU admission, while an additional 11.97% of patients acquired CRAB intestinal carriage during the ICU stay. The overall CRAB intestinal carriage rate was therefore 18.84%. This rate was similar with a study conduct in Thailand, in which 5.45% (15/275) of patients had intestinal Page 13 of 36

BMJ Open

carriage on ICU admission and 13.59% (28/206) patients acquired CRAB during their ICU
stay[15] and with another study in Italy[27], in which 18.92%(74/391) of patients carried CRAB
during ICU stay. However, the rate was significantly higher than those in Turkey (7.22%,
55/762)[28], Brazil (13.23%, 43/325)[29], USA (13.46%, 49/364)[30], and South Korea (15.06%,
168/1,115)[14], although other sites such as respiratory secretions were also screened in these
studies. This difference may be related to the local CRAB prevalence.

Interestingly, we found that gastric tube feeding is a risk factor for both acquiring CRAB intestinal carriage of CRAB in ICU, which is consistent with the findings of Kiddee et al[15], in which tube feeding was also a high-risk factor for carriage of Gram-negative bacilli. This may suggest an entry point of CRAB into human intestine. In this study, 73.0% (84/115) of patients who acquired CRAB intestinal carriage using tube feeding. During the study, we performed a one-day snapshot sampling of the feeding tubes (at the tube port), feeding contents and containers for preparing feeding contents in the ICU and found the presence of CRAB in the tube feeding content (24.0%, 6/25), at the tube port (33.3%, 3/9) and the tube feeding containers (7.1%, 1/14), indicating contamination. This may be a key point for intervention in the ICU.

We also found that patients with CRAB intestinal carriage were more likely to develop subsequent CRAB infection than those without carriage. The survival curve in this study showed that the cumulative infection rates in 90 days in patients with and without CRAB intestinal carriage were 69.5% and 22.3%, respectively, similar to those reported in other studies[30]. However, the HR was 2.24, which is much lower than those in previous studies [15,30,31]. This may be due to the fact that healthcare associated infections in our ICU were mainly caused by lower respiratory infections, which accounting for more than 70% of infections, while we only screened the colonization of the intestines. Interestingly, we found that the use of cephalosporins and

cephamycins led to lower risks of subsequent CRAB infection, while carbapenem use led to increased risks. The association between CRAB and carbapenem use has been documented before[30,32]. CRAB is usually resistant to cephalosporins and cephamycins. The use of cephalosporins and cephamycins may reflect the fact that patients did not receive carbapenems and could therefore result in reduced selection pressure for CRAB.

There are a few limitations in this study. First, this is a single center study and the findings may not be generalized. Second, we used a modified CHROMagar Acinetobacter chromogenic plate to screen CRAB from rectal swabs. Not all screened CRABs were confirmed using Vitek II or other methods and there may be false negative results. Nonetheless, at the beginning of this study, we confirmed that the 58 CRAB strains grown on the chromogenic medium were indeed all A. baumannii by MALDI-TOF-MS and were all non-susceptible to imipenem or meropenem as determined using the agar dilution method recommended by the Clinical and Laboratory Standards Institute (CLSI)[20]. Third, we only collected the patients' rectal swabs for investigating CRAB carriage. Studies have shown concurrent swab collection of skin, oropharyngeal, and airway secretions in addition to rectal swabs, may improve sensitivity. However, the sample sizes in these studies were small with only 21 and 34 cases, respectively [12,33]. Nonetheless, for practical reasons and the aim to study CRAB intestinal carriage, we only collected rectal swabs. Fourth, due to the poor sensitivity of rectal swabbing, a single negative test result could overlook carriers. Moreover, no molecular strain typing was performed. Though reasonable, it was not proven that CRAB isolated from intestinal colonization and site of nosocomial infection were identical. Last, this study failed to collect for the first rectal swab specimen within 48 h of ICU admission from 23.8% of the patients. Nonetheless, 84.55% of these patients stayed in the ICU for less than 48 h.

Page 15 of 36

1

2		
3 4	287	In conclusion, some patients had CRAB intestinal carriage but more acquired during their ICU
5 6	288	stay. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were independent
7 8 9	289	risk factors of the acquisition of CRAB intestinal carriage. Patients with CRAB intestinal carriage
9 10 11	290	were more likely to have subsequent CRAB infection than those without.
12 13	291	
14 15	292	Acknowledgments
16 17 18	293	We would like acknowledge the physicians and allied health staff of the ICU and the Department
19 20	294	of Electronic Medical Record system of West China Hospital.
21 22	295	
23 24	296	Author contributions
25 26 27 28 29 30 31 22	297	Fu Qiao, Zhiyong Zong and Chuanmin Tao contributed to study conception and design. Shichao
	298	Zhu and Yan Kang contributed to acquisition of data. Lin Cai collected rectal swabs and
	299	transported to the laboratory. Fu Qiao, Wenzhi Huang and Shan Gao analyzed and interpreted data.
32 33 34	300	Li Wei inoculated rectal swabs onto plates cultured for 18-24h. Fu Qiao, Zhiyong Zong and
34 35 36	301	Chuanmin Tao drafted the manuscript. All authors revised the manuscript for important intellectual
37 38	302	content. All authors read and approved the final manuscript.
39 40	303	
41 42 43	304	Funding
44 45	305	The work was supported by grants from the National Natural Science Foundation of China (project
46 47	306	no. 81772233, 81661130159 and 81861138055), West China Hospital of Sichuan University
48 49	307	(1.3.5 project for disciplines of excellence, project no. ZYYC08006) and the Newton Advanced
50 51 52	308	Fellowship, Royal Society, UK (NA150363).
53 54	309	
55 56		
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	310
5	
5	311
6	
7	
8	312
9	
10	313
11	515
12	
13	314
13	
14	315
15	315
16	
17	316
18	
19	0.47
20	317
21	
21	318
	010
23	
24	319
25	
26	320
27	320
28	
20	321
29	
30	
31	322
32	
33	323
34	020
35	
36	324
37	
20	325
38	325
39	
40	326
41	
42	007
43	327
44	
45	328
	020
46	
47	329
48	
49	
50	330
51	331
52	332
52	
	333
54	334
55	
56	
57	
58	
59	

0 **Competing interests**

The authors declare that they have no competing interests. 1

Patient consent for publication 3

Not required. 4

Ethics approval 6

This project was approved by the Ethics Committee of West China Hospital of Sichuan University. 7 8 We confirm that consents were not obtained from the patients. First, active screening is part of the routine care for ICU patients in our hospital. In other words, no matter whether we analyzed the 9 20 data, the patients would receive the screening. Second, this is a retrospective study, in which we 1 looked back the patients' data and did not perform any interventions. Third, before we performed this study, we have obtained ethical approval from the Ethical Committee and inform consents 22

23 were waived due to the retrospective nature of this study.

Availability of data and materials 25

The datasets during the current study available from the corresponding author on reasonable 26 27 request.

60

References 9

Wong D, Nielsen TB, Bonomo RA, et al. Clinical and Pathophysiological Overview of 0 1 Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017;30:409-47. 1 32 doi:10.1128/CMR.00058-16

Wang J, Liu F, Tartari E, et al. The Prevalence of Healthcare-Associated Infections in 3 2 Mainland China: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol 34

1		
2 3		
4	335	2018; 39 :701–9. doi:10.1017/ice.2018.60
5	336	3 CDC. The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and
6	337	Prevention. 2019.https://www.cdc.gov/drugresistance/biggest_threats.html (accessed 7 Aug 2019).
7	338	4 Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and
8 9	339 340	Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/ (accessed 7 Aug 2019).
10	340 341	5 European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance
11	341	in Europe – Annual report of the European Antimicrobial Resistance Surveillance Network
12	343	(EARS-Net) 2017. Stockholm: ECDC: 2018.
13	344	6 Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global
14 15	345	resistance, mechanisms of resistance, treatment options, and alternative modalities. <i>Infect Drug</i>
16	346	<i>Resist</i> 2018; 11 :1249–60. doi:10.2147/IDR.S166750
17	347	7 Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae,
18	348	Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. WHO.
19	349	2017.http://www.who.int/infection-prevention/publications/guidelines-cre/en/ (accessed 7 Aug
20 21	350	2019).
21	351	8 CHINET Data Cloud. http://chinets.com/Chinet (accessed 7 Aug 2019).
23	352	9 Lemos EV, de la Hoz FP, Alvis N, et al. Impact of carbapenem resistance on clinical and
24	353	economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin
25	354	<i>Microbiol Infect</i> 2014; 20 :174–80. doi:10.1111/1469-0691.12251
26 27	355	10 Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in patients
27 28	356	with Acinetobacter baumannii infection: Systematic review and meta-analysis. Clinical
20	357	Microbiology and Infection 2014;20:416–23. doi:10.1111/1469-0691.12363
30	358	11 Huang W, Qiao F, Wang Y, et al. Risk factors and prognosis of patients with bloodstream
31	359	infection due to carbapenem-resistant Acinetobacter baumannii. Chinese Journal of Infection
32	360	<i>Control</i> 2015; 14 :668–71.
33 34	361	12 Nutman A, Lerner A, Schwartz D, et al. Evaluation of carriage and environmental
35	362	contamination by carbapenem-resistant Acinetobacter baumannii. Clinical microbiology and
36	363	infection : the official publication of the European Society of Clinical Microbiology and Infectious
37	364	<i>Diseases</i> 2016; 22 :949.e5-949.e7. doi:10.1016/j.cmi.2016.08.020
38	365	13 Cheng VCC, Chen JHK, So SYC, <i>et al.</i> Use of fluoroquinolones is the single most important risk factor for the high heaterial lead in national with reach and gestraintestingle calculation has
39 40	366 367	risk factor for the high bacterial load in patients with nasal and gastrointestinal colonization by multidrug-resistant Acinetobacter baumannii. <i>European Journal of Clinical Microbiology &</i>
41	368	Infectious Diseases 2015; 34 :2359–66. doi:10.1007/s10096-015-2489-4
42	369	14 An JH, Kim Y-H, Moon J-E, <i>et al.</i> Active surveillance for carbapenem-resistant Acinetobacter
43	370	baumannii in a medical intensive care unit: Can it predict and reduce subsequent infections and
44	371	the use of colistin? Am J Infect Control 2017;45:667–72. doi:10.1016/j.ajic.2017.01.016
45 46	372	15 Kiddee A, Assawatheptawee K, Na-udom A, <i>et al.</i> Risk Factors for Gastrointestinal
47	373	Colonization and Acquisition of Carbapenem-Resistant Gram-Negative Bacteria among Patients
48	374	in Intensive Care Units in Thailand. Antimicrobial Agents and Chemotherapy 2018;62.
49	375	doi:10.1128/AAC.00341-18
50	376	16 Tischendorf J, de Avila RA, Safdar N. Risk of infection following colonization with
51 52	377	carbapenem-resistant Enterobactericeae: A systematic review. Am J Infect Control 2016;44:539-
53	378	43. doi:10.1016/j.ajic.2015.12.005
54	379	17 McConville TH, Sullivan SB, Gomez-Simmonds A, et al. Carbapenem-resistant
55	380	Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in
56		
57 58		1
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 3 381 critically ill patients, an observational study. *PLoS ONE* 2017;12:e0186195.
 382 doi:10.1371/journal.pone.0186195
- 383 18 Liu JY, Wu YH, Cai M, *et al.* Point-prevalence survey of healthcare-associated infections in
 384 Beijing, China: a survey and analysis in 2014. *J Hosp Infect* 2016;93:271–9.
 385 doi:10.1016/j.jhin.2016.03.019
- Song W, Lee J, Kim T-K, *et al.* Modified CHROMagar Acinetobacter medium for direct detection of multidrug-resistant Acinetobacter strains in nasal and rectal swab samples. *Ann Lab Med* 2013;33:193-5. doi:10.3343/alm.2013.33.3.193
- 12 389
 13 390
 14 390
 15 391
 20 Wei L, Qiao F, Lin J, *et al.* Modified CHROMagar Acinetobacter chromogenic culture combined with MALDI-TOF-MS for rapid screening of carbapenem-resistant Acinetobacter baumannii from human gut. *Chin J Nosocomiol* 2018;28:2893–7.
- 1639221 Hosmer DW, Lemeshow S. Applied Logistic Regression, Second Edition. 2nd edition. New17393York, NY: : John Wiley & Sons 2000.18394https://onlinelibrary.wiley.com/doi/book/10.1002/0471722146
- ¹⁹ 395
 ²⁰ 396
 ²¹ 396
 ²² Esterly JS, Griffith M, Qi C, *et al.* Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections.
- 397 Antimicrob Agents Chemother 2011;55:4844–9. doi:10.1128/AAC.01728-10
- 23 398 23 Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model.
 24 399 Communications in Statistics Theory and Methods 1980;9:1043-69.
 25 400 doi:10.1080/03610928008827941
- 401 24 Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for 28 402 clinicians. *Bone Marrow Transplant*. 2007;40:381–387. doi:10.1038/sj.bmt.1705727.
- 403 25 Therneau TM, Grambsch PM. *Modeling Survival Data: Extending the Cox Model*. 2000
 404 edition. Springer 2000.
- 405
 405
 406
 32
 406
 33
 406
 406
 407
 408
 408
 409
 409
 409
 409
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
 400
- 407 27 Mammina C, Bonura C, Vivoli AR, *et al.* Co-colonization with carbapenem-resistant
 408 Klebsiella pneumoniae and Acinetobacter baumannii in intensive care unit patients. *Scand J Infect* 409 *Dis* 2013;45:629–34. doi:10.3109/00365548.2013.782614
- 410 28 Karaaslan A, Soysal A, Altinkanat Gelmez G, *et al.* Molecular characterization and risk factors
 411 for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM 412 producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. *Journal of* 413 *Hospital Infection* 2016;**92**:67–72. doi:10.1016/j.jhin.2015.09.011
- 414 29 DalBen MF, Basso M, Garcia CP, *et al.* Colonization pressure as a risk factor for colonization 415 by multiresistant Acinetobacter spp and carbapenem-resistant Pseudomonas aeruginosa in an
- 44 416 intensive care unit. *Clinics (Sao Paulo, Brazil)* 2013;68:1128–33. doi:10.6061/clinics/2013(08)11
 45 417 30 Latibeaudiere R, Rosa R, Laowansiri P, *et al.* Surveillance cultures growing carbapenem-
- 46
 418
 47
 49
 49
 419
 410
 410
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 415
 <
- 48
 420
 420
 421
 421
 422
 421
 423
 422
 424
 425
 425
 426
 426
 426
 427
 428
 429
 429
 420
 421
 421
 421
 422
 423
 423
 424
 425
 425
 426
 426
 426
 427
 428
 428
 429
 429
 420
 420
 421
 421
 421
 422
 423
 423
 424
 425
 425
 426
 426
 427
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 421
 422
 423
 423
 423
 424
 425
 425
 426
 426
 427
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 421
 422
 423
 423
 424
 425
 425
 426
 426
 427
 428
 428
 428
 429
 429
 420
 420
 420
 421
 421
 421
 422
 423
 423
 424
 425
 425
 426
 426
 427
 428
 428
 428
 428
 428
 428
 428
 428
 429
 429
 421
 420
 421
 421
 421
 421
 422
 423
 423
 424
 425
 425
 426
 426
 427
 428
 428
 428
 429
 429
 429
 420
 421
 421
 421
 421
 421
 421
 421
 421
 421
 422
 421
 421
 421
 <
- 424 32 Blanco N, Harris AD, Rock C, *et al.* Risk Factors and Outcomes Associated with Multidrug 425 Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. *Antimicrobial Agents*
- 56

