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Supporting Methods 
Overall study design 

We developed a novel Quantitative Systems Pharmacology framework (see schematic below) to 

simulate and quantitatively assess synergistic anti-AF effects of multi-K+ current block in human 

AF. 1) We constructed GB and CZ populations of models, which were calibrated to experimental 

data. 2) We performed sensitivity analysis of APD measured from the populations to predict i) 

effects of blocking the currents of interest on APD, and ii) RD of such APD change. 3) Simulations 

of single current block using the physiological model populations were conducted to confirm the 

predictions from Step 2. 4) We derived quantification of repolarization reserve (RR) using the 

simulated single current block (in Step 3), and applied sensitivity analysis of RR to uncover the 

interactions (synergisms or antagonism) among modulations of K+-current block. 5) Simulations 

of multiple K+-current block using physiological model populations were performed to confirm the 

predicted interactions from Step 4. 6) We performed additional simulations using atrial tissue 

populations to examine the effects of multi-current block in coupled tissue.  

 
 
Workflow for constructing populations 
 
The workflow for generating our nSR and AF populations of models is shown as follows. 

Population of CZ and GB AF models

• Sensitivity analysis of APD
!"#$ = & ⋅ (

where !"#$ is the vector of the predicted APD for each cell in a 
population, and X in the parameter matrix for generating the population, 
and B is the regression vector minimizing the difference between YAPD, a 
vector of the measured APD of each cell in the population, and !"#$.

Rate-dependence coefficient: 
BRD = B1Hz – B3Hz

• Simulations of current block using AF populations
Quantified APD before (APDBlock-free) and following block of current IX 
(APDIx block) from single cells paced at 1 Hz and 3 Hz. 

• Effects on APD by blocking current Ix
• RD of APD prolongation following 

blocking current Ix

Prediction

Validation

• Sensitivity analysis of repolarization reserve (RR)
For each cell, ))& = "#$(*+,-./011

"#$&	3*+,-
!)) = & ⋅ (

where !)) is the vector of the predicted RR for each cell in a population, 
and X in the parameter matrix for generating the population, and B is the 
regression vector minimizing the difference between YRR, a vector of the 
measured RR of each cell in the population, and !)).

• Interactions among modulations of 
K+-current block

Synergism – Combined effects being greater 
than additive sum of separate effects.
Antagonism – Combined effects being less than 
additive sum of separate effects.

Bootstrap resampling analysis

Prediction

Population of CZ tissue models
Confirmation 
in tissue

Bootstrap resampling analysis

• Simulations of current block 
using AF tissue populations

Quantified APD, ERP, WL before and 
following block of current IX  from 1-D 
strands paced at 1 Hz and 3 Hz. 
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Model parameters for generating populations 

Populations of models are generated as previously described (Sobie, 2009) by randomly 

perturbing transmembrane ionic current and transporter parameters of CZ and GB baseline 

models. The CZ and GB models possess different numbers of transmembrane ionic currents 

(Table 1 of the main text). The total number of perturbed parameters was 15 and 16 for CZ and 

GB model, respectively. In the CZ model, the late component of Na+ current was modeled with 

the parameter GNaL, independently from the fast-inactivating component of the Na+ current. In 

contrast, in the GB model Na+ currents were described using a Markov formulation as in (Morotti 

et al., 2016), and thus GNa depicts the conductance of both fast-inactivating and late components 

of the Na+ current. Further, two currents are present in GB but not CZ model, the background 

(IClB) and Ca2+ activated (IClCa) Cl- currents. 

