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1. Data merging

The date of onset of illness for Case 1 was not described by Folarin et al. [1], while another study specified it as

17 July 2014 [2], a date referred to throughout our study as Day 0. Dates of exposure and onset of illness for Case

12 were identical in the original data [1]. This is technically impossible, and so we chose to treat this date as the
date of exposure rather than that of the onset of illness. We made this decision because no onset of illness event

was recorded for 23 July 2014 in any other dataset [2], and also because the most likely dates of onset for Case 12

would have been from 30 July to 10 August 2014, based on transmission tree data in [2], which would agree closely
with the known incubation period distribution with mean 9.1 days and standard deviation (SD) 7.3 days [3]. By

overlaying observed branches in the presence of three generations, something seen among cases infected in Port

Harcourt [1, 2], the dates of onset of illness for Cases 18 and 19 were identified as 31 August 2014 and 29 July
2014, respectively. Based on visual inspection of the transmission tree [2], the date of onset of illness for Case 17

was identified as 2 August 2014 by tracing links connected to Case 13. Similarly, the date of onset of illness for

Case 20 was considered to be 16 August 2014, and moreover, Case 20 was considered to have been infected by
one of the first generation cases (i.e. cases infected by the index case). Thus, the possible primary cases of Case

20 are Cases 5, 6, 7, 10, 11 or 12, but it was not possible to uniquely identify any one of these on the transmission

tree [2]. The resulting dataset can be found in the author’s website (https://github.com/imlouischan/ebola-ng).

2. Incubation period distribution

As for the incubation period distribution, we employed the independently and identically distributed incubation

period for another large-scale outbreak from 2014-2016, assuming that it followed a gamma distribution with mean
9.1 days and SD 7.3 days [3] (Fig S1A). Due to the discrete nature of our observed data, the distribution was

then transformed from continuous to discrete by f(τ) = F (τ + 1)− F (τ) for τ = 0, 1, 2, ..., where f(τ) and F (τ)

represent the probability mass function (PMF) and cumulative distribution function. The sample mean of the
incubation period observed in Nigeria was 9.3 days, similar to the estimate from the abovementioned larger sample

study [3], while the SD was only 1.9 days, with this smaller latter value perhaps reflecting the small sample size
in Nigeria. Fig S1A illustrates the mismatch between two datasets.

3. Boundaries for missing date of an event

Missing dates were quantified within intervals between observed dates and the date of emptying isolation wards

and exiting follow-up on 2 October 2014 (Day77), denoted as texit [2]. The outbreak ended and the country was
declared Ebola free by local authorities and WHO on 20 October 2014 (Day95), denoted as tend [1]. For a

case i, the dates of exposure, onset of illness, hospitalization and death are aligned as the following sequence,
i.e. tei ≤ tsi ≤ thi ≤ tdi ≤ texit < tend. Because we assume that human Ebola cases are not infectious before
the onset of illness, the date of exposure of a case i follows the date of onset of illness of its infector vi, i.e.

tsvi ≤ tei . Using these two inequalities, we write boundaries of missing events. The upper bound of the date of

hospitalization thi is B̄(thi ) = min(tdi , texit). Similarly, the lower and upper bounds of the date of onset of illness

tsi are B(tsi ) = max(tei , t
s
vni
, tevni

) and B̄(tsi ) = min(thi , t
d
i , tuni , texit), respectively. vni represents all the ’ancestors’

of case i and tuni represents all observed time events of the ’descendants’ of case i. Note that the lower bound

of the date of hospitalization thi is the same as the lower bound of the date of onset of illness tsi if the latter is
missing.
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4. Partial reconstruction of the transmission tree

Unobserved infectors can be estimated using a transmission probability introduced by Wallinga [4]. The
possible infectors are those with earlier onset of illness and the transmission probabilities of other cases are zero.

This method has been extended into a partial network reconstruction given contact information that restricts a list

of possible infectors with positive transmission probabilities and others are zero [5]. The transmission probability
is written as

pij(θ) =
ŝ(τssij ;θ)∑

k∈wi ŝ(τ
ss
ik ;θ)

,

where τssik = tsi − tsk is the serial interval of case i and its possible infector k. wi is a list of possible infectors of

case i. The list consists of 6 infectors, namely Cases 5, 6, 7, 10, 11 and 12.

