SUPPLEMENTAL MATERIAL

The gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury

Stefanie Ascher^{1,2,#}, Eivor Wilms^{1,#}, Giulia Pontarollo¹, Henning Formes¹, Franziska Bayer¹, Maria Müller¹, Frano Malinarich¹, Alexandra Grill^{1,3}, Markus Bosmann^{1,4}, Mona Saffarzadeh¹, Inês Brandão^{1,5}, Kathrin Groß¹, Klytaimnistra Kiouptsi¹, Jens M. Kittner⁶, Karl J. Lackner⁷, Kerstin Jurk¹, Christoph Reinhardt^{1,3,*}

¹Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany. ²Institute for Pharmacy & Biochemistry, Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany. ³German Center for Cardiovascular Research, Partner Site RheinMain, Mainz, Germany. ⁴Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA. ⁵Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Rua A, 6000-459 Castelo Branco, Portugal. ⁶I. Department of Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany. ⁷Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany.

Supplemental Figures

Supplemental Figure I. Colonization leads to supression of I/R-induced NETosis. (A) Number of adhering leukocytes one hour post-ischemia in GF and *B.subtilis* monocolonized GF mice (5 vs 6 mice/group). For GF male mice and *B.subtilis* monocolonized GF female mice were used. (B) NETosis in mesenteric venules one hour post-ischemia in GF and *B.subtilis* monocolonized GF mice (5 vs 6 mice/group). For GF male mice and *B.subtilis* monocolonized GF female mice were used. (C) NETosis in mesenteric venules one hour post-ischemia in GF and altered Schaedler flora (ASF) mice (6 vs 9 mice/group). For GF and ASF male and female mice were used Results are shown as means ± s.e.m. Statistical comparison were performed using the Mann-Whitney (#) test, #p<0.05, ## p<0.01.

Supplemental Figure II. FACS analysis of neutrophil isolaton methods and TLR4 surface expression. (A) Isolation protocol with Histopaque 1077/1119 density gradient centrifugation (representative FACS histogram). (B) Isolation with the magnetic sell sorting (MACS) isolation protocol (representative FACS histogram). (C, D) FACS quantification of neutrophil Toll-like receptor-4 (TLR4) surface expression. Bone marrow (upper panels) and blood (lower panels).

Supplemental Figure III. Enhanced NET formation in GF mice is not strain dependent. (A) LPS-induced *in vitro* NETosis of cultered bone marrow neutrophils from GF C57BL/6N and CONV-R C57BL/6N mice (4 vs 4 mice/group). For GF C57BL/6N and CONV-R C57BL/6N male and female mice were used. (B) LPS-induced *in vitro* NETosis of cultered bone marrow neutrophils from GF Swiss Webster and CONV-R Swiss Webster mice (7 vs 7 mice/group). For GF Swiss Webster and CONV-R Swiss Webster male and female mice were used. Results are shown as means \pm s.e.m. Statistical comparison were performed using the Mann-Whitney (#) test, *p < 0.05, ****p < 0.001.

Supplemental Figure IV. *I/R-induced* **NETosis is diminished in** *MyD88^{-/-} x Trif^{-/-}* **double-deficient mice.** (**A**) Number of adhering leukocytes pre-ischemia and one hour post-ischemia in CONV-R (WT) and *MyD88^{-/-} x Trif^{-/-}* double-deficient mice (12 vs 7 mice/group). For WT and *MyD88^{-/-} x Trif^{-/-}* male and female mice were used (**B**) NETosis in mesenteric venules pre-and post-ischemia in CONV-R (WT) and *MyD88^{-/-} x Trif^{-/-}* double-deficient mice (9 vs 6 mice/group). For WT and *MyD88^{-/-} x Trif^{-/-}* double-deficient mice (9 vs 6 mice/group). For WT and *MyD88^{-/-} x Trif^{-/-}* male and female mice were used. Adhering leukocytes were stained with acridine orange; NETs were visualized by SYTOX orange. Results are shown as means \pm s.e.m. Scale bare: 100 µm. Statistical comparison were performed using the Mann-Whitney (#) test, #p<0.05, ##p<0.01.