Baseline CZ and GB models

Population of nSR models

Generation of populations of nSR models
Model parameters listed in Table 1 of the main text 
are randomly varied

Random scale factors for model parameters are 
chosen from a log-normal distribution with a 
median value of 1 and sigma=0.2

Justification for sigma and population size are in the 
Supporting Methods

Calibration of nSR populations
APD90, APD50, and RMP at 1 Hz  are within 3 
stdev from the mean experimental values in nSR 
patient data from Ravens et al., Med Biol Eng 
Comput. 2014

Virtual cells displaying abnormalities in 
repolarization when paced at 3 Hz, as indicated by 
abnormal RMPs, are removed

Calibration of cAF populations
APD90, APD50, and RMP at 1 Hz  are within 3 stdev from 
the mean experimental values in AF patient data from 
Ravens et al., Med Biol Eng Comput. 2014

Model variants exhibiting APD alternans are excluded

Generation of populations of AF models
AF-induced effects are introduced into nSR model variants.
GK2P, GKCa and GKur are modified according to Supporting 
Table S1

Population of AF models
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Population size 

We take three factors into consideration when determining the size of a model population. 1) We 

want to ensure convergence of the regression model, i.e., the sensitivity coefficients are not 

affected by an increase in the population size. To do so, we required results from randomly 

resampled subsets of populations to converge to those from the whole population, as we have 

done in a previous study (Ellinwood et al., 2017a). 2) We expect some model variants will be 

excluded at the experimental calibration stage, thus reducing the population size available for 

data analysis. 3) The computational cost is a concern due to the substantial computational time 

required for performing population-of-models. 

 We determined that 600 variants were sufficient for convergence of the sensitivity 

coefficients for both CZ and GB nSR model populations, but because a larger number of CZ 

virtual cells had to be excluded upon calibration and subsequent analyses, we doubled the initial 

size of the CZ model population to 1200 variants. As per the criteria of model calibration described 

in Methods, 180 and 4 model variants were excluded from the CZ and GB populations, resulting 

in 1020 and 596 for the CZ and GB nSR populations, respectively. With the introduction of 12 AF 

subpopulations, generated by superimposing AF-induced ionic changes on each accepted nSR 

model variant, 12440 CZ and 7152 GB AF model variants were created. Calibration of the AF 

populations reduced the total number to 10408 and 7063, respectively. For the purpose of 

quantifying APD changes, we excluded the model variants exhibiting APD90 alternans, leading to 

a total number of model variants for data analysis of 8933 and 7050 for the CZ and GB models, 

respectively. 

Simulation protocols  

In our single cell simulations, we paced each model variant at 1 or 3 Hz to steady state and 

recorded the last two APs for biomarker analysis. We define that steady-state is reached when 1) 

variation in APD90 from the last 5 beats is less than time step, and 2) the intracellular Na+ 

concentration does not drift (beat-to-beat change < 0.001 mM). Given this definition, constant 

pacing protocols lasting 500 sec ensured steady state was reached in both nSR and AF 

simulations with both CZ and GB models with and without K+-channel block (Time-matched 

control). Effects of channel block were quantified by pacing each model variant at 1- and 3-Hz for 

500 s from baseline steady-state conditions and collecting the last two AP cycles for data analysis. 

 The 1D models consisted of 200 nodes spaced evenly by 0.3 mm. Electrical coupling in 

tissue was described using the monodomain equation and solved as described previously (Ni et 
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al., 2017). Fifteen nodes at the left end of the strand were paced at 1 or 3 Hz to quantify in-tissue 

APD, effective refractory period (ERP), CV and wavelength (WL). We recorded APD and AP 

upstroke time for nodes number 100 and 180 to compute CV. WL was then obtained as the 

product of APD and CV. ERP was defined as the longest S1-S2 coupling that failed to capture 

the whole atrial strand. In these simulations, to reduce computational cost for reaching steady-

state, we first obtained steady-state model state variables from single cell simulations in each 

condition as described above; next, we applied uniformly these state variables to the 1D strand 

model, which was subjected to a train of 100 beats at constant (S1) pacing. The last two beats 

were recorded for APD and CV analysis. Also, at the end of the S1 simulation, state-variables for 

all nodes in the strand model were saved to a binary file, thus facilitating and accelerating the 

following measurement of ERP by repeatedly varying the delay in applying the S2 stimulus. 

