
Supplementary Notes 
 

Genetic Analyses Support the Contribution of mRNA N6-methyladenosine 
(m6A) Modification to Human Diseases Heritability 

 
Statistical model for m6A-QTL mapping 
Unlike common omics data (e.g. ChIP-seq) that quantifies molecular trait by a single variable 

(e.g. read counts in a ChIP-seq peak), m6A-seq experiments are characterized by a pair of input 

and immunoprecipitation (IP) measurements. To quantify m6A level, we computed log fold 

enrichment of each peak by dividing the IP read counts by the input read count, each normalized 

by library sizes.  

For a given testing window (as defined by joint m6A-peaks), the read counts of IP 

(immunoprecipitated) and input (regular RNA-seq) in individual 𝑖 are denoted as 𝑌!
(#) and 𝑌!

(%), 

respectively. Let 𝑇!
(#) and 𝑇!

(%) be the library size of IP and input, respectively. We define log 
odds ratio (log-OR) as the m6A quantitative phenotype: 
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Correction for possible confounders: Various factors (such as IP efficiency and GC content) 

may influence the measurement of m6A level. Our strategy is to adjust the log-OR to account for 

covariates of peaks in sample-specific fashion. 

We define observed log-OR of a peak 𝑗 in sample 𝑖 as: 
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Leaning how y%!*  depends on IP efficiency and GC content in each sample would allow us to 

correct for deviation of y%!*  due to those factors in a sample-specific manner. 

Adjusting for IP efficiency: Variation of overall IP efficiency across individuals can have impact 

on the expected fraction of reads in IP. We adjust for this variation by estimating the difference 

of IP-efficiency between each sample 𝑖 and the average across samples, using a strategy 

similar to WASP1. Let 𝑦0!*  be the average log-OR of peak 𝑗 across all samples. We can plot 𝑦%!*   



vs. 𝑦0*  for all peaks in a sample 𝑗 (Figure SN 1a). For samples with low IP efficiency, the lines 

would fall below diagonal line, and for samples with high IP efficiency, above the diagonal line. 

In order to capture the variation of IP efficiency across samples, we first fitted a quadratic function 

of y%!*  against 𝑦0* for each sample, as shown in (Figure SN 1b). Since the fitted curves are 

approximately linear, we then fitted a linear model for simplicity (Figure SN 1c). Let 𝑦1!*  be the 

expected log-OR for a given peak	𝑗 in sample 𝑖 (based on the fitted line), then our correction 

term for peak 𝑗 in sample 𝑖 is: 
∆𝐾!* = 𝑦%!* − y0* (3) 

 

Adjusting for GC content: Another technical covariate that has been shown to influence read 

count representation is GC content2,3. To adjust for the GC content bias, we group peaks of the 

same GC content into bins. Let 𝑏!+  be the average log-OR of all peaks in bin 𝑙 of sample 𝑖, 

and let 𝑏∙+ be the average log-OR of all peaks in bin 𝑙 over all samples. The difference of the 

two should reflect the GC effect. However, a sample may have higher log-OR across all peaks 

because of IP efficiency or other technical factors, so we should adjust for that. Let 𝑏!∙ be the 

average log-OR of all peaks of sample 𝑖, and 𝑏∙∙ be the average log-OR of all peaks of all 

samples. We define the deviation of bin 𝑙 in sample	𝑖	as: 

𝐹!+ = (𝑏!+ − 𝑏∙+) − (𝑏!∙ − 𝑏∙∙) (4) 

As shown in Figure SN 2, the effect of GC content varies from sample to sample. We fitted a 

quadratic function of 𝐹!+ vs. its GC content to get the correction term ∆𝐹!+ for each peak given 

its GC content bin 𝑙 in sample	𝑖. 