1 2

- 57
- 58 59

1 2 3 4 5 6 7 8 9	426 427 428 429 430	<i>and Chemotherapy</i> 2017; 62 . doi:10.1128/AAC.01631-17 33 Marchaim D, Navon-Venezia S, Schwartz D, <i>et al.</i> Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii. <i>J Clin Microbiol</i> 2007; 45 :1551–5. doi:10.1128/JCM.02424-06
10 11	431	
12 13	431	
14 15		
16 17		
18 19		
20 21 22		
23 24		
25 26		
27 28 29		
29 30 31		
32 33		
34 35		
36 37 38		
39 40		
41 42		
43 44 45		
46 47		
48 49		
50 51		
52 53 54		
55 56		
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	432	Figure legends
5 6	100	Figure 1. Patient selection flow algorithm
7	433	
8 9	434	Figure 2. Survival curves of patients with and without CRAB intestinal carriage
10 11		
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
23 24 25		
26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		1'
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Page 21 of 36

 BMJ Open

Characteristics	Patients with acqu	Patients with acquiring CRAB intestinal carriage		Univariate analysis		lysis
	Yes (n=115)	No (n=780)	OR (95% CI)	Р	OR (95% CI)	Р
Demographics	\sim					
Sex, male	71 (61.74%)	502 (64.36%)	1.12 (0.75–1.68)	0.59		
Ethnicity, Han Chinese	108 (93.91%)	712 (91.28%)	1.47 (0.66–3.29)	0.34		
Age (median)	51 (40–70)	56 (45-68)	/	0.21		
Underlying disease						
Myocardial infarction	1 (0.87%)	4 (0.51%)	1.7 (0.19–15.36)	0.50		
Peripheral vascular disease	11 (9.57%)	62 (7.95%)	1.22 (0.62–2.40)	0.55		
Cerebrovascular disease	4 (3.48%)	36 (4.62%)	0.74 (0.26–2.13)	0.58		
Dementia	1 (0.87%)	0 (0%)		0.13		
Connective tissue disease	1 (0.87%)	12 (1.54%)	0.56 (0.07–4.36)	0.89		
Peptic Ulcer	5 (4.35%)	25 (3.21%)	1.37 (0.51–3.66)	0.72		
Hemiplegia	0 (0%)	1 (0.13%)	/	1.00		
Hypertension	36 (31.30%)	180 (23.08%)	1.52 (0.99–2.33)	0.05		
Tuberculosis	1 (0.87%)	12 (1.54%)	0.56 (0.07–4.36)	0.89		
COPD	10 (8.70%)	54 (6.92%)	1.28 (0.63–2.59)	0.49		
Respiratory failure	40 (34.78%)	163 (20.90%)	2.02 (1.33-3.07)	0.001		

1 2	
3	
4 5	
6 7	
8 9	
10	
11 12	
13 14	
15	
16 17	
18 19	
20 21	
22	
23 24	
25 26	
27 28	
29	
30 31	
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46 47	

Kidney failure	11 (9.57%)	31 (3.97%)	2.56 (1.25–5.24)	0.01		
Heart failure	7 (6.09%)	19 (2.44%)	2.99 (1.28–7.01)	0.06		
Diabetes	21 (18.26%)	102 (13.08%)	1.48 (0.89–2.49)	0.13		
Liver dysfunction	5 (4.35%)	37 (4.74%)	0.91 (0.35–2.37)	0.85		
Hematological disease	71 (61.74%)	268 (34.36%)	3.08 (2.06-4.62)	<0.001	2.26 (1.42-3.58)	0.001
Pancreatitis	35 (30.43%)	77 (9.87%)	3.99 (2.52-6.34)	<0.001	2.16 (1.28–3.67)	0.004
Medical operation						
Surgery	82 (71.30%)	645 (82.69%)	0.52 (0.33-0.81)	0.004	0.40 (0.24–0.68)	0.001
CVC	78 (67.83%)	424 (54.36%)	1.77 (1.17–2.68)	0.01		
Ventilator	101 (87.83%)	666 (85.38%)	1.23 (0.68–2.23)	0.49		
Indwelling catheter	110 (95.65%)	742 (95.13%)	1.13 (0.43–2.92)	0.81		
Tube feeding	84 (73.04%)	280 (35.90%)	4.84 (3.13–7.49)	<0.001	3.35 (2.03–5.51)	<0.001
Nebulizer fiberoptic	73 (63.48%)	368 (47.18%)	1.95 (1.30–2.92)	0.001		
Bronchoscope	1 (0.87%)	21 (2.69%)	0.32 (0.04–2.38)	0.39		
Antimicrobial use						
Cephalosporin	35 (30.43%)	312 (40.00%)	0.66 (0.43–1.00)	0.05	0.59 (0.37-0.95)	0.03
Vancomycin	13 (11.30%)	32 (4.10%)	2.98 (1.51-5.86)	0.001		
Aminoglycosides	12 (10.43%)	31 (3.97%)	2.81 (1.40-5.65)	0.002		
Carbapenems	82 (71.30%)	295 (37.82%)	4.09 (2.66–6.27)	<0.001	1.84 (1.11–3.07)	0.02

 BMJ Open

Fluoroquinolones	26 (22.61%)	137 (17.56%)	1.37 (0.85–2.20)	0.19		
Antifungal agents	49 (42.61%)	138 (17.69%)	3.45 (2.29–5.22)	<0.001		
Cephamycins	16 (13.91%)	253 (32.44%)	0.34 (0.19–0.58)	<0.001		
Lincomycin	3 (2.61%)	61 (7.82%)	0.32 (0.10-1.02)	0.04		
Tigecycline	19 (16.52%)	69 (8.85%)	2.04 (1.18-3.54)	0.01		
АРАСНЕ ІІ	21.5 (17–26)	17 (12–22)	/	<0.001	1.04 (1.01–1.07)	0.01
Charlson score	2 (1–5)	3 (2–4)	/	0.06		
Sharing room with other patients with	20 (17.39%)	153 (19.62%)	0.86 (0.52–1.44)	0.57		
CRAB intestinal carriage						

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multiple logistic analysis are highlighted in bold.

	Subsequent CRAB infection during the ICU stay		Univariate analysis		Multivariate analysis	
Item	Yes (n=112)	No (n=849)	SDHR (95% CI)	Р	SDHR (95% CI)	Р
CRAB intestinal carriage	51 (45.54%)	130 (15.31%)	2.82(1.94-4.09)	< 0.001	2.24 (1.48–3.39)	<0.001
Demographics						
Sex, male	72 (64.29%)	548 (64.55%)	1.03(0.70-1.52)	0.87		
Ethnicity, Han Chinese	106 (94.64%)	774 (91.38%)	1.62(0.70-3.74)	0.26		
Age (median)	53 (42–67)	55 (44–68)	1.00(0.99-1.01)	0.71		
APACHE II	21 (17–26)	17 (12–22)	1.05(1.03-1.07)	< 0.001		
Charlson score	3 (1–5)	3 (1.5–4)	0.98(0.88-1.08)	0.66		
Underlying disease						
Peripheral vascular disease	13 (11.61%)	66 (7.77%)	1.30(0.72-2.34)	0.38		
Cerebrovascular disease	4 (3.57%)	36 (4.24%)	0.89(0.34-2.33)	0.81		
Connective tissue disease	1 (0.89%)	12 (1.41%)	0.60(0.08-4.48)	0.62		
Peptic ulcer	4 (3.57%)	27 (3.18%)	1.11(0.46-2.71)	0.81		
Hypertension	28 (25.00%)	199 (23.44%)	1.02(0.67-1.57)	0.92		
Tuberculosis	2 (1.79%)	12 (1.41%)	1.22(0.28-5.27)	0.79		
COPD	11 (9.82%)	55 (6.48%)	1.35(0.70-2.59)	0.37		
Respiratory failure	47 (41.96%)	170 (20.02%)	2.02(1.38-2.96)	< 0.001		
Kidney failure	9 (8.04%)	42 (4.95%)	1.42(0.73-2.75)	0.30		
Heart failure	4 (3.57%)	27 (3.18%)	1.22(0.48-3.11)	0.68		
Diabetes	15 (13.39%)	118 (13.90%)	0.87(0.50-1.49)	0.61		
Liver dysfunction	17 (15.18%)	34 (4.00%)	3.15(1.86-5.35)	< 0.001	2.33 (1.30-4.17)	0.005
Hematological disease	60 (53.57%)	314 (36.98%)	1.61(1.11-2.34)	0.012		
Pancreatitis	29 (25.89%)	107 (12.60%)	1.94(1.29-2.92)	0.002		

Table 2 Variables associated with developing subsequent CRAB infection during the ICU stay using sub-distribution hazard model

 BMJ Open

CVC	83 (74.11%)	470 (55.36%)	1.85(1.21-2.81)	0.004		
Ventilator	103 (91.96%)	719 (84.69%)	2.02(1.04-3.93)	0.038		
Indwelling catheter	109 (97.32%)	808 (95.17%)	1.84(0.62-5.52)	0.27		
Tube feeding	80 (71.43%)	332 (39.10%)	2.44(1.62-3.69)	< 0.001		
Nebulizer fiberoptic	72 (64.29%)	413 (48.65%)	1.18(0.80-1.73)	0.40		
Bronchoscope	5 (4.46%)	18 (2.12%)	1.44(0.59-3.52)	0.43		
Antimicrobial use						
Cephalosporin	20 (17.86%)	236 (27.80%)	0.50(0.31-0.81)	0.005	0.45 (0.28-0.73)	0.001
Vancomycin	3 (2.68%)	35 (4.12%)	0.68(0.21-2.15)	0.51		
Aminoglycosides	1 (0.89%)	23 (2.71%)	0.24(0.03-1.71)	0.15		
Carbapenems	82 (73.21%)	351 (41.34%)	2.84(1.87-4.32)	< 0.001	2.21(1.40-3.49)	<0.00
Fluoroquinolones	32 (28.57%)	154 (18.14%)	1.04(0.69-1.56)	0.84		
Antifungal agents	23 (20.54%)	157 (18.49%)	0.96(0.61-1.5)	0.85		
Cephamycins	16 (14.29%)	196 (23.09%)	0.51(0.30-0.86)	0.011	0.53 (0.31-0.90)	0.018
Lincomycin	5 (4.46%)	35 (4.12%)	1.01(0.41-2.48)	0.99		
Tigecycline	13 (11.61%)	65 (7.66%)	1.33(0.76-2.34)	032		
COPD, chronic obstructive pult Variables with P < 0.05 in the m	•					