Comparing sensitivity coefficients  

We applied sensitivity analysis using the multivariable linear regression method as detailed in 

previous studies (Sobie, 2009; Sarkar and Sobie, 2011; Cummins et al., 2014). As described in 

the previous studies, sensitivity coefficients were normalized to the ratio of standard deviations of 

model output to parameter variabilities (i.e., σoutput/σparameter) for each simulation condition. To 

enable comparison of sensitivity coefficients calculated under different conditions (e.g., pacing 

rates or various current blocking conditions), an additional scaling for the coefficients is necessary 

(Cummins et al., 2014) so that the values are normalized to the same ‘unit’ (σoutput/σparameter). For 

example, to make direct comparison of sensitivity coefficients at 1 (B1) vs 3 Hz (B3) and calculate 

BRD, B3 was multiplied by σoutput,3Hz/σoutput,1Hz, given that σparameter,1Hz = σparameter,3Hz. Additionally, 

because parameter variability was much greater for GKur, GKCa and GK2P for the GB and CZ 

aggregate AF model population encompassing 12 AF-subpopulations (Supporting Table S1), 

when comparing sensitivity coefficients of the aggregate AF population vs. individual 

subpopulation, we scaled the coefficients of each subpopulation so that all values are normalized 

to σoutput,aggregate population/σparameter. 

Software, numerical methods, and data analysis 

The CZ model and 1D strand model were both implemented in C++. The ODEs were solved using 

a combination of the Forward Euler method and the Rush-Larsen scheme (Rush and Larsen, 

1978), as implemented in previous studies (Courtemanche et al., 1998; Colman et al., 2017; Ni 

et al., 2017). The monodomain equation describing the cell-to-cell electrical coupling was solved 
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using a finite-difference PDE solver based on the explicit Forward Euler scheme and Strang 

splitting scheme (Sundnes et al., 2005). 

 The GB model was implemented in MATLAB 2018a (The MathWorks, Natick, MA, USA) 

using the stiff ordinary differential equation solver ode15s as in our previous studies (Grandi et 

al., 2011; Morotti et al., 2016; Ellinwood et al., 2017a, 2017b; Morotti and Grandi, 2017). 

 All simulations and data analyses were performed on a desktop server: HP 240, Intel(R) 

Core(TM) i7-7700K @ 4.20GHz 4CPUs (8 threads) + 32GB; and a computing cluster with Intel(R) 

Xeon(R) CPU E5-2690 v4 @ 2.60GHz 28 CPUs (56 threads) + 132GB. Simulations of the AF 

populations necessitated significant amount of computational time: approximately 10 days of 

running time was required to complete the single cell simulations of the 12 subpopulations of the 

CZ model under both baseline and 50% current blockade conditions; two weeks were needed to 

finish the GB population simulations under the same condition. Further, tissue simulations of a 

single AF subpopulation (CZ model) took approximately 5 days. 

 We used the non-parametric bootstrap method to characterize the RD of APD (and other 

tissue-level biomarkers) changes and interactions of multiple channel blockades. Specifically, RD 

of APD change was deemed positive if the lower limit of the confidence interval (CI) for the median 

of ΔAPD3Hz – ΔAPD1Hz is > 0, and negative if the upper limit of CI is < 0. Potential interactions 

were assessed by comparing changes due to combined block and the sum of the effects of each 

individual current block. Using again APD as an example, the interaction between IK2P and IKur 

block is calculated as  

Interaction*+,-*./ 	= 	ΔAPD*+,-*./	6789: − (ΔAPD*+,	6789: + 	ΔAPD*./	6789:) 

where for each current block, ΔAPD?	6789: =
@,AB	CDEFGH@,AIDEFGJKLMM

@,AIDEFGJKLMM
× 100	(%).  Hence, an 

interaction exists if the CI for the median InteractionK2P+Kur does not contain 0, and is deemed 

synergistic if the lower limit of CI is > 0 and antagonistic if the upper limit of CI is < 0. 

 The non-parametric bootstrap analyses were implemented in R (version 3.6.1, (R Core 

Team, 2019)) using packages boot (Davison and Hinkley, 1997; Canty and Ripley, 2019) and 

simpleboot (Peng, 2019) for interactions and RD, respectively. In both cases, a total of 10,000 

bootstrapped samples were generated, and the median value was calculated, forming a 

resampling distribution for each biomarker of interest. CIs were obtained using the function boot.ci 

from the boot package with confidence levels set to 95% with Bonferroni-type correction for each 

group of data analysis (i.e., considering 7 comparisons for RD characterizations and 4 

comparisons/combination-of-currents for interactions for each subpopulation).  
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Supporting Tables 
 
 
Supporting Table S1. AF model subpopulations created with different combinations of AF-
remodeling induced modulations on IKur, IKCa and IK2P. 