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex	Other Information
WT GF	Breeding in our lab	C57BL/6J	Male and Female	Sterile isolator
WT CONV-R	Breeding in our lab	C57BL/6J	Male and Female	SPF
CONV-D	-	C57BL/6J	Female	Conventionalisation of WT GF mice; SPF
WT CONV-R + Abx	-	C57BL/6J	Male and Female	Administration of broad-spectrum antibiotics; SPF
WT GF + <i>E. coli</i>	-	C57BL/6J	Male and Female	Monocolonisation with <i>Escherichia coli</i> ; in a sterile isolator
WT GF + LPS	-	C57BL/6J	Male and Female	Administration of TLR4-agonist, in a sterile isolator
TLR4 ^{-/-}	Breeding in our lab	C57BL/6J	Male and Female	SPF
MyD88-/-	Breeding in our lab	C57BL/6J	Male and Female	SPF
Trif ^{-/-}	Breeding in our lab	C57BL/6J	Male and Female	SPF
MyD88 ^{-/-} x Trif ^{-/-}	Breeding in our lab	C57BL/6J	Male and Female	SPF
TLR4 ^{wt/wt} x VE-Cdh-Cre ⁺	Breeding in our lab	C57BL/6J	Female	SPF
TLR4 ^{fl/fl} x VE-Cdh-Cre⁺	Breeding in our lab	C57BL/6J	Male and Female	SPF
ASF	Breeding in our lab	C57BL/6J	Male and Female	Sterile isolator
WT GF + <i>B. subtilis</i>	-	C57BL/6J	Male and Female	Monocolonisation with <i>Bacillus subtilis</i> ; in a sterile isolator

Cultured Cells (in vitro studies)

Name	Species	Vendour or Source	Background Strain	Sex	Other Information
	WT GF	Breeding in our lab	C57BL/6J	Male and Female	Sterile isolator
	WT CONV-R	Breeding in our lab	C57BL/6J	Male and Female	SPF
	WT GF + LPS	-	C57BL/6J	Male and Female	Administration of TLR4-agonist, in a sterile isolator
Bone marrow-	WT CONV-R + Abx	-	C57BL/6J	Male and Female	Administration of broad-spectrum antibiotics; SPF
derived neutrophils	TLR4 ^{-/-}	Breeding in our lab	C57BL/6J	Male and Female	SPF
	C57BL6-N GF	Breeding in our lab	C57BL/6NRj	Male and Female	Sterile isolator
	C57BL6-N CONV-R	Janvier	C57BL/6NRj	Male and Female	SPF
	Swiss Webster GF	Breeding in our lab	Swiss Webster	Male and Female	Sterile isolator
	Swiss Webster CONV-R	Breeding in our lab	Swiss Webster	Male and Female	SPF

Antibodies

Target antigen	Vendor or	Working	Catalog #
	Source	concentration	
Anti-Histone H3 (citrulline R2+R8+R17)	Abcam	4 µg/ml	ab5103
Alexa Fluor 555 donkey anti-rabbit IgG	Life Technologies	4 µg/ml	A-31572
PE Rat Anti-Mouse CD162 Clone 2PH1	BD Bioscience	6 μg/ml	555306
PerCP-CyTM5.5 Rat Anti-Mouse CD62L Clone MEL-14	BD Bioscience	6 μg/ml	560513
V450 Rat anti-Mouse LY-6G and LY-6C Clone RB6-8C5	BD Bioscience	6 μg/ml	560453
APC Mouse Anti-Human CD11b Clone ICRF44	BD Bioscience	6 μg/ml	550019
APC anti-mouse Ly-6A/E (Sca-1) Clone D7	Biolegend	2,5 µg/ml	108112
APC anti-mouse CD117 (c-Kit) Clone 2B8	Biolegend	1 µg/ml	105812
APC anti-mouse NK-1.1 Clone PK136	Biolegend	2 µg/ml	108710
APC anti-mouse TER-119/ Erythroid Cells Clone TER-119	Biolegend	1 µg/ml	116212
APC anti-mouse CD3ε Clone 145-2C11	Biolegend	1 µg/ml	100312
APC anti-mouse CD19 Clone 6D5	Biolegend	2 µg/ml	115512

APC/Cy7 anti-mouse Ly-6G	Biolegend	1 µg/ml	127624
Clone 1A8			
PE/Cy7 anti-mouse/human CD 11b	Biolegend	0,5 µg/ml	101216
Clone M1/70			
Brilliant Violet 510 [™] anti-mouse Ly-6C	Biolegend	2 µg/ml	128033
Clone HK1.4			
PE Rat IgG2a, к	Biolegend	2,5µg/ml	400508
Clone RTK2758			
APC/Cy7 Rat IgG2a, к	Biolegend	1,2 µg/ml	400524
Clone RTK2758			
PE/Cy7 Rat IgG2b, κ	Biolegend	0,5 µg/ml	400618
Clone RTK4530			
PE anti-mouse CD284 (TLR4)	Biolegend	2,5 µg/ml	145404
Clone SA15-21			
IRF-3 (D83B9) Rabbit mAb	Cell Signaling	1:750	4302S
Phospho-IRF3 (Ser386) (E7J8G) XP	Cell Signaling	1:750	37829S
Rabbit mAb			
α-Actinin (D6F6) XP Rabbit mAb	Cell Signaling	1:1000	6487S