Supplementary Material

Characterization of the exopolysaccharide biosynthesis pathway in *Myxococcus xanthus*

María Pérez-Burgos, Inmaculada García-Romero, Jana Jung, Eugenia Schander,

Miguel A. Valvano, and Lotte Søgaard-Andersen

This file contains:

Supplementary Figure 1

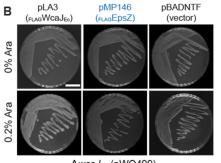

Supplementary Experimental Procedures

Table S1-S3

Supplementary References

Supplemental Figures & Legends

Α								
WbaP _{se}	AAVVGAPGSA	MDNIDNK	YNPQLCKIFL	A I SDL IFFNL	ALWFSLGCVY	F I F D Q V Q R F I	PQDQLDTRVI	57
EpsZ MDTMSGATAS		NAQGQVIEEV	QGPPKLAPGS	AAKLNL TVDL	VLLSSVLVGS	AWL S G Q L S A E	SGWKVSGLVL	80
WbaP_{se} THFILSVVCV	GWFWIRLRHY	TYRKPFWYEL	KE IFRT IV IF	AIFDLALIAF	T KWQ F S R Y V W	VFCWTFALIL	VPFFRALTKH	137
EpsZ AAWVVWIVTG	TALCLYDSRF	AERSKLDHVA	LVSVTTLAVV	TVLTLGSVAV	P T V V T S P V V G	PLLFIFWPVT	LLLRLFVFRP	160
WbaP _{se} LLNKLGIWKK	KTIILGSGQN	A RGA YSA LQS	EEMMGFDVIA	F F D T D A S D A E	INMLPVIK	D T E I IWD L N R	TGDVHYIL	213
EpsZ VASQE RP	MDAVLIVGTG	AMGR Y TGED L	ANRGRRQILG	Y V R F H D D N G S	VGELPGPVMG	S V D D L E H I L R	NTAVDEVYIA	237
WbaP _{se} AYEYTELEKT	HFWLRELSKH	HCRSVTVVPS	FRGLPLYNTD	MSF IFSHEVM	L L R I Q N N L A K	RSSRFLKRTF	DIVCSIMILI	293
EpsZ GNTLKQGESM	QAAIKLAERF	GVPFALPAHS	FRLDRARPVE	RRAVADGF L H	F A A V S P K	PHQMAMKRLF	DICVSAAALW	314
WbaP_{se} IASPLMIYLW	YKVTRDG - GP	A I YGHQ <mark>R</mark> VGR	HGKLFPCY <mark>K</mark> F	RSMVMNSQEV	LKELLANDPI	ARAEWEKDFK	L K ND P <mark>R</mark> I T A V	372
EpsZ ALLPLLGMVA	LAVKFTSKGP	I F F KQ L <mark>R</mark> VGQ	NGKPFYML <mark>K</mark> F	RSMVVNAEEL	KEKLAALN	EQTGPVFK	MK HD P <mark>R</mark> I T G I	390
WbaP _{se} GRFIRKTSLD	ELPOLFNVLK	GDMSLVGP <mark>R</mark> P	IVSDELERYC	DDVDYYLMAK	PGMTGLWQVS	GRNDVDYDTR	V Y F D SW <mark>Y</mark> V K N	452
EpsZ GRFIRKFSID	ELPOFINVLR	GEMSIVGP <mark>R</mark> P	PVPTEVAKYE	TWQRRRLSVR	PGLTCIWQVS	GRNQISFEEW	M Y L D MQ <mark>Y</mark> I D H	470
WbaP_{se} WTLWNDIAIL EpsZ WSLTSDLRLL	F K T A K V V L R R L Q T V P V V L T G	DGAY 476 RGAS 494						

 $\Delta w ca J_{\rm Ec}$ (pWQ499)

Figure S1. Characterization of MXAN_7415.

