```
Α
  P GE(-):
                      UCAAUGUUUUUUU
  F GE(-):
                     UCAA-UAUAUUUU
  NS1 GE(-):
                      UCAAUUAUAUUUU
  G GE(-):
                      UCAAUGAAUUUUU
  N \in (-):
                      UCAAUUAUUUUUU
  M GE(-):
                      UCAAUUAUUUUUU
  SH GE(-):
                      UCAAUUAAUUUUU
  L GE(-):
                      UCAA-UAAUUUUU
  NS2 GE(-):
                      UCAU-UAAAUUUU
  M2 GE(-):
                      UCAA-UAAAUUUU
                      * * *
                                * * * *
  Negative-sense gene-end (GE) sequences
В
  P GE (+):
                      AGUUACAAAAAA
  F GE (+):
                      AGUU-AUAUAAAA
  NS1 GE(+):
                      AGUUAAUAUAAAA
  G GE (+):
                     AGUUACUUAAAAA
  N GE(+):
                     AGUUAAUAAAAA
  M GE(+):
                     AGUUAAUAAAAA
  SH GE (+):
                     AGUUAAUUAAAAA
  L GE(+):
                     AGUU-AUUAAAAA
  NS2 GE(+):
                      AGUA-AUUUAAAA
  M2 GE(+):
                      AGUU-AUUUAAAA
                               * * * *
```

Positive-sense gene-end (GE) sequences

Figure S1: The sequence alignments of negative-sense and positive-sense gene-end (GE) of the HRSV genes. Related to STAR Methods.

- A. The sequence alignment of negative sense GE of HRSV genes, namely, P, F, NS1, G, N, M, SH, L, NS2, and M2. * denotes the conserved positions among GE sequences.
- B. The sequence alignment of positive sense GE of HRSV genes: P, F, NS1, G, N, M, SH, L, NS2, and M2.

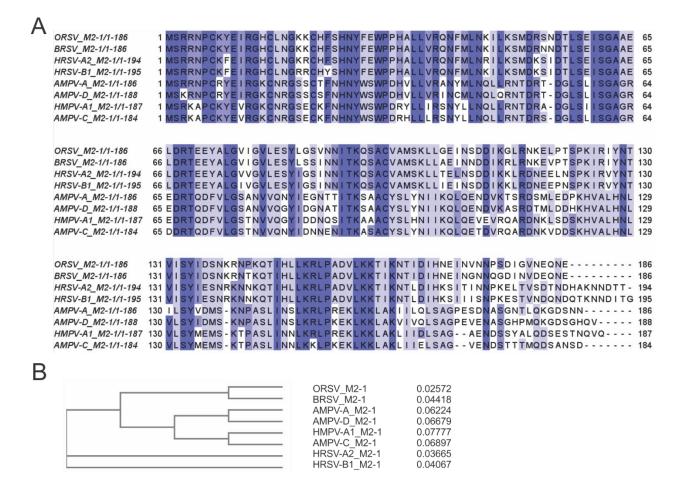
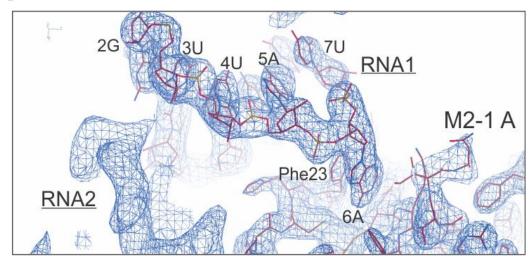



Figure S2: Multiple sequence alignments of the M2-1 proteins from *Pneumoviridae*. Related to Figures 2 and 4.

- A. Multiple sequence alignments of the M2-1 proteins from RSV (ORSV, BRSV, A2 and B1 strains of HRSV) and MPV (A, C, and D strains of AMPV and HMPV). The conservation is highlighted in the degree of the blue color, most conservation with dark blue and least conservation with light blue.
- B. The Phylogenetic tree of M2-1 from RSV and MPV families. The scores are shown next to each subfamily. A2 and B1 strains of HRSV are distal from the rest of families, including ORSV and BRSV.

