
Supplementary Material: Epidemiology and control of maedi-visna

virus: curing the flock

Andrew W. Illius, Karianne Lievaart-Peterson, Tom N. McNeilly and Nicholas J. Savill

1 Description of the full mathematical model

1.1 Overview of the model

Our aim is to derive equations for the probability density functions (PDFs) of seroconversion times of
randomly selected susceptible ewes introduced into the flock at given times. We then use these PDFs to
derive the likelihood of the observed serostatuses of experimental ewes given particular model parameter
values.

The time a susceptible ewe is infected T , its seroconversion period X, and the time it seroconverts
S = T + X, are all unknown and are therefore treated as random variables with associated probability
distributions.

Let β(t) be the per-capita transmission rate at time t after the start of the experiment (March 25th 1980),
let I(t) be the expected number of infectious ewes at time t and let λ(t) be the force of infection at time t.
Under the assumption that ewes mix freely λ(t) = β(t)I(t). For now we assume I(t) is known; its derivation
is given in Section 1.3.

Consider a susceptible ewe introduced into the flock at time t0. The rate of change of its probability of
being uninfected at time t, Pr(T > t), is (Cox and Miller, 1965)

d

dt
Pr(T > t) = −λ(t)Pr(T > t) (1)

The solution of this differential equation is

Pr(T > t) = exp

(
−
∫ t

t0

λ(ξ) dξ

)
(2)

where ξ is a dummy integration variable. The cumulative distribution function (CDF) of the susceptible
ewe’s infection time, T , is FT (t; t0) = Pr(T ≤ t). By definition, Pr(T ≤ t) = 1 − Pr(T > t), therefore, the
CDF of T is

FT (t; t0) = 1− Pr(T > t) (3)

Let fT (t; t0) be the probability density function of the ewe’s infection time. It is given by the derivative of
its cumulative distribution function,

fT (t; t0) =
d

dt
FT (t; t0) (4)

Substituting in Equation 3 gives

= − d

dt
Pr(T > t) (5)
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Substituting in Equation 1 gives

= λ(t)Pr(T > t) (6)

And substituting in Equation 2 results in

= λ(t) exp

(
−
∫ t

t0

λ(ξ) dξ

)
(7)

We assume a Gamma distributed seroconversion period. However, we also assume that the seroconversion
rate in winter 1982, when ewes were in poor condition, may be different than at all other times when ewes

were healthy. The CDF of a Gamma distributed random variable X is FX(x) = Pr(X ≤ x) = γ(a,bx)
Γ(a) where

γ(a, bx) =
∫ bx

0
ξa−1e−ξ dξ is the lower incomplete gamma function, Γ(a) is the gamma function, a is the

shape of the Gamma distribution and b is the rate. To model a seroconversion rate, b(t), that varies in time
t through the experiment, we replace the term bx in the CDF with the function

Z(x; t) =

∫ t+x

t

b(ζ) dζ (8)

This is the cumulative seroconversion rate between times t and t+ x. When b(t) = b is constant we recover
Z(x; t) = bx which is independent of t as expected. Thus

FX(x; t) =
γ(a, Z(x; t))

Γ(a)
(9)

is the CDF of the seroconversion period, X, of a ewe infected at time t. With a time varying seroconversion
rate seroconversion period is not Gamma distributed. However, except in winter 1982, seroconversion rate
is constant and so seroconversion period will be Gamma distributed. The PDF of X is given by

fX(x; t) =
d

dx
FX(x; t) (10)

Substituting in Equation 9 gives

=
1

Γ(a)

d

dx
γ(a, Z(x; t)) (11)

Applying the chain rule gives

=
1

Γ(a)
Z(x; t)a−1e−Z(x;t) d

dx
Z(x; t) (12)

Substituting in Equation 8 gives

=
1

Γ(a)
Z(x; t)a−1e−Z(x;t) d

dx

∫ t+x

t

b(ζ) dζ (13)

from which we obtain the final form of the PDF

=
1

Γ(a)
Z(x; t)a−1e−Z(x;t)b(t+ x) (14)
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Let fS(s; t0) be the distribution of seroconversion time S, which is the sum of infection time and sero-
conversion period, i.e., S = T + X. This distribution is, therefore, the convolution of the distribution of
infection time T , and the distribution of seroconversion period X

fS(s; t0) =

∫ s

t0

fT (t; t0)fX(s− t; t) dt (15)

If a ewe is known to have seroconverted sometime between times s− and s+, the probability of it doing so
is the integral of its distribution of seroconversion time between these two times, i.e.,

p = Pr(s− < S ≤ s+) =

∫ s+

s−

fS(s; t0) ds (16)

If a susceptible ewe never seroconverted between introduction into the flock and its last serological test at
time tr, its probability of doing so is

q = Pr(S > tr) = 1− Pr(t0 < S ≤ tr) = 1−
∫ tr

t0

fS(s; t0) ds (17)

It now remains to solve the above integrals and to specify the number of infectious ewes I(t).