5. Reconstruction of time events

The observed dataset contained some cases for which the important time events, namely onset of illness and

hospitalization, were only partially observed. The likelihood of those events was probabilistically described (Fig 1),
and each event probability was considered at an individual level using convolution equations (Tables S2, S3, S4, S5).

Specifically, we considered two different likelihood functions, Lr and Ls, where Lr accounts for the probability of

observing a certain number of secondary transmissions per single primary case and Ls describes the probability
of observing a time interval between primary and secondary cases. Theoretically, the former likelihood Lr is

categorized into four types (Table S2), matching the timeline reconstruction (Table S1). On the other hand, the

latter likelihood Ls is further categorized into six types due to each likelihood consisting of secondary case i and
associated primary case vi. For the description of Ls, we specifically need the date of onset of illness in both i

and vi, but only need the date of hospitalization for vi. The observed dates are assumed to be independent and

identically distributed (i.i.d.). The time from onset of illness to hospitalization is assumed to have the following
two alternative distributions: Gamma and Weibull, which are discretized as the incubation period above (Fig S1).

The distribution parameters were estimated using the maximum likelihood method (Fig S1B). The computation

was performed using the general-purpose optimization method stats::optim in R version 3.4.3 (Kite-Eating Tree)
on Mac OSX. The alternative distribution is selected by Akaike information criterion (AIC).
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Figure 1. The probability mass functions (PMF) of (A) the incubation period and (B) the
time from onset of illness to hospitalization. The observed data are shown in bars. The

unfilled blue circles represent a published estimate [3]. The unfilled circles and unfilled triangles

represent the predicted (fitted) values by employing two distributions, gamma and Weibull.
The red and grey symbols show the best and second-best fit results, respectively. (A) The

mean incubation period (with SD) was estimated as 9.1 (7.3) days. (B) The mean time from

onset of illness to hospitalization (with SD) was estimated to be 4.0 (2.3) days.
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Pattern tei tsi thi tdi t̂si t̂hi Observed

i ∈ D(1) − O O − tsi thi 10/20

i ∈ D(2) − O → M − tsi tsi + τsh 5/20

i ∈ D(3) O → M O − tei + τes thi 3/20

i ∈ D(4) M M ← O − thi − τsh thi 2/20
Table 1. Theoretical patterns of observed and missing time events. Each case i is categorized
into four different patterns for reconstructing the dates of the two important events – i.e.,

onset of illness and hospitalization. Four time events, the dates of exposure tei , onset of illness

tsi , hospitalization thi , and death tdi are observed O, missing M or trivial (i.e. either is ok) −.

The reconstructed dates of onset of illness t̂si and hospitalization t̂hi are estimated using time

lags depending on observed patterns. The last column shows the count of cases that fell into
the specified pattern.

i ∈ tei tsi thi tdi Lr(θ|D)

D−OO− − O O −
∏
i∈D−OO− p(tsi , t

h
i − tsi )

D−OM− − O → M −
∏
i∈D−OM−

∑B̄(thi )−tsi
τsh=0

p(tsi ,τ
sh)fsh(τsh)∑B̄(th

i
)−ts

i
τsh=0

fsh(τsh)

DOMO− O → M O −
∏
i∈DOMO−

∑B̄(tsi )−tei
τes=0

p(tei+τes,thi −t
e
i−τ

es)fes(τes)∑B̄(ts
i
)−te

i
τes=0

fes(τes)

DMMO− M M ← O −
∏
i∈DMMO−

∑thi −B(tsi )

τsh=th
i
−B̄(ts

i
)
p(thi −τ

sh,τsh)fsh(τsh)

∑th
i
−B(ts

i
)

τsh=th
i
−B̄(ts

i
)
fsh(τsh)

Table 2. Categories of the likelihood of secondary case Lr. O, M and − represent ob-
served time events, missing time events, and cases for which there are both observed and

missing time events, respectively. B(tsi ) = max(tei , t
s
vni
, tevni

) is the lower bound of tsi .