B

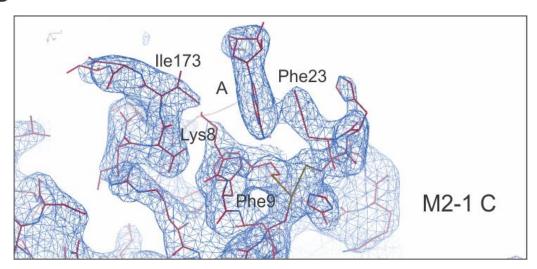


Figure S3: The representative density maps used for building RNA. Related to Figures 1 and 2.

- A. The representative electron density $2F_{obs}$ F_{calc} map (contoured at 1.5 σ) shows the electron density of the RNA molecule adjacent to M2-1 protomer A. The meshes show the electron density of the modeled RNA and M2-1.
- B. The representative electron density $2F_{obs}$ F_{calc} map (contoured at 1.5 σ) shows the electron density of the molecule adjacent to M2-1 protomer C. The meshes show the electron density of the modeled RNA and M2-1.

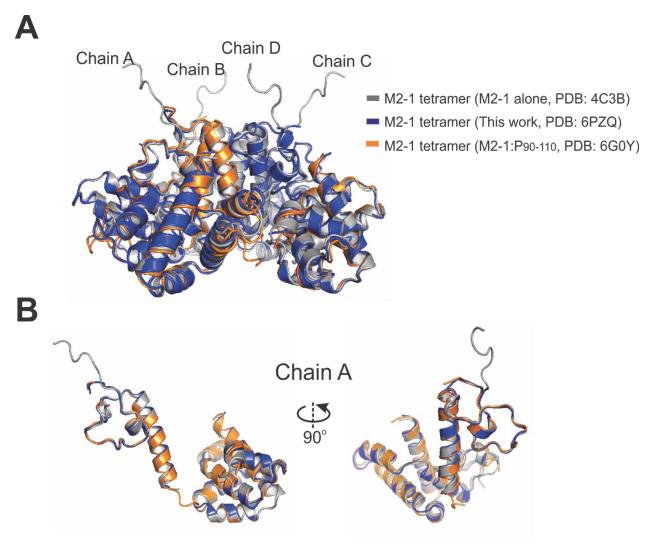


Figure S4: Superimposition of M2-1 of M2-1:SH7, M2-1 alone, and M2-1:P₉₀₋₁₁₀. Related to Figure 1.

- A. Superimposition of M2-1 of M2-1:SH7 (blue), M2-1 alone (gray, PDB: 4C3B) and M2-1:P90-110 (orange, PDB: 6G0Y).
- B. Superimposition of the chain A of M2-1 from M2-1:SH7, M2-1 alone, and M2-1: P_{90-110} . The RMSD are < 0.5 Å.

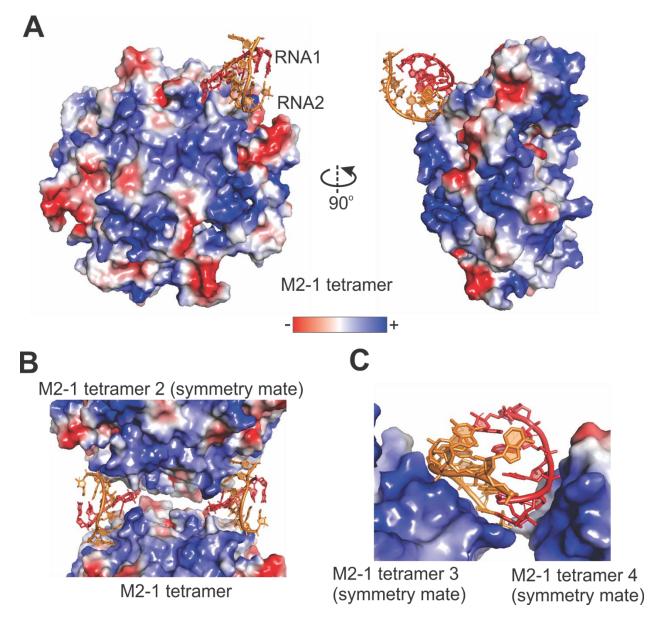
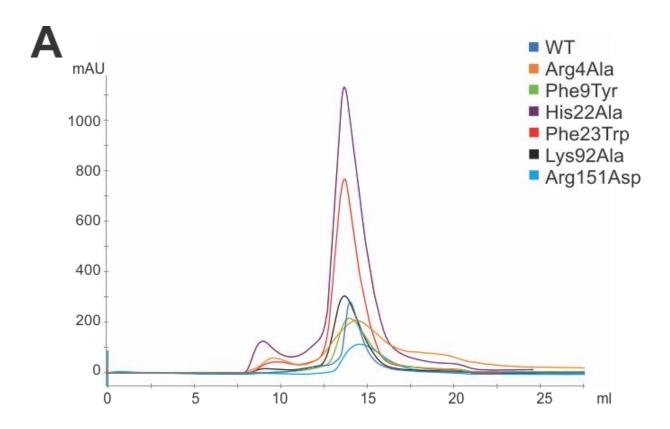