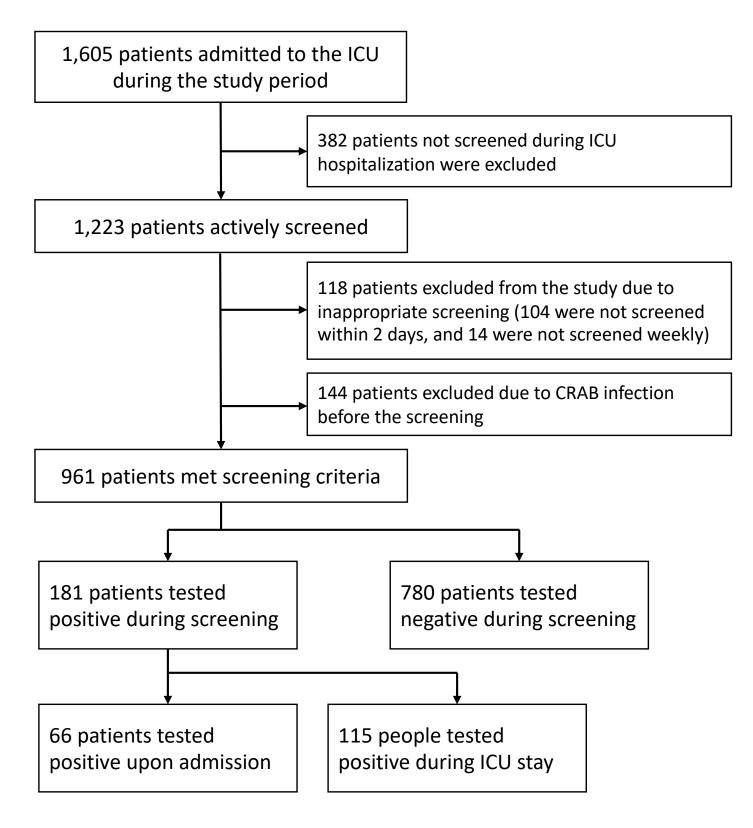
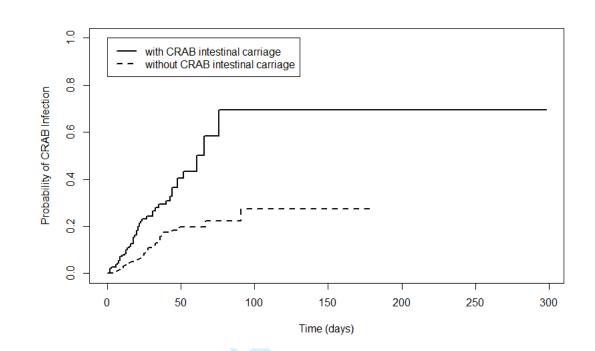



Figure 1. Patient selection flow algorithm

Page 27 of 36

Figure 2. Survival curves of patients with and without CRAB intestinal carriage (cumulative probability of CRAB infection). Death in the ICU is considered as a competing event, not drawn in the figure. The solid line represents patients with CRAB intestinal carriage, while the dashed line represents those without. In patients with CRAB intestinal carriage, Day 0 corresponds to the day of the first positive rectal sample. While in patients without CRAB intestinal carriage, Day 0 corresponds to the day of the first positive rectal sample.

Supplementary files

Table S1 Variables associated with developing subsequent CRAB infection during the ICU stay using sub-distribution hazard model (exposed group was those patients with intestinal carriage on ICU admission)

Item	Subsequent CRAB infection during the ICU stay		Univariate analysis		Multivariate analysis		
	Yes (n=80)	No (n=766)	SDHR (95% CI)	Р	SDHR (95% CI)	Р	
CRAB intestinal carriage	19 (23.75%)	47 (6.14%)	3.78(2.20-6.49)	<0.001	3.42 (1.88-6.22)	<0.001	
Demographics							
Sex, male	50 (62.50%)	499 (65.14%)	1.15(0.73-1.80)	0.55			
Ethnicity, Han Chinese	77 (96.25%)	697 (90.99%)	2.54(0.78-8.24)	0.12			
Age (median)	54 (42-68)	55 (44-68)	1.00(0.99-1.02)	0.85			
APACHE II	20 (15-26)	17 (12-22)	1.06(1.03-1.08)	<0.001	1.03 (1.00-1.05)	0.045	
Charlson score	3 (1-5)	3 (2-4)	1.00(0.88-1.13)	1.00			
Underlying disease							
Peripheral vascular disease	11 (13.75%)	57 (7.44%)	1.62(0.85-3.10)	0.14			
Cerebrovascular disease	3 (3.75%)	33 (4.31%)	0.87(0.29-2.66)	0.81			
Connective tissue disease	1 (1.25%)	11 (1.44%)	0.78(0.11-5.73)	0.80			
Peptic ulcer	3 (3.75%)	23 (3.00%)	1.19(0.41-3.46)	074			
Hypertension	18 (22.50%)	173 (22.58%)	0.97(0.58-1.64)	0.91			
Tuberculosis	1 (1.25%)	12 (1.57%)	0.72(0.10-5.37)	0.75			
COPD	11 (13.75%)	45 (5.87%)	2.21(1.15-4.24)	0.017	2.71 (1.40-5.24)	0.003	
Respiratory failure	34 (42.50%)	143 (18.67%)	2.38(1.52-3.72)	<0.001			
Kidney failure	5 (6.25%)	35 (4.57%)	1.13(0.474-2.7)	0.78			
Heart failure	2 (2.50%)	21 (2.74%)	1.05(0.28-3.92)	0.95			

BMJ	Open
-----	------

Diabetes	11 (13.75%)	101 (13.19%)	1.03(0.54-1.98)	0.92		
Liver dysfunction	14 (17.50%)	32 (4.18%)	3.59(2.00-6.45)	<0.001	2.35 (1.30-4.25)	0.005
Hematological disease	42 (52.50%)	261 (34.07%)	1.84(1.19-2.85)	0.006		
Pancreatitis	17 (21.25%)	84 (10.97%)	1.91(1.13-3.22)	0.016		
Medical operation						
Surgery	62 (77.50%)	638 (83.29%)	0.83(0.49-1.42)	0.50		
CVC	61 (76.25%)	414 (54.05%)	2.23(1.33-3.74)	0.002		
Ventilator	72 (90.00%)	648 (84.60%)	1.62(0.80-3.25)	0.18		
Indwelling catheter	78 (97.50%)	729 (95.17%)	1.91(0.53-6.94)	0.32		
Tube feeding	54 (67.50%)	265 (34.60%)	2.71(1.69-4.34)	<0.001		
Nebulizer fiberoptic	51 (63.75%)	349 (45.56%)	1.35(0.86-2.12)	0.19		
Bronchoscope	5 (6.25%)	17 (2.22%)	1.85(0.77-4.46)	0.17		
Antimicrobial use						
Cephalosporin	15 (18.75%)	210 (27.42%)	0.54(0.31-0.95)	0.032	0.43(0.24-0.78)	0.006
Vancomycin	2 (2.50%)	28 (3.66%)	0.70(0.16-2.98)	0.63		
Aminoglycosides	1 (1.25%)	15 (1.96%)	0.50(0.07-3.52)	0.48		
Carbapenems	58 (72.50%)	284 (37.08%)	3.57(2.18-5.85)	<0.001	2.61(1.53-4.46)	<0.00
Fluoroquinolones	21 (26.25%)	127 (16.58%)	1.07(0.66-1.74)	0.79		
Antifungal agents	17 (21.25%)	123 (16.06%)	1.26(0.74-2.12)	0.39		
Cephamycins	12 (15.00%)	179 (23.37%)	0.52(0.28-0.96)	0.036		
Lincomycin	3 (3.75%)	32 (4.18%)	0.84(0.26-2.68)	0.76		
Tigecycline	8 (10.00%)	53 (6.92%)	1.36(0.67-2.76)	0.39		

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold.

Item	Subsequent CRAB infection during stay		
	Yes (n=93)	No (n=802)	
CRAB intestinal carriage	32 (34.41%)	83 (10.35%)	
Demographics			
Sex, male	60 (64.52%)	513 (63.97%	
Ethnicity, Han Chinese	87 (93.55%)	731 (91.15%	
Age (median)	54 (44-68)	55 (45-68)	
APACHE II	21 (18-26)	17 (12-22)	
Charlson score	3 (1-5)	3 (2-4)	
Underlying disease			
Peripheral vascular disease	11 (11.83%)	62 (7.73%)	
Cerebrovascular disease	4 (4.30%)	36 (4.49%)	
Connective tissue disease	1 (1.08%)	12 (1.50%)	
Peptic ulcer	4 (4.30%)	26 (3.24%)	
Hypertension	25 (26.88%)	191 (23.82%	
Tuberculosis	2 (2.15%)	11 (1.37%)	
COPD	10 (10.75%)	54 (6.73%)	
Respiratory failure	44 (47.31%)	159 (19.83%	
Kidney failure	7 (7.53%)	35 (4.36%)	

44 45 46 ection during the ICU stay using sub-distribution hazard model (exposed group was those patients cquisition of CRAB intestinal carriage)

Univariate analysis

SDHR (95% CI)

2.35(1.56-3.55)

1.01(0.66-1.55)

1.32(0.56-3.08)

1.00(0.99-1.01)

1.05(1.03-1.07)

1.01(0.91-1.13)

1.34(0.71-2.53)

1.03(0.39-2.73) 0.68(0.09-5.07)

1.39(0.58-3.33)

1.10(0.69-1.74)

1.41(0.32-6.29)

1.37(0.69-2.75)

2.42(1.59-3.69)

1.56(0.75-3.28)

Р

< 0.001

0.95

0.52

0.70

0.80

0.37

0.96

0.70

0.46

0.70

0.65

0.37

0.24

< 0.001

< 0.001

Multivariate analysis

Р

0.011

0.009

SDHR (95% CI)

1.81 (1.15-2.86)

1.84 (1.17-2.90)

 BMJ Open

Heart failure	3 (3.23%)	24 (2.99%)	1.34(0.47-3.82)	0.58		
Diabetes	11 (11.83%)	112 (13.97%)	0.75(0.40-1.39)	0.36		
Liver dysfunction	13 (13.98%)	29 (3.62%)	3.18(1.74-5.81)	<0.001	2.13(1.05-4.32)	0.037
Hematological disease	49 (52.69%)	290 (36.16%)	1.60(1.06-2.40)	0.025		
Pancreatitis	20 (21.51%)	92 (11.47%)	1.71(1.06-2.76)	0.028		
Medical operation						
Surgery	70 (75.27%)	666 (83.04%)	0.78(0.49-1.27)	0.32		
CVC	68 (73.12%)	434 (54.11%)	1.82(1.15-2.88)	0.011		
Ventilator	85 (91.40%)	683 (85.16%)	1.83(0.89-3.76)	0.10		
Indwelling catheter	91 (97.85%)	761 (94.89%)	2.37(0.58-9.63)	0.23		
Tube feeding	67 (72.04%)	300 (37.41%)	2.64(1.67-4.18)	< 0.001		
Nebulizer fiberoptic	64 (68.82%)	388 (48.38%)	1.42(0.92-2.20)	0.11		
Bronchoscope	5 (5.38%)	18 (2.24%)	1.60(0.64-3.99)	0.31		
Antimicrobial use						
Cephalosporin	18 (19.35%)	213 (26.56%)	0.60(0.36-1.00)	0.051	0.59(0.35-1.00)	0.048
Vancomycin	2 (2.15%)	33 (4.11%)	0.53(0.13-2.15)	0.38		
Carbapenems	68 (73.12%)	319 (39.78%)	2.92(1.84-4.64)	<0.001	2.11 (1.27-3.50)	0.004
Fluoroquinolones	28 (30.11%)	144 (17.96%)	1.11(0.71-1.72)	0.65		
Antifungal agents	16 (17.20%)	141 (17.58%)	0.82(0.48-1.39)	0.46		
Cephamycins	15 (16.13%)	187 (23.32%)	0.56(0.33-0.98)	0.042		
Lincomycin	4 (4.30%)	34 (4.24%)	0.90(0.34-2.44)	0.84		
Tigecycline	7 (7.53%)	57 (7.11%)	0.91(0.43-1.96)	0.82		

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold.