1.2 Discretising time

It is highly desirable that the above integrals have analytical solutions to allow rapid (order of hours) sampling
of the posterior distribution. However, given the time-varying transmission rate β(t), and the time-varying
seroconversion rate b(t), the above integrals are not analytically solvable. In order to obtain analytical
solutions we can discretise time into 1 month intervals (for Houwers) or 1 week intervals (for Peterson) which
roughly match the sampling intervals. (To not interrupt the flow of our argument we only refer to monthly
intervals, but the same arguments hold for weekly intervals.) This means we can treat the transmission and
seroconversion rates as piecewise-constant such that in month i, transmission rate βi, and seroconversion
rate bi, are constant. We also assume that the number of infectious ewes Ii, in month i is constant. This
implies that the force of infection λi = βiIi, in month i is also constant.

We first discretise the distribution of infection time fT (t;m0). The probability of a susceptible ewe being
uninfected at time t (Eqt. 2) can be partitioned into monthly intervals. We set the units of time to be months
with 1 month equalling 365/12 = 30.4 days. Let m0 be the month a susceptible ewe was introduced into the
flock and let un(t;m0) be the probability of it being uninfected at time t in month n (i.e., t ∈ [n, n + 1)).
This probability is given by

un(t;m0) = exp

(
−
∫ t

m0

λ(ξ) dξ

)
(18)

= exp

(
−

n−1∑
i=m0

λi

)
e−λn[t−n] (19)

Define um0,n = exp
(
−
∑n−1
i=m0

λi

)
, which is the probability of a ewe being uninfected before month n, and

substituting into Eqt. 19 we obtain
un(t;m0) = um0,ne

−λn[t−n] (20)

Let fT,n(t;m0) be the piecewise distribution of infection time T , in month n. This is obtained by substituting
Eqt. 20 into Eqt. 7:

fT,n(t;m0) = λnun(t;m0) (21)

= λnum0,ne
−λn[t−n] (22)
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Second, we discretise the distribution of seroconversion period fX(x; t). Let Zn,m(x; t) be the cumulative
seroconversion rate between times t and t+ x such that t is in month n (i.e., t ∈ [n, n+ 1)) and t+ x is in
month m (i.e, t+ x ∈ [m,m+ 1), n ≤ m). It is given by

Zn,m(x; t) =

∫ t+x

t

b(ξ) dξ (23)

= bn[n+ 1− t] +

m−1∑
i=n+1

bi + bm[t+ x−m] (24)

which, with some rearranging, is

Zn,m(x; t) =

m−1∑
i=n

bi + bn[n− t] + bm[t+ x−m] (25)

Let fX,n,m(x; t) be the piecewise distribution of seroconversion period X, in month m given infection at time
t in month n. This is obtained by substituting Eqt. 25 into Eqt. 14:

fX,n,m(x; t) =
bm

Γ(a)
Zn,m(x; t)a−1e−Zn,m(x;t) (26)

Finally we discretise the the distribution of seroconversion time S. Let fS,m(s;m0) be the piecewise
distribution of seroconversion time S in month m (s ∈ [m,m+ 1)). This is given by Eqt. 15

fS,m(s;m0) =

∫ s

m0

fT (t;m0)fX(s− t; t) dt (27)

partitioning the integral into 1 month intervals we obtain

fS,m(s;m0) =

m−1∑
n=m0

∫ n+1

n

fT,n(t;m0)fX,n,m(s− t; t) dt

+

∫ s

m

fT,m(t;m0)fX,m,m(s− t; t) dt

(28)

For convenience we define

zn,m(t, s) = Zn,m(s− t; t) (29)

substituting in Eqt. 25 and defining Bn,m =
∑m−1
i=n bi gives

zn,m(t, s) = Bn,m + bn[n− t] + bm[s−m] (30)

Substituting Eqts. 22 and 26 into Eqt. 28 and moving constants outside the integrals we obtain

fS,m(s;m0) =

m−1∑
n=m0

bmλnum0,n

Γ(a)

∫ n+1

n

e−λn[t−n]zn,m(t, s)a−1e−zn,m(t,s) dt

+
bmλmum0,m

Γ(a)