(A) Sequence alignment of EpsZ (MXAN_715) and WbaP_{Se} (Accession number: NP_461027.1) showing the Pro and Asp (orange) residues in the motif $DX_{12}P$ and the conserved amino acids essential for catalytic activity (red). (B) Complementation of colanic acid synthesis in *E. coli* K-12 W3110 ($\Delta wcaJ_{Ec}$) by plasmids encoding the indicated PHPT proteins as in Fig. 5C. Scale bar: 2 cm.

Supplementary Experimental Procedures

<u>Plasmid construction.</u> All oligonucleotides used are listed in Table S3. All constructed plasmids were verified by DNA sequencing.

pMP001 (for generation of in-frame deletion of *MXAN_7415*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 7415_A/7415_B and 7415_C/7415_D respectively, as described in (1). Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 7415_A/7415_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pMP012 (for generation of in-frame deletion of *MXAN_7421*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 7421_A/7421_B and 7421_C/7421_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 7421_A/7421_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pMP015 (for generation of in-frame deletion of *MXAN_7442*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 7442_A/7442_B and 7442_C/7442_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 7442_A/7442_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pMP016 (for generation of in-frame deletion of *MXAN_7416*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 7416_A/7416_B and 7416_C/7416_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 7416_A/7416_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pMP018 (for generation of in-frame deletion of *MXAN_7417*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 7417_A/7417_B and 7417_C/7417_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 7417_A/7417_D to generate the AD fragment. The AD fragment was digested with EcoRI/Xbal and cloned in pBJ114.

pMP021 (expression of P_{nat} MXAN_7415 from the *attB* site): P_{nat} MXAN_7415 was amplified with the primer combination 7415 Pnat900 forw2/7415 Pnat rev and genomic DNA from *M. xanthus*

DK1622 as a template. The fragment was digested with KpnI and XbaI, cloned into pSWU30 and sequenced.

pMP024 (expression of P_{nat} MXAN_7416 from the *attB* site): P_{nat} MXAN_7416 was amplified with the primer combination 7416_Pnat forw2/7416_Pnat rev and genomic DNA from *M. xanthus* DK1622 as a template. The fragment was digested with HindIII and XbaI, cloned into pSWU30 and sequenced.

pMP030 (expression of P_{*pilA MXAN_7417* from the *attB* site): *MXAN_7417* was amplified with the primer combination 7417_PpilA forw/7417_PpilA rev and genomic DNA from *M. xanthus* DK1622 as a template. The fragment was digested with XbaI and HindIII, cloned into pSW105 and sequenced.}

pMP032 (expression of P_{*pilA*} *MXAN_7421* from the *attB* site): *MXAN_7421* was amplified with the primer combination 7421_PpilA forw/7421_PpilA rev and genomic DNA from *M. xanthus* DK1622 as a template. The fragment was digested with XbaI and HindIII, cloned into pSW105 and sequenced.

pMP091 (expression of P_{nat} MXAN_7442 from the *attB* site): P_{nat} MXAN_7442 was amplified with the primer combination 7442_Pnat 600 up /7442_Pnat rev and genomic DNA from *M. xanthus* DK1622 as a template. The fragment was digested with HindIII and XbaI, cloned into pSWU30 and sequenced.

pMP124 (for generation of in-frame deletion of *MXAN_1043*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 1043_A/1043_B and 1043_C/1043_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 1043_A/1043_D to generate the AD fragment. The AD fragment was digested with EcoRI/HindIII and cloned in pBJ114.

pMP146 (expression of *MXAN_7415* under the control of an arabinose promoter): *MXAN_7415* was amplified with the primer combination 7415 fw +1/7415 rev new (pilA) and genomic DNA from *M. xanthus* DK1622 as a template. The fragment was digested with Xbal and HindIII, cloned into pBADNTF and sequenced.