Reporting checklist for cohort study. Based on the STROBE cohort guidelines. Instructions to authors Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Reporting Item Page Number Title and abstract Indicate the study's design with a commonly used Title #1a term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary of what was done and what For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			was found	
2 3 4 5	Introduction			
6 7 8 9 10 11 12 13 14 15 16 17 18 19	Background /	<u>#2</u>	Explain the scientific background and rationale for	4-5
	rationale		the investigation being reported	
	Objectives	<u>#3</u>	State specific objectives, including any	5
			prespecified hypotheses	
	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the	7-8
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46			paper	
	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	5-6
			including periods of recruitment, exposure, follow-	
			up, and data collection	
	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and	6
			methods of selection of participants. Describe	
			methods of follow-up.	
	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and	n/a
			number of exposed and unexposed	Not matched studies
47 48	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors,	6-8
49 50			potential confounders, and effect modifiers. Give	
51 52 53			diagnostic criteria, if applicable	
54 55 56	Data sources /	<u>#8</u>	For each variable of interest give sources of data	6-8
57 58	measurement		and details of methods of assessment	
59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	tml

			(measurement). Describe comparability of	
1 2				
3 4			assessment methods if there is more than one	
5 6			group. Give information separately for for exposed	
7 8			and unexposed groups if applicable.	
9 10 11 12 13	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	8
14 15				
16 17	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
18 19 20				Including all the
21 22				patients admitted to
23 24				the ICU in the study
25 26				period.
27 28				
29 30	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in	7
31 32	variables		the analyses. If applicable, describe which	
33 34			groupings were chosen, and why	
35 36	Statistical	#12a	Describe all statistical methods, including those	7-8
37 38		<u>#120</u>	\mathbf{O}	1.0
39 40	methods		used to control for confounding	
41 42	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	8
43 44	methods		and interactions	
45 46				
47 48	Statistical	<u>#12c</u>	Explain how missing data were addressed	n/a
49 50	methods			No missing data.
51 52				-
53 54	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was	n/a
55 56 57	methods		addressed	Not applicable
58 59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	ml

1 2	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
3 4 5	methods			Not done.
6 7 8 9 10 11 12	Results			
	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	9
13 14			study—eg numbers potentially eligible, examined	
15 16			for eligibility, confirmed eligible, included in the	
17 18			study, completing follow-up, and analysed. Give	
19 20			information separately for for exposed and	
21 22 23 24			unexposed groups if applicable.	
25 26 27 28 29 30 31 32	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
	Participants	<u>#13c</u>	Consider use of a flow diagram	Figure 1
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	19-23
33 34 35			demographic, clinical, social) and information on	
36 37			exposures and potential confounders. Give	
38 39			information separately for exposed and unexposed	
40 41 42 43 44 45			groups if applicable.	
	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data	n/a
46 47			for each variable of interest	No missing data.
48 49 50 51 52 53	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total	Figure 2
			amount)	
54 55 56	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	19-23
57				
58 59			measures over time. Give information separately	

Page 36 of 36

1			for exposed and unexposed groups if applicable.	
2 3 4	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	19-23
5 6 7			confounder-adjusted estimates and their precision	
8 9			(eg, 95% confidence interval). Make clear which	
10 11			confounders were adjusted for and why they were	
12 13 14			included	
15 16 17	Main results	<u>#16b</u>	Report category boundaries when continuous	n/a
17 18 19 20			variables were categorized	Continuous variables
21 22 23				were not categorized.
23 24 25	Main results	<u>#16c</u>	If relevant, consider translating estimates of	n/a
26 27			relative risk into absolute risk for a meaningful time	Not applicable
28 29 30			period	
31 32 33	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	Supplementary files
34 35			subgroups and interactions, and sensitivity	
36 37			analyses	
38 39 40	Discussion			
41 42 43	Key results	<u>#18</u>	Summarise key results with reference to study	11-13
44 45	·		objectives	
46 47				
48 49 50	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account	13
50 51 52			sources of potential bias or imprecision. Discuss	
52 53 54			both direction and magnitude of any potential bias.	
55 56 57	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering	11-13
58 59			objectives, limitations, multiplicity of analyses,	

1			results from similar studies, and other relevant	
2 3			evidence.	
4 5				
6	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of 13	3
7 8			the study results	
9 10				
11 12	Other			
13 14	Information			
15				
16 17	Funding	<u>#22</u>	Give the source of funding and the role of the 14	ŀ
18 19 20			funders for the present study and, if applicable, for	
20 21 22			the original study on which the present article is	
22 23 24			based	
25				
26 27	None The STROE	BE chec	klist is distributed under the terms of the Creative Commo	ons Attribution
28 29	License CC-BY. T	his che	cklist can be completed online using https://www.goodrep	<u>oorts.org/</u> , a tool
30 31	made by the EOU		Network in collaboration with Penelope.ai	
32 33		AIONI		
34				
35 36				
37 38				
39 40				
41				
42 43				
44 45				
46				
47 48				
49 50				
50 51				
52				
53 54				
55 56				
56 57				
58				
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Risk factor of intestinal carriage of carbapenem-resistant Acinetobacter baumannii and the impact on subsequent infection among patients in an intensive care unit: an observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035893.R2
Article Type:	Original research
Date Submitted by the Author:	20-Jul-2020
Complete List of Authors:	Qiao, Fu; Sichuan University West China Hospital, Department of Infection Control Huang, Wenzhi; Sichuan University West China Hospital, Department of Infection Control Gao, Shan; Zhengzhou University First Affiliated Hospital, Department of Infection Control Cai, Lin; Sichuan University West China Hospital, Intensive Care Unit Zhu, Shichao; Sichuan University West China Hospital, Department of Infection Control Wei, Li; Sichuan University West China Hospital, Department of Infection Control Kang, Yan; Sichuan University West China Hospital, Intensive Care Unit Tao, Chuanmin; Sichuan University West China Hospital, Intensive Care Unit Tao, Chuanmin; Sichuan University West China Hospital, Department of Laboratory Medicine Zong, Zhiyong; Sichuan University West China Hospital, Department of Infection Control; Sichuan University West China Hospital, Center of Infectious Disease
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases
Keywords:	EPIDEMIOLOGY, Adult intensive & critical care < INTENSIVE & CRITICAL CARE, Infection control < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

1	
2	
3	
4	
5	
6	
7	
8	
8 9	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20	
21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52 53	
22	
54	
55	
56	
57	
58	
59	
60	

 Acinetobacter baumannii and the impact on subsequent infection among patients in an intensive care unit: an observational stude Fu Qiao¹, Wenzhi Huang¹, Shan Gao², Lin Cai³, Shichao Zhu¹, Li Wei¹, Yan Kang³, Chuanmin Tao^{4*}, Zhiyong Zong^{1,5*} ¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China 	
 Fu Qiao¹, Wenzhi Huang¹, Shan Gao², Lin Cai³, Shichao Zhu¹, Li Wei¹, Yan Kang³, Chuanmin Tao^{4*}, Zhiyong Zong^{1,5*} <i>¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China</i> 	on
 5 Chuanmin Tao^{4*}, Zhiyong Zong^{1,5*} 6 ¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China 	ly
6 ¹ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, Ch	
	na.
7 ² Department of Infection Control, The First Affiliated Hospital of Zhengzhou University,	
8 Zhengzhou, China. ³ Intensive Care Unit, West China Hospital, Sichuan University, Cheng	lu,
9 China. ⁴ Department of Laboratory Medicine, West China Hospital, Sichuan University,	
10 Chengdu, China. ⁵ Center of Infectious Disease, West China Hospital, Sichuan University,	
11 Chengdu, China	
12	
13 Running title: intestinal carriage of CRAB in ICU	
14	
15 Keywords: carbapenem-resistant; Acinetobacter baumannii; intestinal carriage; intensive ca	e unit.
16 Word count: 3147	
17 *Co-corresponding author	
18 Dr. Chuanmin Tao, Department of Laboratory Medicine, West China Hospital, S	chuan
19 University, Chengdu, China. Email: <u>taocm@scu.edu.cn</u>	
20 Dr. Zhiyong Zong, Center of Infectious Diseases, West China Hospital (Huaxi), Guoxuexia	ng 37,
	-mail:
22 zongzhiyong@gmail.com	

BMJ Open

2 3 4	23	Abstract
5 6 7	24	Objectives: To assess the incidence and the impact of carbapenem-resistant Acinetobacter
, 8 9	25	baumannii (CRAB) intestinal carriage on subsequent CRAB infection and to study risk factors of
10 11	26	acquiring CRAB intestinal carriage among patients in intensive care unit (ICU).
12 13 14	27	Design: Observational study including a case control study and a retrospective cohort study.
15 16	28	Setting: A 50-bed general ICU of a university hospital, China.
17 18	29	Methods: From May 2017 to April 2018, an observational study was conducted in a 50-bed
19 20 21	30	general ICU of a university hospital in China. Rectal swabs were collected from ICU patients on
21 22 23	31	admission and thereafter weekly. A case control study was performed to analyze risk factors of the
24 25	32	acquisition of CRAB intestinal carriage in ICU using multiple logistic regression. A retrospective
26 27 28	33	cohort study was performed to address whether intestinal CRAB carriage could lead to an
28 29 30	34	increased likelihood of subsequent CRAB infection using sub-distribution hazard model
31 32	35	regarding death in the ICU as a competing risk event.
33 34	36	Results: CRAB intestinal carriage was detected in 6.87% (66/961; 95% CI 5.27%-8.47%) of
35 36 37	37	patients on ICU admission, whereas 11.97% (115/961; 95% CI 9.91%-14.02%) of patients
38 39	38	acquired CRAB intestinal carriage during the ICU stay. Pancreatitis (OR 2.16, 95% CI 1.28-3.67),
40 41	39	hematological disease (OR 2.26, 95% CI 1.42-3.58), gastric tube feeding (OR 3.35, 95% CI 2.03-
42 43 44	40	5.51), and use of carbapenems (OR 1.84, 95% CI 1.11-3.07) were independent risk factors for
45 46	41	acquiring CRAB intestinal carriage. The incidence of subsequent CRAB infection was 2.24-fold
47 48	42	in patients with CRAB intestinal carriage compared to that in patients without (95% CI 1.48–3.39,
49 50	43	P<0.001).
51 52 53	44	Conclusion: More patients acquired CRAB intestinal carriage during their ICU stay than had on

45 admission. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were

independent risk factors of acquisition of CRAB intestinal carriage. Patients with CRAB intestinal

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
10	
12	
1.0	
14	
15	
16	
17	
12 13 14 15 16 17 18	
19	
20	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
36	
37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~ ~	

60

1

46

47

48

Strengths and limitations of this study 49

carriage are more likely to develop CRAB infection.

This observational study contains a combination of a case control study for analyzing risk factors 50

51 of the acquisition of CRAB intestinal carriage in ICU and a retrospective cohort study to address

whether intestinal CRAB carriage was associated with subsequent CRAB infection. 52

The competing risk of death in ICU was considered using a well-established model. 53

- 54 This is a single-unit study and the findings may not be generalized.
- A culture-based method to screen CRAB, which is less sensitive than PCR-based methods. 55

Only rectal swabs were collected for screening CRAB and some CRAB carriers might have been 56

57 missed.

BMJ Open

58 Background

Acinetobacter baumannii is one of the most common nosocomial pathogens in Asia and South America[1]. A systematic review has revealed that A. baumannii accounted for 11.28% of nosocomial infections in general hospitals in China, making it the third most common nosocomial pathogen[2]. And carbapenem-resistant A. baumannii (CRAB) has emerged worldwide. As early as 2013, the US Centers for Disease Control and Prevention listed multi-drug resistant A. *baumannii* (MDRAB) including CRAB as a serious threat[3], and the World Health Organization listed CRAB as one of the three most critical threats in a global drug-resistant warning in 2017[4]. The prevalence of A. baumannii and its resistance to carbapenems varies from country to country. For instance, the European Bacterial Resistance Surveillance Report shows that the rate of Acinetobacter resistant to carbapenem in Europe in 2017 was 33.4% (95% CI 32%–35%), but it was as high as 96.2% in Croatia (95% CI 92%–98%) [5]. In the US, 49.5% of *A. baumannii* is resistant to carbapeems, while in Singapore, India, and Pakistan, it is 50%, 85%, and 62-100%, respectively[6,7]. The prevalence of CRAB is also very high in China. The surveillance data released by CHINET (China Antimicrobial Surveillance Network; http://chinets.com/Chinet), a national network in China, have shown that 77.1% and 78.1% of *A. baumannii* isolates resistant to imipenem and meropenem, respectively[8].

Infections caused by CRAB can lead to serious consequences. A previous study has demonstrated that patients with CRAB infection had longer average length of stay (LOS) in ICUs (13.1 vs. 10.5 days) and \$11,359 higher average in-hospital costs than those with carbapenemsusceptible *A. baumannii* (CSAB) infection[9]. Another previous study has found that the mortality rate of patients with CRAB infection is 2.22-fold that of patients with CSAB infection[10]. A case-control study conducted by our team have also showed that the 28-day

survival rate of patients with bloodstream CRAB infection was 66.17%, lower than the 96.95% of
those with bloodstream CSAB infection[11].

It is well known that A. baumannii including CRAB may colonized in the respiratory tract of hospitalized patients, in particular those with mechanical ventilation[12,13]. The colonization of CRAB in the respiratory tract has been found as a major risk factor for subsequent CRAB infection[14]. However, ICU patients may carry CRAB in intestine on admission or acquire CRAB during the ICU stay[15]. Patients with intestinal carriage of multi-drug resistant organisms (MDRO), in particular carbapenem-resistant *Enterobacteriaceae* (CRE), may sever as a reservoir for further dissemination in ICU[16] and could be associated with be associated with an increased risk of subsequent MDRO infections [17]. Therefore, active screening the carriage of CRE, which is usually performed using rectal swabs, has been recommended as a core component of the infection control bundle[7]. However, by contrast to CRE, the prevalence of CRAB intestinal carriage among ICU patients is much less studied and the risk factors of acquisition of CRAB intestinal carriage remains largely unknown. In addition, it remains to be determined whether CRAB intestinal carriage leads to increased risks of subsequent CRAB infection. To address these questions, we therefore conducted this study.

98 Methods

99 Study settings

An observational study was conducted in a 50-bed general ICU of a 4,300-bed university hospital in China. From May 2017 to April 2018, all patients admitted to the ICU were subjected to collecting a rectal swab within 48 h of admission and thereafter weekly. For patients hospitalized for less than 3 days, a rectal swab was collected only once within 48 h of admission.

