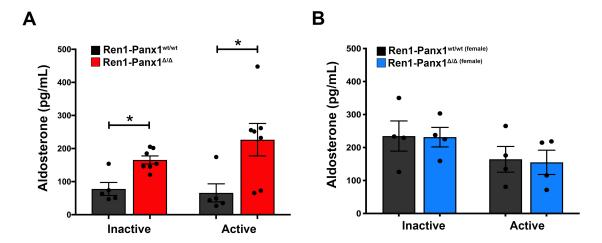
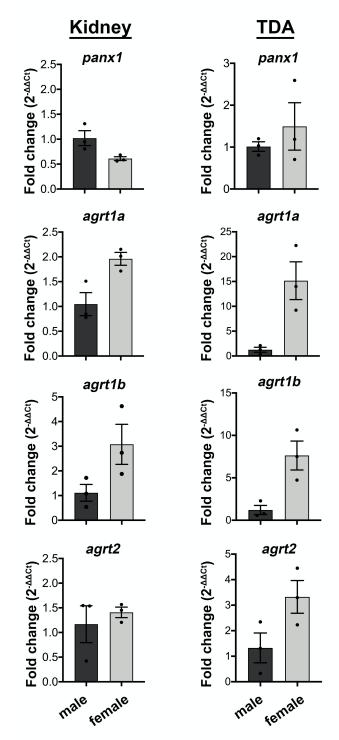
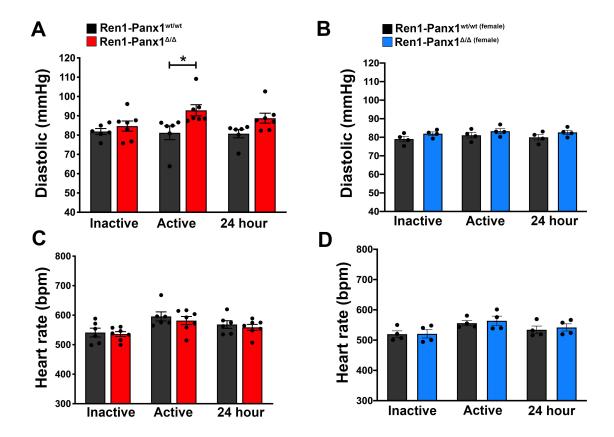

SUPPLEMENTAL MATERIAL FOR:

PANNEXIN 1 CHANNELS IN RENIN-EXPRESSING CELLS INFLUENCE RENIN SECRETION AND BLOOD PRESSURE HOMEOSTASIS

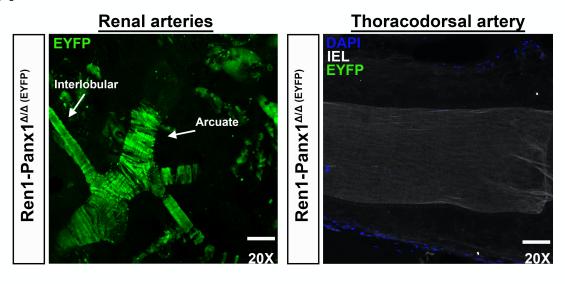

Leon J DeLalio^{1,2}, Ester Masati¹, Suresh Mendu², Claire A Ruddiman^{1,2}, Yang Yang^{1,3}, Scott R Johnstone¹, Jenna A. Milstein¹, T.C. Stevenson Keller IV^{1,4}, Rachel B Weaver¹, Nick A. Guagliardo², Angela K Best¹, Kodi Ravichandran⁵, Douglas A Bayliss², Maria Luisa S. Sequeira-Lopez⁶, Swapnil N. Sonkusare^{1,4}, Xiaohong H.Shu³, Bimal Desai², Paula Q. Barrett², Thu H. Le⁷, R. Ariel Gomez⁶, and Brant E Isakson^{1,4*}


Affiliations

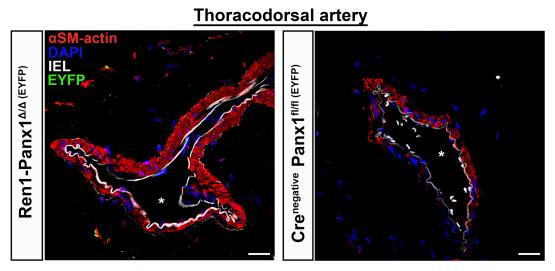
- ¹ Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- ² Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
- ³ Department of Pharmacology, Dalian Medical University, Dalian 116044, China
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine, Charlottesville, VA
- ⁶ Pediatric Center of Excellence in Nephrology, University of Virginia School of Medicine, Charlottesville, VA
- Department of Medicine, Division of Nephrology, University of Rochester, Rochester NY