∫ s

m

e−λm[t−m]zm,m(t, s)a−1e−zm,m(t,s) dt

(31)

We define the indefinite integral

vn,m(t, s) =
bmλn
Γ(a)

∫
e−λn[t−n]zn,m(t, s)a−1e−zn,m(t,s) dt (32)
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and substitute into Eqt. 31 to obtain

fS,m(s;m0) =

m−1∑
n=m0

um0,n[vn,m(n+ 1, s)− vn,m(n, s)]

+ um0,m[vm,m(s, s)− vm,m(m, s)]

(33)

where the constants of integration have cancelled.
Consider the indefinite integral from Eqt. 32

I =

∫
e−λn[t−n]zn,m(t, s)a−1e−zn,m(t,s) dt (34)

Applying a change of integration variable dz
dt = −bn, using the fact from Eqt. 30 that t − n = − z

bn
+

Bn,m+bm[s−m]
bn

and moving constant factors out of the integral, we obtain

I = − 1

bn
e−

λn
bn

[Bn,m+bm[s−m]]

∫
e
λn
bn
zza−1e−z dz (35)

=
1

bn
e−

λn
bn

[Bn,m+bm[s−m]]

[
bn

bn − λn

]a
Γ

(
a,
bn − λn
bn

zn,m(t, s)

)
+ constant (36)

Note that Γ(a, z) = Γ(a)[1 − zaγ?(a, z)] where γ?(a, z) is the lower incomplete gamma star function. By
using this form of the incomplete gamma function we remove the denominator bn − λn from Eqt. 36 which
will cause numerical instability when bn ≈ λn. Substituting into Eqt. 36 gives

I = −Γ(a)

bn
e−

λn
bn

[Bn,m+bm[s−m]]zn,m(t, s)aγ?
(
a,
bn − λn
bn

zn,m(t, s)

)
+ constant (37)

Substituting this into Eqt. 32 gives

vn,m(t, s) = −bmλn
bn

e−
λn
bn

[Bn,m+bm[s−m]]zn,m(t, s)aγ?
(
a,
bn − λn
bn

zn,m(t, s)

)
(38)

where the integration constant has been removed as it cancels in Eqt. 33. Also note that vm,m(s, s) = 0 in
Eqt. 33 because zm,m(s, s) = 0.

Let Pm0,m =
∫m+1

m
fS,m(s;m0) ds be the probability that a sheep introduced in month m0 seroconverts

in month m. Substituting in Eqt. 33 gives

Pm0,m =

∫ m+1

m

m−1∑
n=m0

um0,n[vn,m(n+ 1, s)− vn,m(n, s)] ds

−
∫ m+1

m

um0,mvm,m(m, s) ds

(39)

Moving the integrals into the summation and moving constant factors out of the integrals gives

Pm0,m =

m−1∑
n=m0

um0,n

[∫ m+1

m

vn,m(n+ 1, s) ds−
∫ m+1

m

vn,m(n, s) ds

]

− um0,m

∫ m+1

m

vm,m(m, s) ds

(40)

We define the indefinite integral

wn,m(t, s) =

∫
vn,m(t, s) ds (41)
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and substitute into Eqt. 40 to obtain

Pm0,m =

m−1∑
n=m0

um0,n [wn,m(n+ 1,m+ 1)− wn,m(n+ 1,m)− wn,m(n,m+ 1) + wn,m(n,m)]

− um0,m[wm,m(m,m+ 1)− wm,m(m,m)]

(42)

where the constants of integration have cancelled each other. Note that wm,m(m,m) = 0. Substituting
Eqt. 38 into Eqt. 41 we obtain

wn,m(t, s) = −bmλn
bn

e−
λn
bn
Bn,m

∫
e−

λn
bn
bm[s−m]zn,m(t, s)aγ?

(
a,
bn − λn
bn

zn,m(t, s)

)
ds (43)

Applying a change of integration variable dz
ds = bm, using the fact that bm[s−m] = z−Bn,m− bn[n− t] and

moving constant factors out of the integral, we obtain

wn,m(t, s) = −λn
bn
e−λn[t−n]

∫
e−

λn
bn
zzaγ?

(
a,
bn − λn
bn

z

)
dz (44)

The solution of which is

wn,m(t, s) = e−λn[t−n]zn,m(t, s)a
[
e−

λn
bn
zn,m(t,s)γ?