59

1		
2 3 4	104	
5 6	105	Inclusion and exclusion criteria
7 8 9	106	Inclusion criteria: This study included all patients who were ≥ 18 years of age, admitted to
9 10 11	107	the ICU, and underwent collection of rectal swabs.
12 13	108	Exclusion criteria: 1) patients who did not receive a rectal swab within 48 h of admission to
14 15 16	109	ICU; or 2) patients who were eligible for weekly follow-up collection of rectal swabs but did not
17 18	110	receive subsequent sampling; or 3) patients with CRAB infection on admission.
19 20	111	
21 22 23	112	
23 24 25	113	Definitions
26 27	114	Patients with CRAB intestinal carriage were defined as those with CRAB isolated from a
28 29	115	rectal swab, while patient without CRAB intestinal carriage referred to those whose swabs were
30 31 32	116	all negative for CRAB during the ICU stay. Patients with CRAB isolated from a rectal swab
33 34	117	collected within 48 h of ICU admission were defined as those with CRAB intestinal carriage on
35 36	118	ICU admission. The acquisition of CRAB intestinal carriage referred to a patient who had a CRAB-
37 38 39	119	negative rectal swab collected within 48 h of ICU admission but had CRAB from a swab collected
40 41	120	after 48 h. CRAB infection was defined as the growth of CRAB from clinical specimens in the
42 43	121	presence of clinical manifestations of infection[18]. Subsequent CRAB infection referred to
44 45 46	122	CRAB infection developed after the collection of a CRAB-positive rectal swab for patients with
40 47 48	123	CRAB intestinal carriage and CRAB infection developed after 48 h admission to the ICU for
49 50	124	patients without CRAB intestinal carriage.
51 52 53	125	Screening for CRAB by rectal swabs
55 55	126	For collecting rectal swabs, ready-to-use transport medium swabs (HBPT004; Hopebio
56 57		

Biotechnology, Qingdao, China) was inserted about 2–3 cm into the patient's anus and then gently
rotated. After sampling, the swab was inserted into the ready-to-use transport medium and
transported to the laboratory within 2 h. Rectal swabs were inoculated onto modified CHROMagar *Acinetobacter* colorimetric plates (Chromagar; Paris, France) containing 2 mg/L meropenem using
the partition-and-streaking method[19,20]. Plates were then cultured at 37°C for 18–24 h[20].

133 Data collection and statistical analysis

In this study, the patient's demographic data, underlying diseases, invasive procedures, medical orders, and use of antimicrobial agents were retrieved from the electronic medical record system. Two professional statisticians collaborated to clean the data.

We performed two types of comparison. First, a case control study was performed to analyze risk factors of the acquisition of CRAB intestinal carriage in ICU. Patients with ICU acquisition of CRAB intestinal carriage were assigned to the case group, while those without CRAB intestinal carriage during their ICU stay were assigned to the control group. All potential factors were initially subjected to the univariate analysis. Quantitative data were described by the median (interquartile range) and were then analyzed using a rank-sum test. Qualitative data were described by number of cases (composition ratio) and were then analyzed using the chi-square test or Fisher exact probability method when applied. All variables showing P value less than 0.2 in the univariate analysis were then included into the multiple logistic regression using the forward selection stepwise regression method[21,22]. Odds ratio (OR) and 95% confidence interval (CI) were calculated. The Hosmer-Lemeshow method was used to test the goodness-of-fit of the multiple logistic model[23].

Second, a retrospective cohort study was performed to address whether intestinal CRAB

Page 9 of 36

BMJ Open

carriage could lead to an increased likelihood of subsequent CRAB infection. In this cohort study, the exposed group comprised patients with CRAB intestinal carriage either detected on ICU admission or acquired during the ICU stay, while the non-exposed group consisted of those without CRAB intestinal carriage. As the impact of CRAB intestinal carriage on subsequent infection may also be influenced by other factors such as patient demographics, underlying diseases, antimicrobial use and medical operations, we included these factors for analysis instead of evaluating CRAB carriage alone. Survival curves (probability of CRAB infection) in patients with and without CRAB intestinal carriage were mapped using the Fine and Gray model regarding death in the ICU as a competing risk event [24,25]. After introducing the interaction term of time and each variable (X*ln (T)) into the COX model [24,25], the proportional hazards hypothesis was tested, and the results showed no statistical significance (P < 0.05). Therefore, sub-distribution hazard model was used to obtain sub-distribution hazard ratios (SDHRs) and to explore whether CRAB intestinal carriage was a risk factor for subsequent CRAB infection for competing events (R package "cmprsk")The Akaike information criteria (AIC) was used to select the multivariate model[26]. We also performed subgroup analyses to investigate whether CRAB intestinal carriage on ICU admission and that acquired in ICU had different impact on subsequent CRAB infection using the same statistical method as describe above. For the subgroup analysis, patients with CRAB intestinal carriage on ICU admission and those with ICU acquisition of CRAB intestinal carriage were assigned to two exposed subgroups, respectively, while those without CRAB intestinal carriage were assigned to the non-exposed group.

- All statistical analyses were performed using SPSS 21.0 (IBM–SPSS Inc; Armonk, NY, US)
 and R version 3.5.3 with a 0.05 two-sided test level.

173 Patient and public involvement

- Patients were not involved in this study.

Results

Some patients (6.87%) had CRAB intestinal carriage on ICU admission and more (12.85%) acquired in ICU

From May 1, 2017 to April 30, 2018, a total of 1,605 patients were admitted to the ICU, of which 382 (23.8%) were not screened during their hospital stay. Of which the 382 patients, 323 (84.55%) stayed in the ICU for no more than 2 days, while the other 59 (15.45%) patients were missed for sampling. In addition, 118 patients (118/1,605, 7.4%) were excluded due to inappropriate or incomplete sampling including 104 patients whose first rectal swab was collected 48 h after admission and 14 patients who were not screened weekly. A total of 144 (144/1,605, 8.97%) had CRAB infection on ICU admission and were therefore also excluded. Taken together, a total of 961 patients (620 males, 64.52% and 341 female 35.48%) were included in the analysis, with an average age of 54 (44-68) years (Figure 1).

Among the 961 patients, 66 (6.87%, 95% CI 5.27%–8.47%) had CRAB intestinal carriage on ICU admission. For the remaining 895 patients, 115 acquired (12.85%, 95% CI 10.66%–15.04%) CRAB intestinal carriage during their ICU stay with an average age of 51 (40–70) and a 1.61 male/female ratio (71 male and 44 female).

7 192

193 Multiple risks factors of acquiring CRAB intestinal carriage were identified

The univariate analysis showed that APACHE II score (the patient's disease severity),
respiratory failure, renal dysfunction, hematological disease, acute pancreatitis, indwelling central

Page 11 of 36

BMJ Open

venous catheter, gastric tube feeding, nebulization, and use of vancomycin, aminoglycosides, carbapenems, tigecycline, and antifungal agents are risk factors for the acquisition of CRAB intestinal carriage in the ICU. Multiple logistic regression including all variables with P < 0.2 in the univariate analysis showed that APACHE II score, pancreatitis, hematological diseases, gastric tube feeding, and use of carbapenems were independent risk factors for acquiring CRAB intestinal carriage during the ICU stay (Table 1). For APACHE II score, the model estimated that the increase of the score by 1 point would lead to a 4% increase of the risk of acquiring CRAB intestinal carriage in the ICU. Hosmer-Lemeshow test generated a 0.73 P value (χ^2 =5.25, df=8), suggesting adequate goodness-of-fit of the multiple logistic model.

206 CRAB intestinal carriage led to increased risks of subsequent CRAB infection

During the study period, 112 of the 961 patients (11.65%, 95% CI 9.63%–13.68%) developed CRAB infections during the ICU stay. As for the infection type, lower respiratory tract infections were the most common (n=82, 73.21%), followed by bloodstream infections (n=9, 8.04%), surgical site infection (n=8, 7.14%), while 13 patients (11.61%) had infections at other sites. CRAB intestinal carriage was a risk factor for subsequent CRAB infection (HR 2.82, 95% CI 1.94–4.09; P < 0.001; Figure 2). The 90-day cumulative probability of no CRAB infection in patients with and without CRAB intestinal carriage was 69.5.0% (95% CI 43.5%-95.5%) and 22.3% (95% CI 14.7%–29.9%), respectively (P<0.001). In the univariate analysis, CRAB intestinal carriage, APACHE II score, respiratory failure, liver dysfunction, hematological disease, pancreatitis, mechanical ventilation, placement of a central venous catheter, gastric tube feeding, and the use of carbapenems were identified as risk factors for subsequent CRAB infection. In the COX multivariate analysis, CRAB intestinal carriage was also found to be an independent risk

factor for subsequent CRAB infection (HR 2.24, 95% CI 1.48–3.39; Table 2). Omnibus test
showed a log likelihood difference of 79.82 and generated a less than 0.001 P value, suggesting
adequate goodness-of-fit of the COX model.

To evaluate whether CRAB intestinal carriage on admission and that acquired during the ICU stay has different impact on subsequent CRAB, we performed subgroup analyses. In the subgroup COX multivariate analysis, both CRAB intestinal carriage on admission and that acquired during the ICU stay were an independent risk factor for subsequent CRAB infection (HR 3.42, 95% CI 1.88–6.22 for carriage on admission, Table S1 in the Supplementary file; HR 1.81, 95% CI 1.15– 2.86 for acquired carriage, Table S2). Omnibus test showed log likelihood difference of 66.06 and 74.18, respectively, and generated a less than 0.001 P value in the subgroup analysis, suggesting adequate goodness-of-fit of the COX model.

In addition to CRAB intestinal carriage, liver dysfunction (HR 2.33, 95% CI 1.30–4.17), and the use of carbapenems (HR 2.21, 95% CI 1.40–3.49), were also identified as independent risk factors of subsequent CRAB infection, while the use of cephalosporins (HR 0.45, 95% CI 0.28– 0.73) and cephamycins (HR 0.53, 95% CI 0.31–0.90) were protective factors (Table 2).

Discussion

In this study, we found that in a region with a high CRAB prevalence, 6.87% of patients (83.3% of those patients were transferred from other hospitals and 25.8% of them were stayed in emergency ICU before admitted to the ICU) admitted to the ICU had CRAB intestinal carriage on ICU admission, while an additional 11.97% of patients acquired CRAB intestinal carriage during the ICU stay. The overall CRAB intestinal carriage rate was therefore 18.84%. This rate was similar with a study conduct in Thailand, in which 5.45% (15/275) of patients had intestinal Page 13 of 36

BMJ Open

carriage on ICU admission and 13.59% (28/206) patients acquired CRAB during their ICU
stay[15] and with another study in Italy[27], in which 18.92%(74/391) of patients carried CRAB
during ICU stay. However, the rate was significantly higher than those in Turkey (7.22%,
55/762)[28], Brazil (13.23%, 43/325)[29], USA (13.46%, 49/364)[30], and South Korea (15.06%,
168/1,115)[14], although other sites such as respiratory secretions were also screened in these
studies. This difference may be related to the local CRAB prevalence.

Interestingly, we found that gastric tube feeding is a risk factor for both acquiring CRAB intestinal carriage of CRAB in ICU, which is consistent with the findings of Kiddee et al[15], in which tube feeding was also a high-risk factor for carriage of Gram-negative bacilli. This may suggest an entry point of CRAB into human intestine. In this study, 73.0% (84/115) of patients who acquired CRAB intestinal carriage using tube feeding. During the study, we performed a one-day snapshot sampling of the feeding tubes (at the tube port), feeding contents and containers for preparing feeding contents in the ICU and found the presence of CRAB in the tube feeding content (24.0%, 6/25), at the tube port (33.3%, 3/9) and the tube feeding containers (7.1%, 1/14), indicating contamination. This may be a key point for intervention in the ICU.

We also found that patients with CRAB intestinal carriage were more likely to develop subsequent CRAB infection than those without carriage. The survival curve in this study showed that the cumulative infection rates in 90 days in patients with and without CRAB intestinal carriage were 69.5% and 22.3%, respectively, similar to those reported in other studies[30]. However, the HR was 2.24, which is much lower than those in previous studies [15,30,31]. This may be due to the fact that healthcare associated infections in our ICU were mainly caused by lower respiratory infections, which accounting for more than 70% of infections, while we only screened the colonization of the intestines. Interestingly, we found that the use of cephalosporins and

cephamycins led to lower risks of subsequent CRAB infection, while carbapenem use led to increased risks. The association between CRAB and carbapenem use has been documented before[30,32]. CRAB is usually resistant to cephalosporins and cephamycins. The use of cephalosporins and cephamycins may reflect the fact that patients did not receive carbapenems and could therefore result in reduced selection pressure for CRAB.

There are a few limitations in this study. First, this is a single center study and the findings may not be generalized. Second, we used a modified CHROMagar Acinetobacter chromogenic plate to screen CRAB from rectal swabs. Not all screened CRABs were confirmed using Vitek II or other methods and there may be false negative results. Nonetheless, at the beginning of this study, we confirmed that the 58 CRAB strains grown on the chromogenic medium were indeed all A. baumannii by MALDI-TOF-MS and were all non-susceptible to imipenem or meropenem as determined using the agar dilution method recommended by the Clinical and Laboratory Standards Institute (CLSI)[20]. Third, we only collected the patients' rectal swabs for investigating CRAB carriage. Studies have shown concurrent swab collection of skin, oropharyngeal, and airway secretions in addition to rectal swabs, may improve sensitivity. However, the sample sizes in these studies were small with only 21 and 34 cases, respectively [12,33]. Nonetheless, for practical reasons and the aim to study CRAB intestinal carriage, we only collected rectal swabs. Fourth, due to the poor sensitivity of rectal swabbing, a single negative test result could overlook carriers. Moreover, no molecular strain typing was performed. Though reasonable, it was not proven that CRAB isolated from intestinal colonization and site of nosocomial infection were identical. Last, this study failed to collect for the first rectal swab specimen within 48 h of ICU admission from 23.8% of the patients. Nonetheless, 84.55% of these patients stayed in the ICU for less than 48 h.