B̄(tsi ) = min(thi , t
d
i , t

e
uni
, tsuni

, thuni
, tduni

, texit) is the upper bound of tsi . B̄(thi ) = min(tdi , texit)

is the upper bound of tsi . vni and uni represent all the ’ancestors’ and ’descendants’ of i,
respectively. texit represents the time when the isolation wards were empty.

vi ∈ i ∈ Ls(θ|D) 1D timeline

D−OO− D−O−−
∏
vi∈D−OO−

i∈D−O−−

ŝ(tsi − tsvi , t
h
vi
− tsvi )

=
∏
vi∈D−OO−

i∈D−O−−

thvi
>tsi

s(tsi−t
s
vi

)

1−ε
[
1−S(thvi

−tsvi )
]

tsvi

tsi

thvi

∏
vi∈D−OO−

i∈D−O−−

thvi
≤tsi

(1−ε)s(tsi−t
s
vi

)

1−ε
[
1−S(thvi

−tsvi )
]

tsvi thvi

tsi

Table 3. Categories of the likelihood of serial interval Ls. O, M and − represent ob-
served time events, missing time events, and cases for which there are both observed and

missing time events, respectively. B(tsi ) = max(tei , t
s
vni
, tevni

) is the lower bound of tsi .

B̄(tsi ) = min(thi , t
d
i , t

e
uni
, tsuni

, thuni
, tduni

, texit) is the upper bound of tsi . B̄(thi ) = min(tdi , texit)

is the upper bound of tsi . vni and uni represent all the ’ancestors’ and ’descendants’ of i,
respectively. texit represents the time when the isolation wards were empty.
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Figure 2. The serial interval distribution. The unbiased distribution s(τ) (i.e. in the absence

of case isolation) is represented by using boxes as shown in Fig 2C. The mean and SD were
15.3 (95%CI: 14.2-16.6) and 2.3 (95%CI: 1.6-3.5) days. The corresponding biased distribution

ŝ(τ) (i.e. in the presence of case isolation) is not shown due to various individual time from

illness onset to hospitalization. As an alternative, the frequency of observed serial interval
(biased; i.e. in the presence of case isolation) is shown as histogram using gray bars. The

sample mean and SD were 14.8 and 2.5 days. The red circles represent the MLE fitted values
by employing gamma distribution, as Fig S1B. The MLE mean and SD were 15.3 and 2.3

days. As isolation was taken place during the first week since the time of illness onset for most

of the individuals, the unbiased s(τ) and biased (data and MLE) serial interval distributions
are similar.
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vi ∈ i ∈ Ls(θ|D) 1D timeline

D−OO− DOM−−
∏
vi∈D−OO−

i∈DOM−−

∑B̄(tsi )−tei
τes=0

ŝ(tei+τes−tsvi ,t
h
vi
−tsvi )f

es(τes)∑B̄(ts
i
)−te

i
τes=0

fes(τes)

=
∏
vi∈D−OO−

i∈DOM−−

thvi
>B̄(tsi )

∑B̄(tsi )−tei
τes=0

s(tei+τes−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fes(τes)

∑B̄(ts
i
)−te

i
τes=0

fes(τes)

tsvi

tei B̄(tsi )

thvi

∏
vi∈D−OO−

i∈DOM−−

tei<t
h
vi
≤B̄(tsi )

∑thvi
−tei

τes=0

s(tei+τes−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fes(τes)+
∑B̄(tsi )−tei
τes=thvi

−te
i

(1−ε)s(tei+τes−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fes(τes)

∑B̄(ts
i
)−te

i
τes=0

fes(τes)

tsvi

tei

thvi

B̄(tsi )

∏
vi∈D−OO−

i∈DOM−−

thvi
≤tei

∑B̄(tsi )−tei
τes=0

(1−ε)s(tei+τes−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fes(τes)

∑B̄(ts
i
)−te

i
τes=0

fes(τes)

tsvi thvi

tei B̄(tsi )

D−OO− DMMO− ∏
vi∈D−OO−

i∈DMMO−

∑thi −tsvi
τsh=th

i
−B̄(ts

i
)
ŝ(thi −τ

sh−tsvi ,t
h
vi
−tsvi )f

sh(τsh)

∑th
i
−tsvi

τsh=th
i
−B̄(ts

i
)
fsh(τsh)

=
∏
vi∈D−OO−

i∈DMMO−

thvi
>B̄(tsi )

∑thi −tsvi
τsh=th

i
−B̄(ts

i
)

s(thi −τsh−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fsh(τsh)

∑th
i
−tsvi

τsh=th
i
−B̄(ts

i
)
fsh(τsh)

tsvi

B̄(tsi )

thvi

∏
vi∈D−OO−

i∈DMMO−

thvi
≤B̄(tsi )