AF subpopulation # 0 1 2 3 4 5 6 7 8 9 10 11 

Fold-change due to 
AF-remodelling 

GKur 0.5 a 0.5 a 0.5 a 0.5 a 0.5 a 0.5 a 1 b 1 b 1 b 1 b 1 b 1 b 
GKCa 0.5 c 0.5 c 1 1 2 d 2 d 0.5 c 0.5 c 1 1 2 d 2 d 
GK2P 1 3 e 1 3 e 1 3 e 1 3 e 1 3 e 1 3 e 

a (Wagoner et al., 1997; Caballero et al., 2010; Gonzalez de la Fuente et al., 2012). 
b (Bosch et al., 1999; Grammer et al., 2000; Workman et al., 2001). 
c (Skibsbye et al., 2014) 
d (Ozgen et al., 2007; Qi et al., 2014)  
e (Schmidt et al., 2015, 2017) 
 
Supporting Table S2. Summary of action potential duration (APD) and resting membrane 
potential (RMP) of the simulated atrial populations in nSR and AF conditions. a 

 CZ Model GB Model Exp. (Ravens et al. 2014) 
APD90 (ms) RMP (mV) APD90 (ms) RMP (mV) APD90 (ms) RMP (mV) 

SR 1 Hz 244.3 ± 22.1 -76.0 ± 2.4 262.5 ± 26.3 -74.3 ± 2.3 317.4 ± 43.2 -74.0 ± 4.0 
3 Hz 185.2 ± 34.2 -75.9 ± 3.4 235.1 ± 19.6 -73.0 ± 2.7   

AF 1 Hz 169.1 ± 31.3 -81.6 ± 1.0 193.1 ± 20.0 -78.1 ± 1.3 217.5 ± 35.7 -76.9 ± 3.6 
3 Hz 109.0 ± 24.3 -82.0 ± 1.1 177.8 ± 24.1 -78.5 ± 1.3   

 
a Values are presented in mean ± std. 
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Supporting Table S3. Summary of APD and RMP for each AF subpopulation with the CZ and 
GB models. a 

AF Population 
Groups 

CZ Model GB Model 
1Hz  3Hz 1Hz 3Hz 

APD90 
(ms) 

0 195.5 ± 29.9 130.3 ± 25.0 209.7 ± 18.3 207.2 ± 21.7 
1 161.4 ± 26.7 104.9 ± 19.8 185.8 ± 15.0 173.1 ± 17.2 
2 188.7 ± 28.1 126.1 ± 23.9 203.8 ± 17.2 198.9 ± 20.2 
3 157.7 ± 24.7 102.9 ± 19.0 181.3 ± 14.2 167.5 ± 16.1 
4 176.6 ± 25.6 118.4 ± 22.1 193.3 ± 15.7 184.4 ± 18.0 
5 151.1 ± 21.5 99.1 ± 17.8 173.2 ± 13.0 157.5 ± 14.4 
6 185.2 ± 32.7 114.4 ± 25.4 211.7 ± 17.5 195.9 ± 19.5 
7 153.0 ± 25.8 95.9 ± 17.8 190.0 ± 14.7 167.7 ± 15.8 
8 179.0 ± 30.5 111.2 ± 24.2 206.3 ± 16.6 188.8 ± 18.4 
9 150.0 ± 23.8 94.6 ± 17.0 185.7 ± 13.9 162.6 ± 14.8 
10 168.7 ± 27.0 105.9 ± 22.5 196.1 ± 15.2 175.9 ± 16.3 
11 144.6 ± 20.9 92.1 ± 16.0 177.7 ± 12.8 153.4 ± 13.3 

APD50 
(ms) 