Figure S5: The electrostatic surface of the M2-1:SH7 complex. Related to Figures 1, 3, and 4.

- A. Surface representation of the electrostatic potential of the M2-1 in the front view and side view. The negative charge is in red, and the positive charge is in blue (calculated using APBS).
- B. The zoom-in view of the interactions between the zinc-binding domain (ZBD) of two M2-1 tetramers (the upper is the symmetry mate 2) and RNAs.
- C. The zoom-in view of the interactions between the core domain (CD) of two M2-1 tetramers (both are symmetry mates 3 and 4) and RNAs.

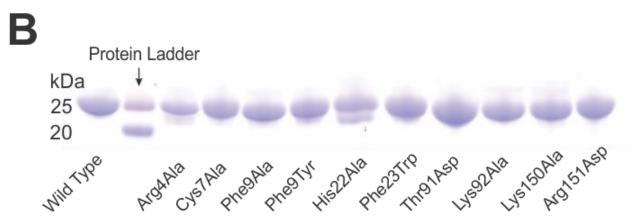


Figure S6: The wild-type and mutant HRSV M2-1 proteins. Related to Figures 2 and 4.

- A. The representative size exclusion chromatography profiles of wild-type (WT) and mutant HRSV M2-1 proteins, including Arg4Ala, Phe9Tyr, His22Ala, Phe23Trp, Lys92Ala, and Arg151Asp.
- B. The SDS-PAGE gel of WT and mutant HRSV M2-1 proteins.

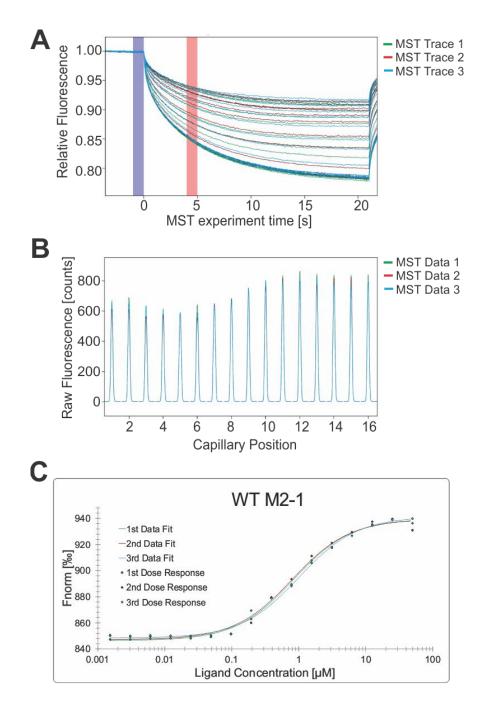


Figure S7: Affinity analysis of HRSV M2-1 to RNA using MicroScale Thermophoresis (MST) assay. Related to Figures 2 and 4. The data were acquired with a triplicate.