Page 15 of 36

1

BMJ Open

2	
3	288
4	200
5	
6	289
7	
8	290
9	
10	004
11	291
12	
	292
13	
14	~~~
15	293
16	
17	294
18	
19	205
20	295
21	
22	296
23	
23 24	207
24 25	297
26	298
27	
28	299
29	299
30	
31	300
32	
33	301
34	301
35	
36	302
37	
38	303
	000
39	
40	304
41	
42	305
43	000
44	
45	306
46	
47	307
48	
49	~~~
50	308
51	
52	309
	-
53	040
54	310
55	
56	
57	
58	
59	

288 In conclusion, some patients had CRAB intestinal carriage but more acquired during their ICU 289 stay. Severity of illness, acute pancreatitis, tube feeding, and use of carbapenems were independent risk factors of the acquisition of CRAB intestinal carriage. Patients with CRAB intestinal carriage 290 were more likely to have subsequent CRAB infection than those without. 291

293 Acknowledgments

We would like acknowledge the physicians and allied health staff of the ICU and the Department 294 of Electronic Medical Record system of West China Hospital. 295

Author contributions 297

Fu Qiao, Zhiyong Zong and Chuanmin Tao contributed to study conception and design. Shichao 298 299 Zhu and Yan Kang contributed to acquisition of data. Lin Cai collected rectal swabs and transported to the laboratory. Fu Qiao, Wenzhi Huang and Shan Gao analyzed and interpreted data. 300 Li Wei inoculated rectal swabs onto plates cultured for 18-24h. Fu Qiao, Zhiyong Zong and 301 Chuanmin Tao drafted the manuscript. All authors revised the manuscript for important intellectual 302 content. All authors read and approved the final manuscript. 303

60

Funding 305

306 The work was supported by grants from the National Natural Science Foundation of China (project 307 no. 81772233, 81661130159 and 81861138055), West China Hospital of Sichuan University (1.3.5 project for disciplines of excellence, project no. ZYYC08006) and the Newton Advanced 308 309 Fellowship, Royal Society, UK (NA150363).

2	
3 4	311
5 6	312
7 8	313
9 10 11	314
11 12 13	315
14 15	316
16 17	317
18 19	318
20 21 22	319
22 23 24	320
25	
26 27	321
28 29 20	322
30 31 32	323
33 34	324
35 36	325
37 38	326
39 40	327
41 42 43	328
43 44 45	329
46 47	330
48 49	330
50 51	331 332
52 53	333
54	334 335
55 56	
57	
58 59	

Competing interests 1

2 The authors declare that they have no competing interests.

Patient consent for publication 4

5 Not required.

7 **Ethics** approval

This project was approved by the Ethics Committee of West China Hospital of Sichuan University. 8 9 We confirm that consents were not obtained from the patients. First, active screening is part of the routine care for ICU patients in our hospital. In other words, no matter whether we analyzed the 20 data, the patients would receive the screening. Second, this is a retrospective study, in which we 1 2 looked back the patients' data and did not perform any interventions. Third, before we performed this study, we have obtained ethical approval from the Ethical Committee and inform consents 23

were waived due to the retrospective nature of this study. 24

Availability of data and materials 26

The datasets during the current study available from the corresponding author on reasonable 27 28 request.

60

References 0

Wong D, Nielsen TB, Bonomo RA, et al. Clinical and Pathophysiological Overview of 1 1 32 Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017;30:409-47. 33 doi:10.1128/CMR.00058-16

Wang J, Liu F, Tartari E, et al. The Prevalence of Healthcare-Associated Infections in 64 2 Mainland China: A Systematic Review and Meta-analysis. Infect Control Hosp Epidemiol 5

1		
2 3		
4	336	2018; 39 :701–9. doi:10.1017/ice.2018.60
5	337	3 CDC. The biggest antibiotic-resistant threats in the U.S. Centers for Disease Control and
6	338	Prevention. 2019.https://www.cdc.gov/drugresistance/biggest_threats.html (accessed 7 Aug 2019).
7	339	4 Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and
8	340	Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/
9 10	341	(accessed 7 Aug 2019).
11	342	5 European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance
12	343	in Europe – Annual report of the European Antimicrobial Resistance Surveillance Network
13	344	(EARS-Net) 2017. Stockholm: ECDC: 2018.
14	345	6 Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global
15	346	resistance, mechanisms of resistance, treatment options, and alternative modalities. <i>Infect Drug</i>
16	347	<i>Resist</i> 2018; 11 :1249–60. doi:10.2147/IDR.S166750
17 18	348	7 Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae,
19	349	Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. WHO.
20	350	2017.http://www.who.int/infection-prevention/publications/guidelines-cre/en/ (accessed 7 Aug
21	351	2019). (11) (11) (11) (11) (11) (11) (11) (11)
22	352	8 CHINET Data Cloud. http://chinets.com/Chinet (accessed 7 Aug 2019).
23	353	9 Lemos EV, de la Hoz FP, Alvis N, <i>et al.</i> Impact of carbapenem resistance on clinical and
24 25	354	economic outcomes among patients with Acinetobacter baumannii infection in Colombia. <i>Clin</i>
25 26	355	<i>Microbiol Infect</i> 2014; 20 :174–80. doi:10.1111/1469-0691.12251
27	356	10 Lemos EV, de la Hoz FP, Einarson TR, et al. Carbapenem resistance and mortality in patients
28	357	with Acinetobacter baumannii infection: Systematic review and meta-analysis. <i>Clinical</i>
29	358	Microbiology and Infection 2014; $20:416-23$. doi:10.1111/1469-0691.12363
30	359	11 Huang W, Qiao F, Wang Y, et al. Risk factors and prognosis of patients with bloodstream
31	360	infection due to carbapenem-resistant Acinetobacter baumannii. Chinese Journal of Infection
32 33	361	Control 2015;14:668–71.
34	362	12 Nutman A, Lerner A, Schwartz D, et al. Evaluation of carriage and environmental
35	363	contamination by carbapenem-resistant Acinetobacter baumannii. <i>Clinical microbiology and</i>
36	364 265	infection : the official publication of the European Society of Clinical Microbiology and Infectious
37	365	<i>Diseases</i> 2016; 22 :949.e5-949.e7. doi:10.1016/j.cmi.2016.08.020
38	366	13 Cheng VCC, Chen JHK, So SYC, <i>et al.</i> Use of fluoroquinolones is the single most important risk factor for the high bacterial load in patients with nasal and gastrointestinal colonization by
39 40	367	
41	368	multidrug-resistant Acinetobacter baumannii. <i>European Journal of Clinical Microbiology & Infectious Diseases</i> 2015; 34 :2359–66. doi:10.1007/s10096-015-2489-4
42	369	5
43	370 271	14 An JH, Kim Y-H, Moon J-E, <i>et al.</i> Active surveillance for carbapenem-resistant Acinetobacter baumannii in a medical intensive care unit: Can it predict and reduce subsequent infections and
44	371 372	the use of colistin? Am J Infect Control 2017;45:667–72. doi:10.1016/j.ajic.2017.01.016
45	372	15 Kiddee A, Assawatheptawee K, Na-udom A, <i>et al.</i> Risk Factors for Gastrointestinal
46 47	373	Colonization and Acquisition of Carbapenem-Resistant Gram-Negative Bacteria among Patients
48	374	in Intensive Care Units in Thailand. Antimicrobial Agents and Chemotherapy 2018;62.
49	375	doi:10.1128/AAC.00341-18
50	370	16 Tischendorf J, de Avila RA, Safdar N. Risk of infection following colonization with
51	378	carbapenem-resistant Enterobactericeae: A systematic review. Am J Infect Control 2016;44:539–
52	379	43. doi:10.1016/j.ajic.2015.12.005
53 54	380	17 McConville TH, Sullivan SB, Gomez-Simmonds A, <i>et al.</i> Carbapenem-resistant
54 55	381	Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in
56	501	Enerobacteriaceae colonization (CRE) and subsequent fisk of infection and 90-day moltanty m
57		
58		1
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xittin

- 3 382 critically ill patients, an observational study. *PLoS ONE* 2017;12:e0186195.
 383 doi:10.1371/journal.pone.0186195
- 384 18 Liu JY, Wu YH, Cai M, *et al.* Point-prevalence survey of healthcare-associated infections in
 385 Beijing, China: a survey and analysis in 2014. *J Hosp Infect* 2016;93:271–9.
 386 doi:10.1016/j.jhin.2016.03.019
- 9 387 19 Song W, Lee J, Kim T-K, *et al.* Modified CHROMagar Acinetobacter medium for direct
 10 388 detection of multidrug-resistant Acinetobacter strains in nasal and rectal swab samples. *Ann Lab* 11 389 *Med* 2013;33:193-5. doi:10.3343/alm.2013.33.3.193
- 12 390
 13 391
 14 391
 15 392
 20 Wei L, Qiao F, Lin J, *et al.* Modified CHROMagar Acinetobacter chromogenic culture combined with MALDI-TOF-MS for rapid screening of carbapenem-resistant Acinetobacter baumannii from human gut. *Chin J Nosocomiol* 2018;28:2893–7.
- 1639321 Hosmer DW, Lemeshow S. Applied Logistic Regression, Second Edition. 2nd edition. New17394York, NY: : John Wiley & Sons 2000.18395https://onlinelibrary.wiley.com/doi/book/10.1002/0471722146
- ¹⁹ 396
 ²⁰ 397
 ²¹ 397
 ²² Esterly JS, Griffith M, Qi C, *et al.* Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections.
- 398 Antimicrob Agents Chemother 2011;55:4844–9. doi:10.1128/AAC.01728-10
- 23 399 23 Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model.
 24 400 Communications in Statistics Theory and Methods 1980;9:1043-69.
 25 401 doi:10.1080/03610928008827941
- 402 24 Scrucca L, Santucci A, Aversa F. Competing risk analysis using R: an easy guide for 28 403 clinicians. *Bone Marrow Transplant*. 2007;40:381–387. doi:10.1038/sj.bmt.1705727.
- 404 25 Therneau TM, Grambsch PM. *Modeling Survival Data: Extending the Cox Model*. 2000
 405 edition. Springer 2000.
- 406
 26 Scrucca L, Santucci A, Aversa F. Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplant. 2010;45:1388–1395. doi:10.1038/bmt.2009.359.
- 408 27 Mammina C, Bonura C, Vivoli AR, *et al.* Co-colonization with carbapenem-resistant
 409 Klebsiella pneumoniae and Acinetobacter baumannii in intensive care unit patients. *Scand J Infect* 410 *Dis* 2013;45:629–34. doi:10.3109/00365548.2013.782614
- 411 28 Karaaslan A, Soysal A, Altinkanat Gelmez G, *et al.* Molecular characterization and risk factors
 412 for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM 413 producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. *Journal of* 414 *Hospital Infection* 2016;**92**:67–72. doi:10.1016/j.jhin.2015.09.011
- 415 415 29 DalBen MF, Basso M, Garcia CP, *et al.* Colonization pressure as a risk factor for colonization by multiresistant Acinetobacter spp and carbapenem-resistant Pseudomonas aeruginosa in an intensive care unit. *Clinics (Sao Paulo, Brazil)* 2013;68:1128–33. doi:10.6061/clinics/2013(08)11
- 45 418 30 Latibeaudiere R, Rosa R, Laowansiri P, *et al.* Surveillance cultures growing carbapenem-46 419 Resistant Acinetobacter baumannii predict the development of clinical infections: a retrospective
- 46
 419 Resistant Acinetobacter baumannii predict the development of clinical infections: a retrospective cohort study. *Clin Infect Dis* 2015;60:415–22. doi:10.1093/cid/ciu847
 48
- 421 31 Tseng W-P, Chen Y-C, Chen S-Y, *et al.* Risk for subsequent infection and mortality after
 422 hospitalization among patients with multidrug-resistant gram-negative bacteria colonization or
 423 infection. *Antimicrobial Resistance & Infection Control* 2018;7:93. doi:10.1186/s13756-01852 424 0388-z
- 425 32 Blanco N, Harris AD, Rock C, *et al.* Risk Factors and Outcomes Associated with Multidrug 426 Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. *Antimicrobial Agents*
- 56

1 2

- 57
- 58 59

1 2 3 4 5 6 7 8 9	427 428 429 430 431	<i>and Chemotherapy</i> 2017; 62 . doi:10.1128/AAC.01631-17 33 Marchaim D, Navon-Venezia S, Schwartz D, <i>et al.</i> Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii. <i>J Clin Microbiol</i> 2007; 45 :1551–5. doi:10.1128/JCM.02424-06
10		
	432	
45 46		
47 48 49		
50 51		
52 53		
54 55		
56 57		
58 59		1 For poor review only http://bmienen.hmi.com/site/about/quidelines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends Figure 1. Patient selection flow algorithm Figure 2. Survival curves of patients with and without CRAB intestinal carriage totoeetterien ont For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 36