0 123.8 ± 26.4 67.1 ± 19.5 61.8 ± 10.5 105.5 ± 18.5 
1 93.7 ± 23.7 48.9 ± 14.6 50.4 ± 8.6 72.0 ± 13.4 
2 120.4 ± 25.3 65.6 ± 19.0 60.8 ± 10.1 99.1 ± 17.0 
3 92.5 ± 22.5 48.5 ± 14.3 49.8 ± 8.4 69.1 ± 12.2 
4 114.4 ± 23.3 62.9 ± 17.9 58.9 ± 9.5 88.7 ± 14.4 
5 90.1 ± 20.2 47.7 ± 13.7 48.7 ± 8.0 64.2 ± 10.6 
6 105.0 ± 28.5 49.5 ± 17.7 48.6 ± 8.9 87.5 ± 16.2 
7 78.3 ± 24.0 38.0 ± 12.1 40.9 ± 7.6 60.6 ± 11.5 
8 102.2 ± 27.2 48.8 ± 17.2 47.8 ± 8.6 82.1 ± 14.6 
9 77.6 ± 22.6 38.1 ± 11.8 40.5 ± 7.4 58.1 ± 10.5 
10 97.6 ± 24.7 47.5 ± 16.3 46.6 ± 8.0 73.6 ± 12.2 
11 75.9 ± 20.8 37.8 ± 11.4 39.7 ± 7.1 54.2 ± 8.9 

RMP 
(mV) 

0  -81.6 ± 1.1  -81.7 ± 1.2  -77.8 ± 1.3  -77.8 ± 1.5 
1  -81.7 ± 1.0  -82.1 ± 1.1  -78.1 ± 1.2  -78.6 ± 1.2 
2  -81.6 ± 1.1  -81.8 ± 1.2  -77.9 ± 1.3  -78.1 ± 1.4 
3  -81.7 ± 1.0  -82.1 ± 1.0  -78.2 ± 1.2  -78.8 ± 1.2 
4  -81.7 ± 1.0  -82.0 ± 1.1  -77.9 ± 1.3  -78.4 ± 1.3 
5  -81.7 ± 1.0  -82.2 ± 1.0  -78.2 ± 1.2  -79.0 ± 1.1 
6  -81.6 ± 1.1  -81.9 ± 1.2  -78.0 ± 1.3  -78.2 ± 1.4 
7  -81.6 ± 1.0  -82.0 ± 1.0  -78.2 ± 1.2  -78.8 ± 1.2 
8  -81.6 ± 1.1  -82.0 ± 1.1  -78.0 ± 1.3  -78.3 ± 1.3 
9  -81.6 ± 1.0  -82.1 ± 1.0  -78.3 ± 1.2  -78.9 ± 1.2 
10  -81.6 ± 1.0  -82.1 ± 1.1  -78.0 ± 1.3  -78.6 ± 1.2 
11  -81.6 ± 1.0  -82.2 ± 1.0  -78.3 ± 1.2  -79.1 ± 1.1 

 
a Values are quoted in mean ± std. 
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Supporting Table S4. APD90 changes due to 50% of mono- or multi- K+ currents in the CZ and 
GB AF-populations. a 

50% block of IK2P IKCa IKur IK2P+IKCa IK2P+IKur IKCa+IKur IK2P+IKCa+IKur 

ΔAPD90
(ms) 

CZ 
Model 

1Hz 19.4 ± 11.3 6.9 ± 4.8 11.3 ± 6.9 28.2 ± 11.0 28.9 ± 13.7 19.1 ± 7.1 38.4 ± 13.3 
3Hz 13.2 ± 7.0 3.6 ± 2.9 12.1 ± 6.0 18.0 ± 7.3 26.2 ± 9.7 16.8 ± 6.9 32.4 ± 9.7 

GB 
Model 

1Hz 11.1 ± 5.0 5.7 ± 3.5 -1.8 ± 3.4 17.6 ± 5.8 10.6 ± 6.2 4.0 ± 5.2 17.3 ± 7.2 
3Hz 14.5 ± 6.5 7.1 ± 4.3 7.4 ± 3.5 23.0 ± 7.2 24.5 ± 6.7 15.1 ± 6.3 33.7 ± 7.6 