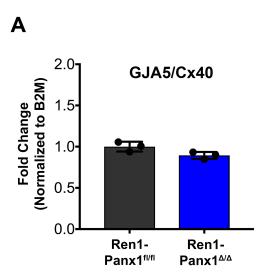
Supplemental Figure 1: Ren1-Panx1^{Δ/Δ} mice have normal renal tissue morphology. Representative hematoxylin-eosin (H&E) and Masson's Trichrome (MTC) stain of kidney tissue. Glomerular size, distribution, and morphology are normal in Panx1 knockouts. No fibrosis or collagen deposition detected in the renal interstitium. Scale bar; 100μm.

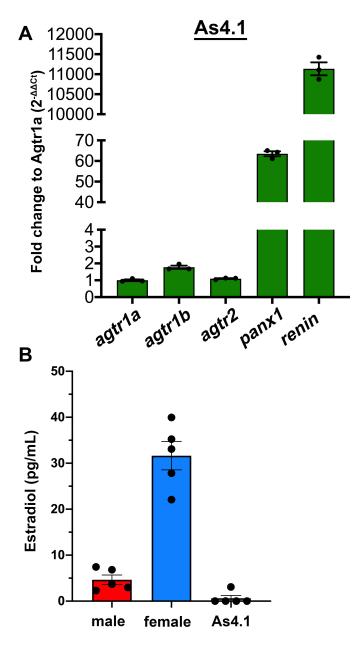


Supplemental Figure 3: Male and female expression analysis of Panx1 and angiotensin-II receptors. Expression analysis $(2^{-\Delta\Delta Ct})$ of kidney cortex and thoracodorsal arteries (TDA) from male (n=3) and female (n=3) C57Bl6 mice. Data presented as mean fold change \pm s.e.m.



Supplemental Figure 4: Diastolic blood pressure and heart rate from male and female Ren1-Panx1 knockout mice compared to controls. (A) Male diastolic pressure (B) Female diastolic pressure (C) Male heart rate (D) Female heart rate from Ren1-Panx1^{wt/wt} control (male: N=6, female: N=4) and Ren1-Panx1^{Δ / Δ} mice (male: N=7, female: N=4). Data are presented as mean \pm s.e.m. Two-way ANOVA with repeated measures and Bonferroni post-hoc test performed for significance; *p<0.05.


Α


B

Supplemental Figure 5: Ren1^d-Cre is active in reno-vascular smooth muscle cells and not peripheral vascular smooth muscle cells. (A) Whole mount confocal images from Ren1-Panx1^{Δ/Δ} kidney slices and thoracodorsal arteries expressing the R26R-EYFP Gt(ROSA)26Sor^{tm1(EYFP)Cos} gene locus, EYFP (green), internal elastic lamina: IEL (white), DAPI (blue). (B) Immunofluorescence staining and confocal images of thoracodorsal arteries from EYFP expressing Ren1-Panx1^{Δ/Δ} mice or Ren1^d-Cre negative controls. EYFP (green), alpha smooth muscle acting (red), DAPI (blue), IEL (white); scale bar=20µm in each image. Asterisk* denotes artery lumen.

Supplemental Figure 6: Loss of Panx1 does not alter Cx40 transcription. (A) Cx40 mRNA expression fold change from kidney cortex of Ren1-Panx1^{wt/wt} and Ren1-Panx1^{Δ/Δ} mice; n=3. Data presented as mean fold change \pm SD.

Supplemental Figure 7: As4.1 expression analysis and estradiol levels. (A) Expression analysis ($2^{-\Delta\Delta Ct}$) of As4.1 for angiotensin-II receptor isoforms, Pannexin 1, and renin (n=3 experiments). Data presented as mean fold change \pm s.e.m from agtr1a levels. (B) Estradiol measured from As4.1 cells in comparison to male and female wild type mice (n=5 mice; n=5 experiments). Data presented as mean \pm s.e.m.