(
a,
bn − λn
bn

zn,m(t, s)

)
− γ? (a, zn,m(t, s))

]
(45)

If a susceptible ewe, introduced in month m0, tested negative in month m− and then positive in month
m+ the probability of it doing so is

p+ =

m+−1∑
i=m−

Pm0,i (46)

If a susceptible ewe, introduced in month m0, never seroconverted until its last test in month mr, the
probability of it doing so is

p− = 1−
mr−1∑
i=m0

Pm0,i (47)

The equations for p+ and p− are found by applying Eqts. 30, 45 and 42. These equations are functions of
the force of infection λi for each month i which, in turn, depend on the number of infectious ewes Ii in each
month i. In the next section we describe how we find Ii.

Amparo et al. (2016) provides an algorithm to numerically solve the lower incomplete gamma star func-
tion.

1.3 Calculating the expected number of infectious ewes

In Peterson the number of infectious ewes equals the number of donor ewes which are assumed to be infectious
from the start of the experiment until they are removed from their flocks in weeks 50 or 51. There are 10
donors in the Texels and 9 in the Blessumers (see Supplementary spreadsheet Peterson data).

In Houwers the situation is more complicated because infected recipient ewes become infectious after a
latent period. We use a discrete-time, infectious disease model to calculate the expected number of infectious
ewes Ii, and the force of infection λi, in all months i = 0, . . . ,M where M is the last test month.

We do not know the latent period L of an infected ewe. We therefore treat L as a Gamma distributed
random variable with mean l and standard deviation σ. Let FL(y) = Pr(L ≤ y) = P (y; l

2
/σ2, σ

2
/l) be the

cumulative distribution function of latent period L, where P (y; a, k) is the lower incomplete gamma function
with shape a and scale k.

The contribution Ii,n+j , a susceptible ewe i, introduced into the flock in month m0,i, infected in month
n (n = m0,i, . . . ,mr,i − 2) and removed in month mr,i, makes to the expected number of infectious ewes in
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Parameter Prior

βfield Exp(0.02)
βhoused Gamma(2, 0.1)
βunhealthy Gamma(2, 1)
τ Uniform(1, 4)
l Uniform(0, 60)
σ Gamma(2, 1.5)
α Uniform(0.001, 100)
µhealthy Exponential(24)
µunhealthy Exponential(24)

Table 1: Parameter prior distributions of full model.

month n+ j (j = 1, . . . ,mr,i−1−n) is the product of the probability the ewe is infected at time T in month
n and the probability the ewe’s latent period is less than or equal to j − 1 months, i.e.,

Ii,n+j = Pr(n < T ≤ n+ 1) Pr(L ≤ j − 1) (48)

= (Pr(T > n)− Pr(T > n+ 1)) Pr(L ≤ j − 1) (49)

Substituting in Eqt. 20 gives

= [um0,i,n − um0,i,n+1]FL(j − 1) (50)

= um0,i,n[1− e−λn ]FL(j − 1) (51)

where λn = βnIn is the force of infection in month n and In =
∑
i∈ewes Ii,n is the expected number of

infectious ewes in month n. Note that infectious ewes are assumed to have been removed in the last month
they are tested and so do not contribute to the force of infection in that month.

We assume that donor ewe with ID 72 is infectious from the start of the experiment and so contributes 1
to the expected number of infectious ewes for each month until it is removed in January 1981. We test
whether the other donor (ID 22) is infectious or latent at the start of the experiment.

1.4 Parameter prior distributions

When fitting to Houwers’ data, we assign parameter prior distributions that are weakly informative reflecting
the lack of information about the epidemiological parameters of SRLV transmission (Table 1). We use the
mean parameter estimates from the fit of Houwers’ data to assign the priors for fitting Peterson’s data.

There are no published estimates of field transmission rates βfield. A weakly informative prior on field
transmission rate can be found by assuming that all of the 23 of the 42 ewes that were infected over the 60
months of the experiment were infected by a single ewe whilst grazing. This is an overestimate because it
neglects housed transmission and assumes a single infectious ewe was responsible for all infections. Assuming
this gives a rate of −1/60 ln(1− 23/42) ≈ 0.01. We take a slightly larger average rate of 0.02 to make the prior
less informative. We assign an exponentially distributed prior—which has its mode at zero—as it is possible
that field transmission might be close to, or even, zero.

There are numerous studies that suggest that housing is an important factor in SRLV transmission, but
there are no published estimates of its value. We therefore assume that housing transmission rate is about 10
times the field transmission rate of 0.01. We therefore assign a weakly informative, Gamma distributed prior
with shape 2 and scale 0.1 to βhoused, giving a mean transmission rate of 0.2 and zero probability of a zero
transmission rate.