ΔAPD90
(%) 

CZ 
Model 

1Hz 12.5 ± 8.7 4.1 ± 2.8 7.3 ± 5.1 17.8 ± 9.0 18.7 ± 11.3 12.0 ± 5.8 24.5 ± 11.8 
3Hz 12.9 ± 7.5 3.4 ± 2.5 12.0 ± 7.0 17.5 ± 8.0 26.3 ± 12.5 16.5 ± 8.1 32.2 ± 13.4 

GB 
Model 

1Hz 5.8 ± 2.7 3.0 ± 1.8 -1.0 ± 1.8 9.2 ± 3.3 5.6 ± 3.3 2.0 ± 2.7 9.0 ± 3.8 
3Hz 8.4 ± 4.0 4.0 ± 2.4 4.0 ± 1.6 13.2 ± 4.6 13.9 ± 3.9 8.4 ± 3.1 19.2 ± 4.5 

 
a Values are presented in mean ± std. Both absolute and relative differences are given in this 
table. 
 
 
 
 
Supporting Table S5. Summary of sensitivity coefficients describing influence of GK2P, GKCa 
and GKur on atrial repolarization reserve measured via blocking IK2P, IKCa or IKur, respectively. a 

Pacing 
rate 

Repolarization 
reserve via 

current 
blockade 

Sensitivity coefficient 

CZ model GB model 

GK2P GKCa GKur GK2P GKCa GKur 

1 Hz 
IK2P  0.033 -0.092  0.035 0.067 
IKCa 0.094  0.049 0.047  0.019 
IKur -0.123 0.026  0.139 0.013  

3 Hz 
IK2P  0.031 -0.014  0.063 0.124 
IKCa 0.096  0.085 0.086  0.040 
IKur -0.013 0.035  0.200 0.032  

 
a Coefficients are colored by sign and shown in bold text if magnitude greater than 0.03. 
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Supporting Table S6. Summary of simulated APD90, wavelength (WL) and effective refractory 
period (ERP) in the 1D strand tissue models in AF conditions in the absence or presence of AF-
remodeling on tissue electrical coupling. a 

AF subpopulation  APD90 (ms) WL (mm) ERP (ms) CV (m/s) 

1 Hz 3 Hz 1 Hz 3 Hz 1 Hz 3 Hz 1 Hz 3 Hz 

Control 
tissue 

coupling 

1 167.1 ± 
27.2 

108.0 ± 
22.1 

104.5 ± 
20.3 

65.4 ± 
15.6 

182.6 ± 
27.2 

126.2 ± 
22.2 

0.624±0.05
4 

0.603±0.05
4 

5 156.3 ± 
21.7 

102.2 ± 
19.6 

97.8 ± 
16.9 

61.8 ± 
14.0 

173.0 ± 
21.9 

120.3 ± 
19.7  

0.625±0.05
4 

0.602±0.05
4 

With 40% 
reduction in 

tissue 
coupling 

1 169.0 ± 
27.2 

108.6 ± 
22.3 

77.6 ± 
15.1 

48.4 ± 
11.7 

182.9 ± 
27.3 

126.5 ± 
22.3 

0.461±0.04
2 

0.444±0.04
1 

5 157.2 ± 
21.7 

102.8 ± 
19.8 

72.7 ± 
12.6 

45.7 ± 
10.6 

173.3 ± 
21.9 

120.5 ± 
19.8 

0.461±0.04
2 

0.443±0.04
2 

 
a Values are presented as mean ± std. 
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Supporting Figures 