pJJ1 (for generation of in-frame deletion of *MXAN_1035*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 1035_A/1035_B and 1035_C/1035_D respectively. Subsequently, the AB and CD fragments were used as templates

to perform an overlapping PCR with the primer pair 1035_A/1035_D to generate the AD fragment. The AD fragment was digested with KpnI/Xbal and cloned in pBJ114.

pJJ2 (for generation of in-frame deletion of *MXAN_1025*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 1025_A/1025_B and 1025_C/1025_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 1025_A/1025_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pJJ3 (for generation of in-frame deletion of *MXAN_1052*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 1025_A/1025_B and 1052_C/1052_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 1052_A/1052_D to generate the AD fragment. The AD fragment was digested with Kpnl/BamHI and cloned in pBJ114.

pJJ4 (for generation of in-frame deletion of *MXAN_1915*): up- and downstream fragments were amplified from genomic DNA of DK1622 using the primer pairs 1915_A/1915_B and 1915_C/1915_D respectively. Subsequently, the AB and CD fragments were used as templates to perform an overlapping PCR with the primer pair 1915_A/1915_D to generate the AD fragment. The AD fragment was digested with Kpnl/Xbal and cloned in pBJ114.

pMAT150 (for generation of in-frame deletion of *pilT*): up- and downstream fragments were amplified from genomic DNA of DK10409 ($\Delta pilT$) using the primer pairs pilT-A EcoRI/ pilT-D HindIII. The AD fragment was digested with EcoRI/HindIII and cloned in pBJ114.

Table S1. Analysis of the eps locus

Locus tag MXAN	Gene name	(Putative) function of encoded protein	Reference ¹
7415	epsZ	Polyprenyl glycosylphosphotransferase New annotation: polyisoprenyl-phosphate hexose-1-phosphate transferase	(2)
7416	WZXEPS	Wzx flippase	(3)
7417	epsY	Polysaccharide biosynthesis/export protein New annotation: OPX protein	Uniprot, KEGG
7418	epsX	Hypothetical protein	
7420	epsW	Response regulator	(4)
7421	epsV	Chain length determinant protein New annotation: Wzz protein	Uniprot, KEGG
7422	epsU	Glycosyltransferase	
7423		Hypothetical protein	
7424		Hypothetical protein	
7425		Hypothetical protein	
7426		Hypothetical protein	
7430		Transposase orfB, IS5 family	Uniprot, KEGG
7431	epsP	Transposase orfA, IS5 family	
7433	epsO	von Willebrand factor type A domain protein,	
		Ca-activated chloride channel homolog	
7435	epsN	Hydrolase	
7436	epsM	Outer membrane efflux protein, cobalt-zinc- cadmium efflux system	
7437	epsL	Heavy metal efflux pump, CzcA family, cobalt-zinc-cadmium resistance protein	Uniprot, KEGG
7438	epsK	putative cobalt-zinc-cadmium resistance protein	Uniprot, KEGG
7439	epsJ	Sensor histidine kinase	
7440	epsl nla24	Sigma-54 dependent DNA-binding response regulator	(5)
7441	epsH	Glycosyltransferase	
7442	sgnF,	Putative membrane protein, Wzy_C domain	(6)
	WZYEPS	New annotation: Wzy polymerase	
7443	epsG	Magnesium transporter	
7444	epsF	Response regulator/sensory box histidine kinase	
7445	epsE	Glycosyltransferase	
7447		Hypothetical protein	Uniprot, KEGG
7448	epsD	Glycosyltransferase	
7449	epsC	Serine O-acetyltransferase	
7450	epsB	Glycosyl hydrolase	Uniprot, KEGG
7451	epsA	Glycosyltransferase	Uniprot, KEGG

¹Based on (7) unless indicated otherwise.