Our log fold enrichment for sample 𝑖 in peak 𝑗 adjusting for IP efficiency and GC content is: 
𝑦%!* +	∆𝐾!* +	𝐹!+ (5) 

 

 

Re-analysis of ribosome-profiling data of METTL3 and YTHDF1 knockdown in Hela cells.  
To validate our finding of heterogeneous effect of m6A on downstream molecular traits, we used 

translation efficiency as an example and re-analyzed the ribosome profiling data of METTL3 

(m6A methyltransferase) depleted Hela cells from reference4. The original paper focused on the 

target transcripts of YTHDF1 as defined by transcripts harboring YTHDF1-bound m6A peaks. To 



systematically examine the effect of m6A depletion on translation efficiency, we first stratified all 

transcripts with m6A peaks and found the log2 fold change of translation efficiency is slightly shift 

towards up-regulation but still largely centered near 0 (Extended Data Fig. 4c). This result 

suggests that unlike targets of YTHDF1, which represent a translation promotion effect of m6A, 

more than half of m6A sites likely act as translation repressors while others act as translation 

activators. To understand this heterogeneous effect of m6A on translation efficiency, we stratified 

transcripts by RBP-bound m6A peaks (we defined targets by overlaps of RBP eCLIP-seq peak 

with m6A peaks in Hela cells) and Welch’s two-sample t-test was used to test the log2 fold change 

in translation efficiency in RBP targets vs. non-targets, upon METTL3 knockdown. We reported 

32 RBPs that showed significant difference of translation efficiency in targets vs. non-targets 

with FDR < 5%.  

In order to further understand the heterogeneous effect of m6A on translation efficiency, we 

also re-analyzed the ribosome profiling data of YTHDF1 (m6A reader) depleted Hela cells from 

reference4. We found the distribution of log2 fold change of translation efficiency in all transcripts 

are shifted towards down-regulation (Figure SN 3a), which is due to improper normalization 

(Figure SN 3b). We normalized the libraries (Figure SN 3c) and examined the impact of 

YTHDF1 depletion on translation efficiency. Surprisingly, we found YTHDF1 knockdown led to 

overall reduction of translation efficiency in transcripts harboring YTHDF1-bound m6A sites, but 

there are 33% (proportion based on considering translation efficiency log2 fold change < -0.5 

or > 0.5 as having effects) YTHDF1 targets showing opposite effects (Extended Data Fig. 4d). 

This result suggests the effect of m6A on translation could be heterogeneous even in YTHDF1-

targeted m6A sites, rather than previously thought simple translation promoting effects.  
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Figure SN 1: Fitting the overall IP efficiency correction term. The fraction of reads coming 

from the peaks varies between experiments. We adjust for this variation by estimating the 

difference of IP-efficiency between each sample 𝑖 and the average across samples as 

illustrated in panel a. We first fitted a quadratic function of individual log odds ratio vs. the 

mean log odds ratio across all samples as shown in panel b. Since the fitted curves are 

approximately linear, we simplified to fit the individual log odds ratio as a linear function of the 

mean log odds ratio across all samples as shown in panel c. All lines in panel b and c are 

fitted using n = 20044 peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure SN 2: Fitting the GC bias correction term. The GC content of a region can affect the 

sequencing depth of that region. This influence varies from sample to samples. To capture and 

correct for this GC bias, we fitted a correction term Fil for each peak as a quadratic function of 

GC fraction of the peaks for each sample. 
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Figure SN 3: Re-normalize ribosome profiling libraries. We analyzed the ribosome profiling 

data from reference4 and found the overall distribution of translation efficiency changes are 

shifted towards down-regulation as shown in panel a. We checked the distribution of read 

counts in individual samples of the analyzed data in the original paper as shown in b (n = 

9,742 genes). The distribution of normalized read counts in each individual sample are shown 

in c (n = 9,742 genes). The lower and upper hinges correspond to the first and third quartiles. 

Horizontal line indicates median value, and whiskers correspond to the value no further than 

1.5x inter-quartile range. 
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