 
Supporting Figure S1. Parameter sensitivity analysis of APD and rate-dependent APD 
modulation for the virtual atrial populations. (A-D) nSR populations. (E-H) AF populations. 
(A,C,E,G) Sensitivity coefficients of APD to perturbations of transmembrane currents for 
myocytes paced at 1 Hz and 3 Hz. (B,D,F,H) APD rate-dependence coefficients (BRD) for these 
transmembrane currents. Positive BRD indicates inhibition of this current favors producing 
positive rate-dependence of APD prolongation, and vice versa. In (E-H), results for each AF 
subpopulation are plotted as open circles and those for the aggregate dataset are represented 
by bar plots. 
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Supporting Figure S2. Example of AP modulations at 1 and 3 Hz by 100% block of (A) IK2P, (B) 
IKCa, (C) IKur, (D) IK2P+IKCa,  (E) IK2P+IKur, (F) IKCa+IKur and (G) IK2P+IKCa+IKur from simulations with 
(left columns) CZ (subpopulation #5, variant #310) and (right columns) GB models 
(subpopulation #5, variant #287). Cells were chosen so that the block-free APD and ΔAPD of 
single-current block were close to the median values of the population shown in Fig. 4 of the 
main text.  
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Supporting Figure S3. Confidence interval of rate-dependent changes in ΔAPD (3 Hz vs 1 
Hz) shown in Figure 4 of the main text. RD of ΔAPD is defined as RD = ΔAPD3Hz – 
ΔAPD1Hz. 
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Supporting Figure S4. Parameter sensitivity of repolarization reserve. 
(A-C) Sensitivity coefficients of repolarization reserve (RR) derived from the ratio between APD 
before and after 50% block of (A) IK2P, (B) IKCa and (C) IKur. Columns are sensitivity coefficients 
for the (i) CZ and (ii) GB populations. Results for each AF subpopulation are plotted with open 
circles and those for the aggregate AF dataset are shown in bar plots. 
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Supporting Figure S5. Boxplot of interactions among multi-current block in APD 
modulation for cells in each subpopulation.  
The interactions were defined as the difference in ΔAPD for the combined effects vs the additive 
sum of the separate effects and normalized to the cell-matched block-free APD. In these 
simulations, each current was subjected to 50% block. Positive interaction indicates synergism 
whereas negative difference suggests antagonism. Data of 1 Hz are shown in blue and 3 Hz in 
red. 
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Supporting Figure S6. Example of AP traces showing antagonism in prolonging APD at 1 
Hz but synergism at 3 Hz following 100% block of IK2P and IKur with CZ model 
(subpopulation #5, variant #383). 
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Supporting Figure S7. Effects of mono-K+ or multi-K+-current block on virtual atrial tissue 
populations considering 40% cell-to-cell decoupling. Each row depict change in (A) APD, 
(B) ERP and (C) WL due to current block obtained from virtual atrial strand populations paced at 
1 Hz (blue) and 3 Hz (red). Columns describe results from (i) AF subpopulation #1 and (ii) AF 
subpopulation #5, respectively. WL was computed as the product of APD and CV. RD was 
deemed from analysis of CI in difference between 3 Hz vs 1 Hz group: “+” for positive RD and “–
“ for negative RD. 
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Supporting Figure S8. Effects of mono- or multi-K+ current block on conduction velocity 
from 1D strand models of AF-remodeled atrial tissue paced at 1 Hz (blue) and 3 Hz (red) 
compared to baseline conditions. (A-B) Simulations results from virtual atrial tissue with (A) 
control and (B) 40% reduction of cell-to-cell coupling. Left and right columns describe results 
from (i) AF subpopulation 1 and (ii) AF subpopulation 5, respectively. 
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Supporting Figure S9. Confidence interval analysis of rate-dependent changes in ΔAPD, 
ΔERP and ΔWL (3 Hz vs 1 Hz) shown in Figure 8 of the main text. 
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Supporting Figure S10. Confidence interval analysis of rate-dependent changes in ΔAPD, 
ΔERP and ΔWL (3 Hz vs 1 Hz) with 40% cell-to-cell decoupling shown in Supporting 
Figure S7. 
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Supporting Figure S11. Analysis of interactions among IK2P, IKCa and IKur blockade in 
modulating APD, ERP and WL in tissue simulations.  
Confidence intervals were computed for the median interactions in multi-current block defined 
as the difference in ΔAPD, ΔERP or ΔWL for the combined effects vs the additive sum of the 
separate effects. Values were normalized to cell-matched block-free values. In these 
simulations, each current was subjected to 50% block. Positive interaction indicates synergism 
whereas negative difference suggests antagonism. Data of 1 Hz are shown in blue and 3 Hz in 
red. 
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