Locus tag MXAN	Gene name	(Putative) function of encoded protein	Reference ¹
1025		Bacterial tyrosine kinase, Capsular exopolysaccharide family protein New annotation: Wzc	(8)
1026		Glycosyltransferase	
1027		Glycosyltransferase	
1028		Putative membrane protein	
1029		Glycosyltransferase	
1030		Glycosyltransferase	
1031		Glycosyltransferase	
1032		Glycosyltransferase	
1033		Glyco_trans_4-like_N domain-containing protein	
1034		Conserved domain protein	
1035		Putative membrane protein, PST family	
		New annotation: Wzx flippase	
1036		Glycosyltransferase	
1037		Glycosyltransferase	
1038		Hypothetical protein	
1039	glkA	Glucokinase	
1040		Sulfatase family protein	
1041		Acyltransferase family protein	
1042		Glycosyltransferase	
1043		Glycosyltransferase	
		New annotation: polyisoprenyl-phosphate <i>N</i> -	
1015		acetylhexosamine-1-phosphate transferase	
1045		Hypothetical protein	
1046		FG-GAP repeat/HVR domain protein	
1047		Hypothetical protein	
1048		UDP-glucose 6-dehydrogenase	
1049		Acyltransferase family protein	
1050		Hypothetical protein	
1051		Hypothetical protein	
1052		O-antigen polymerase family protein New annotation: Wzy polymerase	
1914	suhB	Inositol-1-monophosphatase	
1915		Polysaccharide biosynthesis/export protein	
1010		New annotation: OPX protein	
1916		Hypothetical protein	
1917		Hypothetical protein	

 Table S2. Analysis of the MXAN_1025-MXAN_1052 and MXAN_1915 loci

¹Based on Uniprot and KEGG, unless indicated otherwise.

Table S3. Oligonucleotides used in this work'	Table S3.	Oligonucleotides used in this work ¹	
--	-----------	---	--

Primer name	Sequence 5'-3'	Brief descrption
7415_A	ATCG <u>GGTACC</u> GTGGTGCTCGCCGTCAGTGG	For ∆MXAN_7415
7415_B	CACCGGCACCGGGGCCAGCTTGGGCGG	For ∆ <i>MXAN_</i> 7415
7415_C	CTGGCCCCGGTGCCGGTGGTGCTCACG	For ∆ <i>MXAN_</i> 7415
7415_D	ATCG <u>TCTAGA</u> CCCCCGCCCCACACCAGCTT	For <i>∆MXAN_</i> 7415
7415_E	ACCTCCTGGCCGCCCATGAG	For <i>∆MXAN_</i> 7415
7415_F	CTTCACCGCCTCGGACGCCA	For ∆ <i>MXAN_</i> 7415
7415_G	CATCTTCTGGCCGGTGACGC	For ∆ <i>MXAN_</i> 7415
7415_H	GCATGTAGAAGGGCTTGCCG	For <i>∆MXAN_</i> 7415
7415 Pnat900 forw2	ATCG <u>GGTACC</u> TGAGCCTTCCTCGACGTGGAGC G	For complementation fw
7415 Pnat rev	ATCG <u>TCTAGA</u> CTAGCTGGCGCCGCGGCCCG	For complementation rev
7415 fw +1	ATCG <u>TCTAGA</u> GGTGGACACGATGAGCGGCGC	For protein expression under an arabinose inducible promoter fw.
7415 rev new	ATCG <u>AAGCTT</u> CTAGCTGGCGCCGCGGCCCG	For protein expression under an arabinose inducible promoter rev.
7416_A	ATCG <u>GGTACC</u> GCAGCTTCGCGTGGGGCAGA	For Δ <i>MXAN_</i> 7416
7416_B	TTCGGGCGCTTGGAGCCCGTTGCGCAC	For Δ <i>MXAN_</i> 7416
7416_C	GGGCTCCAAGCGCCCGAAGCCGCGCCC	For <i>∆MXAN_7416</i>
7416_D	ATCG <u>TCTAGA</u> GCGCCCCTCGGCGTGGATGA	For <i>∆MXAN_7416</i>
7416_E	TGAAGTTCACCTCCAAGGGC	For <i>∆MXAN_7416</i>
7416_F	TCCACCACCACGTCACC	For Δ <i>MXAN_</i> 7416
7416_G	CGAGGTGCGCCAGCTCGTCT	For Δ <i>MXAN_</i> 7416
7416_H	CCCATCAGCCCCACCACAG	For Δ <i>MXAN_</i> 7416
7416_Pnat forw2	ATCG <u>AAGCTT</u> TGACAAGCCTCCAGGCAACCCAA	For complementation fw
7416_Pnat rev	ATCG <u>TCTAGA</u> TCACGGGGTGGGCGCGGCTT	For complementation rev
7417_A	ATCG <u>GAATTC</u> GATGATGCTCATCGTCCTGG	For Δ <i>MXAN_7417</i>
7417_B	GTCACCGGGGCGGTGCGTGGACGGCAT	For Δ <i>MXAN_</i> 7417
7417_C	ACGCACCGCCCCGGTGACGTGGTGGTG	For Δ <i>MXAN_</i> 7417
7417_D	ATCG <u>TCTAGA</u> GCCGCTGATGGAGAAGCCGC	For Δ <i>MXAN_7417</i>
7417_E	GCGCCGCTCGCTGGAGGGCA	For Δ <i>MXAN_7417</i>
7417_F	CGCGGGCGGGCCCGTCCAGG	For Δ <i>MXAN_</i> 7417
7417_G	CGTCCCTGGCGCTCGTTCGC	For Δ <i>MXAN_7417</i>
7417_H	CGCAGGCGGAAGGTGGGCGC	For Δ <i>MXAN_</i> 7417
 7417_PpilA forw	ATCG <u>TCTAGA</u> GTGAGGAGAGTTCCACCGCT	For complementation fw
 7417_PpilA rev	ATCG <u>AAGCTT</u> TTATTCCACCACCACCACGT	For complementation rev
 7421_A	ATCG <u>GGTACC</u> CCCTGCCAGCCAAGGCGGCG	For Δ <i>MXAN_</i> 7421