∑thi −thvi
τsh=th

i
−B̄(ts

i
)

(1−ε)s(thi −τsh−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fsh(τsh)+
∑thi −tsvi
τsh=th

i
−thvi

s(thi −τsh−tsvi
)

1−ε
[
1−S(thvi

−tsvi
)

] fsh(τsh)

∑th
i
−tsvi

τsh=th
i
−B̄(ts

i
)
fsh(τsh)

tsvi thvi

B̄(tsi )

Table 4. Categories of the likelihood of serial interval Ls.
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vi ∈ i ∈ Ls(θ|D) 1D timeline

D−OM− D−O−−
∏
vi∈D−OM−

i∈D−O−−

∑B̄(thvi
)−tsvi

τsh=0
ŝ(tsi−t

s
vi
,τsh)fsh(τsh)

∑B̄(thvi
)−tsvi

τsh=0
fsh(τsh)

=
∏
vi∈D−OM−

i∈D−O−−

tsi<B̄(thvi
)

∑tsi−t
s
vi

τsh=0

(1−ε)s(tsi−t
s
vi

)

1−ε
[
1−S(τsh)

] fsh(τsh)+
∑B̄(thvi

)−tsvi
τsh=ts

i
−tsvi

s(tsi−t
s
vi

)

1−ε
[
1−S(τsh)

] fsh(τsh)

∑B̄(thvi
)−tsvi

τsh=0
fsh(τsh)

tsvi

tsi

B̄(thvi )

∏
vi∈D−OM−

i∈D−O−−

tsi≥B̄(thvi
)

∑B̄(tsvi
)−tsvi

τsh=0

(1−ε)s(tsi−t
s
vi

)

1−ε
[
1−S(τsh)

] fsh(τsh)

∑B̄(thvi
)−tsvi

τsh=0
fsh(τsh)

tsvi B̄(thvi )

tsi

DOMO− D−O−−
∏
vi∈DOMO−

i∈D−O−−

∑B̄(tsvi
)−tevi

τes=0
ŝ(tsi−t

e
vi
−τes,thvi−t

e
vi
−τes)fes(τes)∑B̄(tsvi

)−tevi
τes=0

fes(τes)

=
∏
vi∈DOMO−

i∈D−O−−

tsi<t
h
vi

∑B̄(tsvi
)−tevi

τes=0

s(tsi−t
e
vi

−τes)

1−ε
[
1−S(thvi

−tevi
−τes)

] fes(τes)

∑B̄(tsvi
)−tevi

τes=0
fes(τes)

tevi B̄(tsvi )

tsi

thvi

∏
vi∈DOMO−

i∈D−O−−

tsi≥t
h
vi

∑B̄(tsvi
)−tevi

τes=0

(1−ε)s(tsi−t
e
vi

−τes)

1−ε
[
1−S(thvi

−tevi
−τes)

] fes(τes)

∑B̄(tsvi
)−tevi

τes=0
fes(τes)

tevi B̄(tsvi ) thvi

tsi

DMMO− D−O−−
∏
vi∈DMMO−

i∈D−O−−

∑thvi
−B(tsvi

)

τsh=thvi
−B̄(tsvi

)
ŝ(tsi−t

h
vi

+τsh,τsh)fsh(τsh)

∑thvi
−B(tsvi

)

τsh=thvi
−B̄(tsvi

)
fsh(τsh)

=
∏
vi∈DMMO−

i∈D−O−−

tsi<t
h
vi

∑thvi
−B(tsvi

)

τsh=ts
i
−B(tsvi

)

s(tsi−t
h
vi

+τsh)

1−ε
[
1−S(τsh)

] fsh(τsh)

∑thvi
−B(tsvi

)

τsh=ts
i
−B(tsvi

)
fsh(τsh)

B(tsvi ) B̄(tsvi )

tsi

thvi

∏
vi∈DMMO−

i∈D−O−−

tsi≥t
h
vi

∑thvi
−B(tsvi

)

τsh=thvi
−B̄(tsvi

)

(1−ε)s(tsi−t
h
vi

+τsh)

1−ε
[
1−S(τsh)

] fsh(τsh)

∑thvi
−B(tsvi

)

τsh=thvi
−B̄(tsvi

)
fsh(τsh)

B(tsvi ) B̄(tsvi ) thvi

tsi

Table 5. Categories of the likelihood of serial interval Ls.
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