 BMJ Open

Characteristics	Patients with acqu	Patients with acquiring CRAB intestinal carriage		Univariate analysis		lysis
	Yes (n=115)	No (n=780)	OR (95% CI)	Р	OR (95% CI)	Р
Demographics	\sim					
Sex, male	71 (61.74%)	502 (64.36%)	1.12 (0.75–1.68)	0.59		
Ethnicity, Han Chinese	108 (93.91%)	712 (91.28%)	1.47 (0.66–3.29)	0.34		
Age (median)	51 (40–70)	56 (45-68)	/	0.21		
Underlying disease						
Myocardial infarction	1 (0.87%)	4 (0.51%)	1.7 (0.19–15.36)	0.50		
Peripheral vascular disease	11 (9.57%)	62 (7.95%)	1.22 (0.62–2.40)	0.55		
Cerebrovascular disease	4 (3.48%)	36 (4.62%)	0.74 (0.26–2.13)	0.58		
Dementia	1 (0.87%)	0 (0%)		0.13		
Connective tissue disease	1 (0.87%)	12 (1.54%)	0.56 (0.07–4.36)	0.89		
Peptic Ulcer	5 (4.35%)	25 (3.21%)	1.37 (0.51–3.66)	0.72		
Hemiplegia	0 (0%)	1 (0.13%)	/	1.00		
Hypertension	36 (31.30%)	180 (23.08%)	1.52 (0.99–2.33)	0.05		
Tuberculosis	1 (0.87%)	12 (1.54%)	0.56 (0.07–4.36)	0.89		
COPD	10 (8.70%)	54 (6.92%)	1.28 (0.63–2.59)	0.49		
Respiratory failure	40 (34.78%)	163 (20.90%)	2.02 (1.33-3.07)	0.001		

1 2	
3	
4 5	
6 7	
8 9	
10	
11 12	
13 14	
15	
16 17	
18 19	
20 21	
22	
23 24	
25 26	
27 28	
29	
30 31	
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46 47	

Kidney failure	11 (9.57%)	31 (3.97%)	2.56 (1.25–5.24)	0.01		
Heart failure	7 (6.09%)	19 (2.44%)	2.99 (1.28–7.01)	0.06		
Diabetes	21 (18.26%)	102 (13.08%)	1.48 (0.89–2.49)	0.13		
Liver dysfunction	5 (4.35%)	37 (4.74%)	0.91 (0.35–2.37)	0.85		
Hematological disease	71 (61.74%)	268 (34.36%)	3.08 (2.06-4.62)	<0.001	2.26 (1.42-3.58)	0.001
Pancreatitis	35 (30.43%)	77 (9.87%)	3.99 (2.52-6.34)	<0.001	2.16 (1.28–3.67)	0.004
Medical operation						
Surgery	82 (71.30%)	645 (82.69%)	0.52 (0.33-0.81)	0.004	0.40 (0.24–0.68)	0.001
CVC	78 (67.83%)	424 (54.36%)	1.77 (1.17–2.68)	0.01		
Ventilator	101 (87.83%)	666 (85.38%)	1.23 (0.68–2.23)	0.49		
Indwelling catheter	110 (95.65%)	742 (95.13%)	1.13 (0.43–2.92)	0.81		
Tube feeding	84 (73.04%)	280 (35.90%)	4.84 (3.13–7.49)	<0.001	3.35 (2.03–5.51)	<0.001
Nebulizer fiberoptic	73 (63.48%)	368 (47.18%)	1.95 (1.30–2.92)	0.001		
Bronchoscope	1 (0.87%)	21 (2.69%)	0.32 (0.04–2.38)	0.39		
Antimicrobial use						
Cephalosporin	35 (30.43%)	312 (40.00%)	0.66 (0.43–1.00)	0.05	0.59 (0.37-0.95)	0.03
Vancomycin	13 (11.30%)	32 (4.10%)	2.98 (1.51-5.86)	0.001		
Aminoglycosides	12 (10.43%)	31 (3.97%)	2.81 (1.40-5.65)	0.002		
Carbapenems	82 (71.30%)	295 (37.82%)	4.09 (2.66–6.27)	<0.001	1.84 (1.11–3.07)	0.02

 BMJ Open

Fluoroquinolones	26 (22.61%)	137 (17.56%)	1.37 (0.85–2.20)	0.19		
Antifungal agents	49 (42.61%)	138 (17.69%)	3.45 (2.29–5.22)	<0.001		
Cephamycins	16 (13.91%)	253 (32.44%)	0.34 (0.19–0.58)	<0.001		
Lincomycin	3 (2.61%)	61 (7.82%)	0.32 (0.10-1.02)	0.04		
Tigecycline	19 (16.52%)	69 (8.85%)	2.04 (1.18-3.54)	0.01		
АРАСНЕ ІІ	21.5 (17–26)	17 (12–22)	/	<0.001	1.04 (1.01–1.07)	0.01
Charlson score	2 (1–5)	3 (2–4)	/	0.06		
Sharing room with other patients with	20 (17.39%)	153 (19.62%)	0.86 (0.52–1.44)	0.57		
CRAB intestinal carriage						

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multiple logistic analysis are highlighted in bold.

	Subsequent CRA ICU stay	B infection during the	Univariate analysis		Multivariate analysi	8
Item	Yes (n=112)	No (n=849)	SDHR (95% CI)	Р	SDHR (95% CI)	Р
CRAB intestinal carriage	51 (45.54%)	130 (15.31%)	2.82(1.94-4.09)	< 0.001	2.24 (1.48–3.39)	<0.001
Demographics						
Sex, male	72 (64.29%)	548 (64.55%)	1.03(0.70-1.52)	0.87		
Ethnicity, Han Chinese	106 (94.64%)	774 (91.38%)	1.62(0.70-3.74)	0.26		
Age (median)	53 (42–67)	55 (44–68)	1.00(0.99-1.01)	0.71		
APACHE II	21 (17–26)	17 (12–22)	1.05(1.03-1.07)	< 0.001		
Charlson score	3 (1–5)	3 (1.5–4)	0.98(0.88-1.08)	0.66		
Underlying disease						
Peripheral vascular disease	13 (11.61%)	66 (7.77%)	1.30(0.72-2.34)	0.38		
Cerebrovascular disease	4 (3.57%)	36 (4.24%)	0.89(0.34-2.33)	0.81		
Connective tissue disease	1 (0.89%)	12 (1.41%)	0.60(0.08-4.48)	0.62		
Peptic ulcer	4 (3.57%)	27 (3.18%)	1.11(0.46-2.71)	0.81		
Hypertension	28 (25.00%)	199 (23.44%)	1.02(0.67-1.57)	0.92		
Tuberculosis	2 (1.79%)	12 (1.41%)	1.22(0.28-5.27)	0.79		
COPD	11 (9.82%)	55 (6.48%)	1.35(0.70-2.59)	0.37		
Respiratory failure	47 (41.96%)	170 (20.02%)	2.02(1.38-2.96)	< 0.001		
Kidney failure	9 (8.04%)	42 (4.95%)	1.42(0.73-2.75)	0.30		
Heart failure	4 (3.57%)	27 (3.18%)	1.22(0.48-3.11)	0.68		
Diabetes	15 (13.39%)	118 (13.90%)	0.87(0.50-1.49)	0.61		
Liver dysfunction	17 (15.18%)	34 (4.00%)	3.15(1.86-5.35)	< 0.001	2.33 (1.30-4.17)	0.005
Hematological disease	60 (53.57%)	314 (36.98%)	1.61(1.11-2.34)	0.012		
Pancreatitis	29 (25.89%)	107 (12.60%)	1.94(1.29-2.92)	0.002		

Table 2 Variables associated with developing subsequent CRAB infection during the ICU stay using sub-distribution hazard model

 BMJ Open

CVC	83 (74.11%)	470 (55.36%)	1.85(1.21-2.81)	0.004		
Ventilator	103 (91.96%)	719 (84.69%)	2.02(1.04-3.93)	0.038		
Indwelling catheter	109 (97.32%)	808 (95.17%)	1.84(0.62-5.52)	0.27		
Tube feeding	80 (71.43%)	332 (39.10%)	2.44(1.62-3.69)	< 0.001		
Nebulizer fiberoptic	72 (64.29%)	413 (48.65%)	1.18(0.80-1.73)	0.40		
Bronchoscope	5 (4.46%)	18 (2.12%)	1.44(0.59-3.52)	0.43		
Antimicrobial use						
Cephalosporin	20 (17.86%)	236 (27.80%)	0.50(0.31-0.81)	0.005	0.45 (0.28-0.73)	0.001
Vancomycin	3 (2.68%)	35 (4.12%)	0.68(0.21-2.15)	0.51		
Aminoglycosides	1 (0.89%)	23 (2.71%)	0.24(0.03-1.71)	0.15		
Carbapenems	82 (73.21%)	351 (41.34%)	2.84(1.87-4.32)	< 0.001	2.21(1.40-3.49)	<0.00
Fluoroquinolones	32 (28.57%)	154 (18.14%)	1.04(0.69-1.56)	0.84		
Antifungal agents	23 (20.54%)	157 (18.49%)	0.96(0.61-1.5)	0.85		
Cephamycins	16 (14.29%)	196 (23.09%)	0.51(0.30-0.86)	0.011	0.53 (0.31-0.90)	0.018
Lincomycin	5 (4.46%)	35 (4.12%)	1.01(0.41-2.48)	0.99		
Tigecycline	13 (11.61%)	65 (7.66%)	1.33(0.76-2.34)	032		
COPD, chronic obstructive pult Variables with P < 0.05 in the m	•					

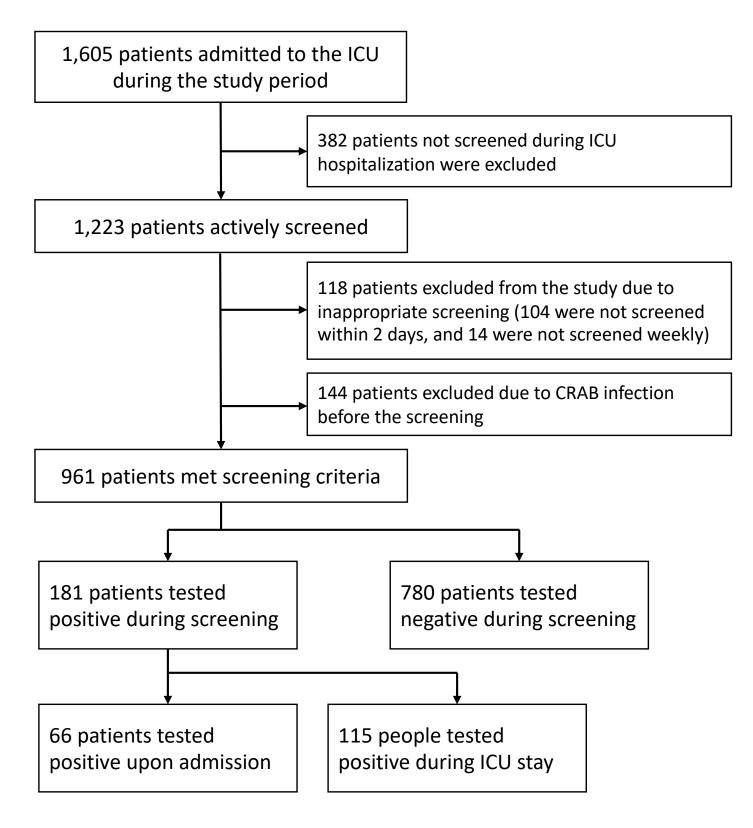
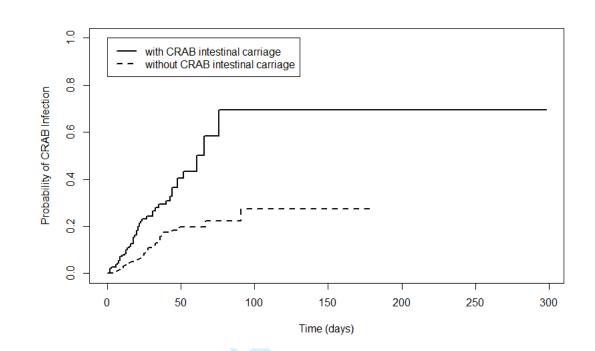



Figure 1. Patient selection flow algorithm

Page 27 of 36

Figure 2. Survival curves of patients with and without CRAB intestinal carriage (cumulative probability of CRAB infection). Death in the ICU is considered as a competing event, not drawn in the figure. The solid line represents patients with CRAB intestinal carriage, while the dashed line represents those without. In patients with CRAB intestinal carriage, Day 0 corresponds to the day of the first positive rectal sample. While in patients without CRAB intestinal carriage, Day 0 corresponds to the day of the first positive rectal sample.