7421_B	CGCCAGCACGGGAGCCCCGGGCGCGGG	For Δ <i>MXAN_</i> 7421
7421 C	GGGGCTCCCGTGCTGGCGGAGCTGGAG	For Δ <i>MXAN</i> _7421
7421_D	ATCGTCTAGAGCCAGGACGCCGTGGGGTTC	For Δ <i>MXAN</i> _7421
7421 E	CGTGCGGCAAACTGGTATTC	For Δ <i>MXAN</i> _7421
7421 F	AGGGCAATGGTCATCAGCCG	For Δ <i>MXAN</i> 7421
7421 G	GAGCGCCCGGAGACGAACGC	For Δ <i>MXAN</i> _7421
7421 H	CGCGAAGATGCCCATGCCGA	For Δ <i>MXAN</i> _7421
7421 PpilA forw	ATCGTCTAGAGTGACGGTCCCCGCGCCCGG	For complementation fw
7421 PpilA rev	ATCGAAGCTTTCAGCGCCGCTCCAGCTCCG	For complementation rev
 7442_A	ATCG <u>GGTACC</u> GGGCAGACCGCCATTGAGCG	For Δ <i>MXAN_</i> 7421
7442_B	GGAGGATGGGGCCAACGCGACCACGGG	 For Δ <i>MXAN_</i> 7421
7442_C	GCGTTGGCCCCATCCTCCGCCGCGAAC	 For Δ <i>MXAN_</i> 7421
7442_D	ATCGTCTAGACCAGAAGGTGGGTGGCACGG	 For Δ <i>MXAN_</i> 7421
7442 E		For Δ <i>MXAN_</i> 7421
7442 F	ATCGTCAGCGTGGTGCAGGC	 For Δ <i>MXAN</i> _7421
	CGTGGGGGTGGTGTGGGTCA	 For Δ <i>MXAN</i> 7421
 7442 H	CCTCGTTGGGGTAGGTGATG	 For Δ <i>MXAN</i> 7421
_	ATCGAAGCTTTGAGCCCTTGGGCCAGGGCAGA	For complementation fw
7442_Pnat 600 up	c	
7442_Pnat rev	ATCG <u>TCTAGA</u> TCAGCGCGGGTTCGCGGCGG	For complementation rev
1025_A	ATAG <u>GGTACC</u> GTGACGGAGCGCAGCGCCTC	For ∆ <i>MXAN_1025</i>
1025_B	ATCCTTGGAGGCCGGGTCGAAACCGGT	For ∆ <i>MXAN_1025</i>
1025_C	GACCCGGCCTCCAAGGATGGGGTGGCG	For Δ <i>MXAN_1025</i>
1025_D	ACTG <u>TCTAGA</u> AGTAGACGAGCCGCCCACC	For Δ <i>MXAN_1025</i>
1025_E	CTGCGCGGCCAGCTTCACCA	For Δ <i>MXAN_1025</i>
1025_F	ACCCGGCGCAGGGCCTGTAG	For Δ <i>MXAN_1025</i>
1025_G	GACGCGGTGGCGCTGGTCCA	For Δ <i>MXAN_1025</i>
1025_H	ACGAAGAGGCCGGGCACCTC	For Δ <i>MXAN_1025</i>
1035_A	ATCG <u>GGTACC</u> AGCCGGAGCGGTGCACCTGG	For ∆ <i>MXAN_1035</i>
1035_B	CGCCGGAGTGGCTTCGGGCGCTGGGGT	For Δ <i>MXAN_1035</i>
1035_C	CCCGAAGCCACTCCGGCGAGTCCGGCG	For Δ <i>MXAN_1035</i>
1035_D	ATCG <u>TCTAGA</u> CTTCCAGGCCCGCACGCACC	For Δ <i>MXAN_1035</i>
1035_E	GCTTCCAGCCGCTCATGCCG	For Δ <i>MXAN_1035</i>
1035_F	TAATCACCGCCTCCGGGCAG	For Δ <i>MXAN_1035</i>
1035_G	GCGGCCTCCCTGGGCGTGTT	For Δ <i>MXAN_1035</i>
1035_H	AGCGCCTGCGCCACCACACC	For Δ <i>MXAN_1035</i>
1043_A	ATCG <u>GAATTC</u> CATGCCGAAGGCGTGTCCTT	For <i>∆MXAN_104</i> 3
1043_B	CAGGCGTCCGAAGAAGGCGACCAGAAG	For Δ <i>MXAN_1043</i>
1043_C	GCCTTCTTCGGACGCCTGGTCGCGATG	For <i>∆MXAN_104</i> 3
1043_D	ATCGAAGCTTCCCTCCAGCGCCTCGCCCCA	For <i>∆MXAN_104</i> 3
1043_E	CGCGGAGATGGTGGCCGTCG	For ∆ <i>MXAN_1043</i>
1043_F	CGTCTCCGCCCGCGCCAGCA	For <i>∆MXAN_104</i> 3
1043_G	TGGGGATGGCTGGACCAGGC	For ∆ <i>MXAN_104</i> 3