- A. The representative MicroScale Thermophoresis (MST) experiments show the traces for 16 multiple scans compared using relative fluorescence for WT M2-1 proteins.
- B. The MST data show the raw fluorescence counts for the individual capillary position (a total of 16 capillaries).
- C. The Kd fitting of the MST data measurements.

M2-1 Proteins	Kd (μM)	Kd (μM) Error	Average (µM)
Wild Type	0.819	0.070	0.867±0.090
	0.789	0.095	
	0.993	0.075	
Arg4Ala	2.026	0.149	1.760±0.208
	1.520	0.119	
	1.732	0.131	
Cys7Ala	9.602	1.234	8.56±1.018
	7.180	1.013	
	8.907	1.132	
Phe9Ala	5.085	0.383	5.693±0.511
	6.337	0.369	
	5.659	0.363	
Phe9Tyr	0.739	0.011	0.813±0.087
	0.766	0.113	
	0.936	0.123	
His22Ala	1.737	0.333	1.592±0.104
	1.542	0.232	
	1.497	0.215	
Phe23Trp	0.726	1.043	0.711±0.019
	0.72	1.058	
	0.68	9.132	
Thr91Asp	1.54	0.164	1.716±0.210
	2.01	0.137	
	1.60	0.158	
Lys92Ala	5.01	0.596	5.175±0.810
	6.24	0.801	
	4.27	0.917	
Lys150Ala	0.79	0.092	1.111±0.238
	1.37	0.098	
	1.17	0.096	
Arg151Asp	1.03	0.067	1.212±0.331
	0.93	0.098	
	1.68	0.125	

Table S1: The MST measurements of the interactions between M2-1 and SH7 RNA. Related to Figures 2 and 4. All data were measured as triplicates through NT.115 MST instrument at room temperature.

M2-1_Arg4Ala_F:	TCCAATGCAATGAGCAGGgcGAACCCCT
M2-1_Arg4Ala_R:	CTCGAACTTACAGGGGTTCgcCCTGCT
M2-1_Cys7Ala_F:	ATGAGCAGGAGGAACCCCGCTAAGTTC
M2-1_Cys7Ala_R:	GCCCCTGATCTCGAACTTAGCGGGGTT
M2-1_Phe9Ala_F:	AGGAGGAACCCCTGTAAGgcCGAGATC
M2-1_Phe9Ala_R:	GCAGTGGCCCTGATCTCGgcCTTACA
M2-1_Phe9Tyr_F:	AACCCCTGTAAGTaCGAGATCAGGGGCCAC
M2-1_Phe9Tyr_R:	GCCCTGATCTCGtACTTACAGGGGTTCCT
M2-1_His22Ala_F:	CTGAACGCCAAGAGGTGCGCCTTCAGC
M2-1_His22Ala_R:	GAAGTAGTTGTGGCTGAAGGCGCACCT
M2-1_Phe23Trp_F:	AAGAGGTGCCACtggAGCCACAACTACTTC
M2-1_Phe23Trp_R:	GTAGTTGTGGCTccaGTGGCACCTCTTGCC
M2-1_Thr91Asp_F:	GGCAGCATCAACAACATCgaCAAGCAG
M2-1_Thr91Asp_R:	CACACAGGCGCTCTGCTTGtcGATGTT
M2-1_Lys92Ala_F:	AACAACATCACCgcGCAGAGCGCCTGTGTG
M2-1_Lys92Ala_R:	ACAGGCGCTCTGCgcGGTGATGTTGAT
M2-1_Lys150Ala_F:	CAGACCATCCACCTGCTGgcGAGGCTG
M2-1_Lys150Ala_R:	CACGTCGGCGGCAGCCTCgcCAGCAG
M2-1_Arg151Asp_F:	CACCTGCTGAAGgacCTGCCCGCCGACGTG
M2-1_Arg151Asp_R:	GTCGGCGGCAGgtcCTTCAGCAGGTGGAT

Table S2: The primers used in the mutagenesis of the M2-1 proteins. Related to STAR Methods. The primers are synthesized by Eurofins Genomics.