There are no published estimates of transmission rate in poor condition ewes, other than clinical ob-
servation that poor husbandry conditions and the presence of secondary infections are conducive to more

7



rapid spread of MV (Prichard and McConnell, 2007). We therefore assign a weakly informative, Gamma
distributed prior with shape 2 and scale 1 to βunhealthy, giving a mean transmission rate of 2.

Ewes were housed for at least one month during lambing in March and had access to housing for another
three months from December to February. We therefore assign a flat uniform prior distribution from 1 to 4
to the duration of housing τ .

There are no published estimates of mean latent period l, or its variability σ. We therefore assign its
mean l, a flat uniform prior between 1 and 60 months and its standard deviation σ, a weakly informative,
Gamma prior with shape 2 (non-zero mode) and scale 15 months.

There is ample evidence that ewes seroconvert from a few weeks to several months after infection (e.g.,
Rimstad et al. (1993)). As discussed above, we have assumed that seroconversion period is Gamma dis-
tributed with shape parameter α and mean µhealthy for healthy ewes and mean µunhealthy for poor condition
ewes. As there is no prior information on the shape of this distribution we assign a weakly informative prior
of Uniform(0.001, 100) to α. We assign exponentially distributed priors to µhealthy and µunhealthy with a
scale of 24 months.

The estimates from Houwers are used to assign the scale of the priors for Peterson (Table 2). In particular,
the mean seroconversion period µ, is assigned a Gamma prior distribution with a mean of 8 months to reflect
our inference about it from Houwers’ experiment.

Parameter Prior

βfield Exp(8× 10−4)
βhoused Gamma(2, 0.1)
α Exp(3.2)
µ Gamma(2, 4)

Table 2: Parameter prior distributions for Peterson.

2 Calculating R0 and the prevalence doubling time

Let A be a next-generation matrix whose elements ai,j , are the expected number of ewes of age class j that
are infected over the infectious lifespan of a ewe infected at age i Diekmann et al. (1990); van den Driessche
and Watmough (2002). Let Ng be the vector of the number of infected ewes in each age class on generation
g. Then, when MV prevalence is low, the number of newly infected ewes in the next generation is

Ng+1 = ANg (52)

The solution of this equation is Ng = Rg0v whereR0 is the dominant eigenvalue of A and v is its corresponding
eigenvector whose elements are the stable proportions of infected ewes in each age class. The time between
generations G, is the weighted mean ewe lifespan post infection. The weights are the stable proportions of
ewes (infected plus susceptible) in each age class, and the average is taken over all age classes.

When MV prevalence is low, the growth equation of the total number of infected individuals is |Ng| =
Rg0|v|. The time since initial infection is t = gG. Substituting g = t/G into this equation, taking logs and
rearranging gives

t = ln

(
|Ng|
|v|

)
G

lnR0
(53)

By setting |Ng| = 2|v| and substituting into Eqt. 53 we obtain the prevalence doubling time G ln 2
lnR0

.

3 Markov chain convergence and mixing

In all models, three Markov chains were run for a total of 5× 105 samples thinned to 5,000 samples with a
burn-in of 5×105 samples. Markov chain convergence and mixing was assessed by examining (i) the marginal
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distributions of each parameter of three parallel Markov chains (ii) the autocorrelation of each chain for each
parameter and (iii) the Gelman-Rubin statistics of each parameter Gelman et al. (2003). Assessments are
shown for the optimal model including field transmission for Houwers (Fig. 1), Peterson’s Texels (Fig. 2),
Peterson’s Blessumers with (Fig. 3) and without (Fig. 4) the three outlying ewes.
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Figure 1: Houwers. Assessment of Markov chain convergence, mixing and autocorrelation for the optimal
model including βfield for Houwers. The lefthand panels show the trace plots of three chains as green, blue and
orange dots for each parameter. Their overlap demonstrates the chains’ excellent convergence, stationarity
and mixing. The similar chain histograms shown as green, blue and orange bars in the second column of
panels demonstrate excellent convergence between the three chains. The overlapping histograms of the first
(solid lines) and second (dashed lines) halves of each chain in the third column of panels demonstrates the
chains’ stationarity.The autocorrelation plots in the righthand panels demonstrate the lack of autocorrelation
in the three chains. Gelman Rubin statistics (Rc, Gelman and Rubin (1992)) for each parameter is given in
the righthand panels and demonstrate excellent convergence. Prior distributions are represented as red lines
in the second column of panels.
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Figure 2: Peterson’s Texels. See legend of Fig. 1.
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Figure 3: Peterson’s Blessumers with the three anomalous ewes. See legend of Fig. 1.
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Figure 4: Peterson’s Blessumers without the three anomalous ewes. See legend of Fig. 1.
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