1043_H	TGTTGGCGAAGTTCAGCGCC	For <i>∆MXAN_1043</i>
1052_A	ATCG <u>GGTACC</u> TTGATGGAGCAGTCGCACAG	For Δ <i>MXAN_1052</i>
1052_B	CTCGCCATCAGAGGCACTGCGGGAAGC	For Δ <i>MXAN_1052</i>
1052_C	AGTGCCTCTGATGGCGAGGCTCGGGAC	For Δ <i>MXAN_1052</i>
1052_D	ATCG <u>GGATCC</u> CTCGAACCCCTGTACGGCGC	For Δ <i>MXAN_1052</i>
1052_E	GCGAAGGCACAGCTCCTTCT	For Δ <i>MXAN_1052</i>
1052_F	GGATGAAGACGGGAGAGCGC	For Δ <i>MXAN_1052</i>
1052_G	GCTCGTCGTGGTGTGTCCGC	For Δ <i>MXAN_1052</i>
1052_H	CGAAGAACGCATCCGCGCCA	For Δ <i>MXAN_1052</i>
1915_A	ATCG <u>GGTACC</u> GCTTCCTGCCGAAGACGGCG	For Δ <i>MXAN_</i> 1915
1915_B	CACGAAGACGGTGAGGGCGGCGCGGAA	For Δ <i>MXAN_</i> 1915
1915_C	GCCCTCACCGTCTTCGTGCCGGAGAGC	For Δ <i>MXAN_</i> 1915
1915_D	ATCG <u>TCTAGA</u> CAGGGCACCGACAGCCTGCG	For Δ <i>MXAN_1915</i>
1915_E	GACTACGGCAACCTGCGAGT	For <i>∆MXAN_1915</i>
1915_F	CCCCGACCACGCCATCCTCG	For Δ <i>MXAN_</i> 1915
1915_G	TGACGCTGCCCGCCTGCTTC	For Δ <i>MXAN_1915</i>
1915_H	TCGCCGGGCTGGAGCATGAA	For Δ <i>MXAN_1915</i>
piIT-A EcoRI	GCGC <u>GAATTC</u> CGCGACTTCGAGACGGCGG	For Δ <i>pilT</i>
pilT-D HindIII	GCGCAAGCTTGAGCTTCTCGTTCTTCTCC	For Δ <i>pilT</i>
piIT_E	CTCCGCCAGGACCCGGACATC	For ∆ <i>pilT</i>
pilT_F	TATCGAGGCACTGCACCA	For ∆ <i>pilT</i>
pilT_G	CTTGAAGACGGCGCCGCTGA	For ∆ <i>pilT</i>
pilT_H	CGCGCTGATTCACGAGGCAG	For ∆ <i>pilT</i>