Supplementary files

Table S1 Variables associated with developing subsequent CRAB infection during the ICU stay using sub-distribution hazard model (exposed group was those patients with intestinal carriage on ICU admission)

Item	Subsequent CRAE	infection during the ICU	Univariate analysis		Multivariate analysis	3
	Yes (n=80)	No (n=766)	SDHR (95% CI)	Р	SDHR (95% CI)	Р
CRAB intestinal carriage	19 (23.75%)	47 (6.14%)	3.78(2.20-6.49)	<0.001	3.42 (1.88-6.22)	<0.001
Demographics						
Sex, male	50 (62.50%)	499 (65.14%)	1.15(0.73-1.80)	0.55		
Ethnicity, Han Chinese	77 (96.25%)	697 (90.99%)	2.54(0.78-8.24)	0.12		
Age (median)	54 (42-68)	55 (44-68)	1.00(0.99-1.02)	0.85		
APACHE II	20 (15-26)	17 (12-22)	1.06(1.03-1.08)	<0.001	1.03 (1.00-1.05)	0.045
Charlson score	3 (1-5)	3 (2-4)	1.00(0.88-1.13)	1.00		
Underlying disease						
Peripheral vascular disease	11 (13.75%)	57 (7.44%)	1.62(0.85-3.10)	0.14		
Cerebrovascular disease	3 (3.75%)	33 (4.31%)	0.87(0.29-2.66)	0.81		
Connective tissue disease	1 (1.25%)	11 (1.44%)	0.78(0.11-5.73)	0.80		
Peptic ulcer	3 (3.75%)	23 (3.00%)	1.19(0.41-3.46)	074		
Hypertension	18 (22.50%)	173 (22.58%)	0.97(0.58-1.64)	0.91		
Tuberculosis	1 (1.25%)	12 (1.57%)	0.72(0.10-5.37)	0.75		
COPD	11 (13.75%)	45 (5.87%)	2.21(1.15-4.24)	0.017	2.71 (1.40-5.24)	0.003
Respiratory failure	34 (42.50%)	143 (18.67%)	2.38(1.52-3.72)	<0.001		
Kidney failure	5 (6.25%)	35 (4.57%)	1.13(0.474-2.7)	0.78		
Heart failure	2 (2.50%)	21 (2.74%)	1.05(0.28-3.92)	0.95		

BMJ	Open
-----	------

Diabetes	11 (13.75%)	101 (13.19%)	1.03(0.54-1.98)	0.92		
Liver dysfunction	14 (17.50%)	32 (4.18%)	3.59(2.00-6.45)	<0.001	2.35 (1.30-4.25)	0.005
Hematological disease	42 (52.50%)	261 (34.07%)	1.84(1.19-2.85)	0.006		
Pancreatitis	17 (21.25%)	84 (10.97%)	1.91(1.13-3.22)	0.016		
Medical operation						
Surgery	62 (77.50%)	638 (83.29%)	0.83(0.49-1.42)	0.50		
CVC	61 (76.25%)	414 (54.05%)	2.23(1.33-3.74)	0.002		
Ventilator	72 (90.00%)	648 (84.60%)	1.62(0.80-3.25)	0.18		
Indwelling catheter	78 (97.50%)	729 (95.17%)	1.91(0.53-6.94)	0.32		
Tube feeding	54 (67.50%)	265 (34.60%)	2.71(1.69-4.34)	<0.001		
Nebulizer fiberoptic	51 (63.75%)	349 (45.56%)	1.35(0.86-2.12)	0.19		
Bronchoscope	5 (6.25%)	17 (2.22%)	1.85(0.77-4.46)	0.17		
Antimicrobial use						
Cephalosporin	15 (18.75%)	210 (27.42%)	0.54(0.31-0.95)	0.032	0.43(0.24-0.78)	0.006
Vancomycin	2 (2.50%)	28 (3.66%)	0.70(0.16-2.98)	0.63		
Aminoglycosides	1 (1.25%)	15 (1.96%)	0.50(0.07-3.52)	0.48		
Carbapenems	58 (72.50%)	284 (37.08%)	3.57(2.18-5.85)	<0.001	2.61(1.53-4.46)	<0.00
Fluoroquinolones	21 (26.25%)	127 (16.58%)	1.07(0.66-1.74)	0.79		
Antifungal agents	17 (21.25%)	123 (16.06%)	1.26(0.74-2.12)	0.39		
Cephamycins	12 (15.00%)	179 (23.37%)	0.52(0.28-0.96)	0.036		
Lincomycin	3 (3.75%)	32 (4.18%)	0.84(0.26-2.68)	0.76		
Tigecycline	8 (10.00%)	53 (6.92%)	1.36(0.67-2.76)	0.39		

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold.

Item	Subsequent CRA	3 infection during
	Yes (n=93)	No (n=802)
CRAB intestinal carriage	32 (34.41%)	83 (10.35%)
Demographics		
Sex, male	60 (64.52%)	513 (63.97%
Ethnicity, Han Chinese	87 (93.55%)	731 (91.15%
Age (median)	54 (44-68)	55 (45-68)
APACHE II	21 (18-26)	17 (12-22)
Charlson score	3 (1-5)	3 (2-4)
Underlying disease		
Peripheral vascular disease	11 (11.83%)	62 (7.73%)
Cerebrovascular disease	4 (4.30%)	36 (4.49%)
Connective tissue disease	1 (1.08%)	12 (1.50%)
Peptic ulcer	4 (4.30%)	26 (3.24%)
Hypertension	25 (26.88%)	191 (23.82%
Tuberculosis	2 (2.15%)	11 (1.37%)
COPD	10 (10.75%)	54 (6.73%)
Respiratory failure	44 (47.31%)	159 (19.83%
Kidney failure	7 (7.53%)	35 (4.36%)

44 45 46 ection during the ICU stay using sub-distribution hazard model (exposed group was those patients equisition of CRAB intestinal carriage)

Univariate analysis

SDHR (95% CI)

2.35(1.56-3.55)

1.01(0.66-1.55)

1.32(0.56-3.08)

1.00(0.99-1.01)

1.05(1.03-1.07)

1.01(0.91-1.13)

1.34(0.71-2.53)

1.03(0.39-2.73) 0.68(0.09-5.07)

1.39(0.58-3.33)

1.10(0.69-1.74)

1.41(0.32-6.29)

1.37(0.69-2.75)

2.42(1.59-3.69)

1.56(0.75-3.28)

Р

< 0.001

0.95

0.52

0.70

0.80

0.37

0.96

0.70

0.46

0.70

0.65

0.37

0.24

< 0.001

< 0.001

Multivariate analysis

Р

0.011

0.009

SDHR (95% CI)

1.81 (1.15-2.86)

1.84 (1.17-2.90)

 BMJ Open

Heart failure	3 (3.23%)	24 (2.99%)	1.34(0.47-3.82)	0.58		
Diabetes	11 (11.83%)	112 (13.97%)	0.75(0.40-1.39)	0.36		
Liver dysfunction	13 (13.98%)	29 (3.62%)	3.18(1.74-5.81)	<0.001	2.13(1.05-4.32)	0.037
Hematological disease	49 (52.69%)	290 (36.16%)	1.60(1.06-2.40)	0.025		
Pancreatitis	20 (21.51%)	92 (11.47%)	1.71(1.06-2.76)	0.028		
Medical operation						
Surgery	70 (75.27%)	666 (83.04%)	0.78(0.49-1.27)	0.32		
CVC	68 (73.12%)	434 (54.11%)	1.82(1.15-2.88)	0.011		
Ventilator	85 (91.40%)	683 (85.16%)	1.83(0.89-3.76)	0.10		
Indwelling catheter	91 (97.85%)	761 (94.89%)	2.37(0.58-9.63)	0.23		
Tube feeding	67 (72.04%)	300 (37.41%)	2.64(1.67-4.18)	< 0.001		
Nebulizer fiberoptic	64 (68.82%)	388 (48.38%)	1.42(0.92-2.20)	0.11		
Bronchoscope	5 (5.38%)	18 (2.24%)	1.60(0.64-3.99)	0.31		
Antimicrobial use						
Cephalosporin	18 (19.35%)	213 (26.56%)	0.60(0.36-1.00)	0.051	0.59(0.35-1.00)	0.048
Vancomycin	2 (2.15%)	33 (4.11%)	0.53(0.13-2.15)	0.38		
Carbapenems	68 (73.12%)	319 (39.78%)	2.92(1.84-4.64)	<0.001	2.11 (1.27-3.50)	0.004
Fluoroquinolones	28 (30.11%)	144 (17.96%)	1.11(0.71-1.72)	0.65		
Antifungal agents	16 (17.20%)	141 (17.58%)	0.82(0.48-1.39)	0.46		
Cephamycins	15 (16.13%)	187 (23.32%)	0.56(0.33-0.98)	0.042		
Lincomycin	4 (4.30%)	34 (4.24%)	0.90(0.34-2.44)	0.84		
Tigecycline	7 (7.53%)	57 (7.11%)	0.91(0.43-1.96)	0.82		

COPD, chronic obstructive pulmonary disease. CVC, central venous catheter.

Variables with P < 0.05 in the multivariate COX analysis are highlighted in bold.

Reporting checklist for cohort study. Based on the STROBE cohort guidelines. Instructions to authors Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cohortreporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Reporting Item Page Number Title and abstract Indicate the study's design with a commonly used Title #1a term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary of what was done and what For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			was found	
2 3 4 5	Introduction			
6 7 9 10 11 12 13	Background /	<u>#2</u>	Explain the scientific background and rationale for	4-5
	rationale		the investigation being reported	
	Objectives	<u>#3</u>	State specific objectives, including any	5
14 15 16			prespecified hypotheses	
17 18 19	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the	7-8
23 24			paper	
25 26 27	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates,	5-6
28 29			including periods of recruitment, exposure, follow-	
30 31 32			up, and data collection	
33 34	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and	6
35 36 37			methods of selection of participants. Describe	
38 39			methods of follow-up.	
40 41 42	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and	n/a
43 44 45 46			number of exposed and unexposed	Not matched studies
47 48	Variables	<u>#7</u>	Clearly define all outcomes, exposures, predictors,	6-8
49 50 51			potential confounders, and effect modifiers. Give	
52 53			diagnostic criteria, if applicable	
54 55 56	Data sources /	<u>#8</u>	For each variable of interest give sources of data	6-8
57 58	measurement		and details of methods of assessment	
59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	tml

			(measurement). Describe comparability of	
1 2				
3 4			assessment methods if there is more than one	
5 6			group. Give information separately for for exposed	
7 8			and unexposed groups if applicable.	
9 10 11 12 13	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	8
14 15				
16 17	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
18 19 20				Including all the
21 22				patients admitted to
23 24				the ICU in the study
25 26				period.
27 28				
29 30	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in	7
31 32	variables		the analyses. If applicable, describe which	
33 34			groupings were chosen, and why	
35 36	Statistical	#120	Describe all statistical methods, including those	7-8
37 38		<u>#12a</u>	\mathbf{O}	7-0
39 40	methods		used to control for confounding	
41 42 43	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups	8
44 45	methods		and interactions	
46 47	Statistical	#120	Evaluin how missing data ware addressed	2/2
48 49		<u>#12c</u>	Explain how missing data were addressed	n/a
50 51	methods			No missing data.
52 53	Chatiatian	#404	If applicable, combin how loss to follow we was	
54 55	Statistical	<u>#12d</u>	If applicable, explain how loss to follow-up was	n/a
56 57	methods		addressed	Not applicable
58 59				
60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xht	tml

1 2	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
3 4 5	methods			Not done.
6 7 8 9	Results			
10 11 12	Participants	<u>#13a</u>	Report numbers of individuals at each stage of	9
13 14			study—eg numbers potentially eligible, examined	
15 16			for eligibility, confirmed eligible, included in the	
17 18			study, completing follow-up, and analysed. Give	
19 20			information separately for for exposed and	
21 22 23 24			unexposed groups if applicable.	
25 26 27	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
27 28 29 30	Participants	<u>#13c</u>	Consider use of a flow diagram	Figure 1
31 32	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg	19-23
33 34 35			demographic, clinical, social) and information on	
36 37			exposures and potential confounders. Give	
38 39			information separately for exposed and unexposed	
40 41 42			groups if applicable.	
43 44 45	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data	n/a
46 47			for each variable of interest	No missing data.
48 49 50	Descriptive data	<u>#14c</u>	Summarise follow-up time (eg, average and total	Figure 2
51 52 53			amount)	
54 55 56	Outcome data	<u>#15</u>	Report numbers of outcome events or summary	19-23
57				
58 59			measures over time. Give information separately	

Page 36 of 36

1 2			for exposed and unexposed groups if applicable.	
3 4	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable,	19-23
5 6 7			confounder-adjusted estimates and their precision	
, 8 9			(eg, 95% confidence interval). Make clear which	
10 11			confounders were adjusted for and why they were	
12 13 14			included	
15 16 17	Main results	<u>#16b</u>	Report category boundaries when continuous	n/a
17 18 19 20			variables were categorized	Continuous variables
21 22				were not categorized.
23 24 25	Main results	<u>#16c</u>	If relevant, consider translating estimates of	n/a
26 27 28			relative risk into absolute risk for a meaningful time	Not applicable
28 29 30			period	
31 32 33	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of	Supplementary files
34 35			subgroups and interactions, and sensitivity	
36 37 38			analyses	
39 40 41	Discussion			
42 43	Key results	<u>#18</u>	Summarise key results with reference to study	11-13
44 45 46			objectives	
47 48 49	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account	13
50 51			sources of potential bias or imprecision. Discuss	
52 53			both direction and magnitude of any potential bias.	
54 55				
56	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering	11-13
56 57 58 59	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses,	11-13

1			results from similar studies, and other relevant	
2 3			evidence.	
4 5				
6	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of	13
7 8			the study results	
9 10				
11 12	Other			
13 14	Information			
15				
16 17	Funding	<u>#22</u>	Give the source of funding and the role of the	14
18 19			funders for the present study and, if applicable, for	
20 21 22			the original study on which the present article is	
22 23 24			based	
25				
26 27	None The STROE	BE chec	klist is distributed under the terms of the Creative Con	nmons Attribution
28 29	License CC-BY. T	his che	cklist can be completed online using https://www.good	<u>lreports.org/</u> , a tool
30 31	made by the EOU		Network in collaboration with Penelope.ai	
32 33		ATONI		
34				
35 36				
37 38				
39 40				
41				
42 43				
44 45				
46				
47 48				
49				
50 51				
52				
53 54				
54 55				
56 57				
57 58				
59				
60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhti	าาเ