¹ Underlined sequences indicate restriction sites.

Supplementary References

- 1. Shi X, Wegener-Feldbrugge S, Huntley S, Hamann N, Hedderich R, Søgaard-Andersen L. 2008. Bioinformatics and experimental analysis of proteins of two-component systems in *Myxococcus xanthus*. J Bacteriol 190:613-24.
- 2. Berleman JE, Zemla M, Remis JP, Liu H, Davis AE, Worth AN, West Z, Zhang A, Park H, Bosneaga E, van Leer B, Tsai W, Zusman DR, Auer M. 2016. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior. ISME J 10:2620-2632.
- 3. Holkenbrink C, Hoiczyk E, Kahnt J, Higgs PI. 2014. Synthesis and assembly of a novel glycan layer in *Myxococcus xanthus* spores. J Biol Chem 289:32364-78.
- 4. Black WP, Wang L, Davis MY, Yang Z. 2015. The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in *Myxococcus xanthus*. Sci Rep 5:17831.
- 5. Lancero H, Caberoy NB, Castaneda S, Li YN, Lu A, Dutton D, Duan XY, Kaplan HB, Shi WY, Garza AG. 2004. Characterization of a *Myxococcus xanthus* mutant that is defective for adventurous motility and social motility. Microbiology-Sgm 150:4085-4093.
- 6. Youderian P, Burke N, White DJ, Hartzell PL. 2003. Identification of genes required for adventurous gliding motility in *Myxococcus xanthus* with the transposable element mariner. Mol Microbiol 49:555-70.
- 7. Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, Kaplan HB, Zusman DR, Shi W. 2005. Exopolysaccharide biosynthesis genes required for social motility in *Myxococcus xanthus*. Mol Microbiol 55:206-20.
- 8. Kimura Y, Kato T, Mori Y. 2012. Function analysis of a bacterial tyrosine kinase, BtkB, in Myxococcus xanthus. FEMS Microbiol Lett 336:45-51.