

Figure S1: Architecture of MTXPK.org. MTXPK.org (left) is a web application that uses a Web API interface to interact with the end user. Commands are entered by the user then are automatically translated down a layer to the MTXPK business logic, where they undergo command processing. The logic string will call upon the general PKPD modeling engine, which uses a PKPD modeling repository to provide proper Bayesian estimation and simulation of the elimination curves. Processed information is sent back up the layering to the Web API to be presented to the end user. MtxSim (right) follows a similar logic string but lacks the Web API interface to interact publicly with the end user.

API: Application programming interface PKPD: Pharmacokinetic/Pharmacodynamic

Figure S2: Additional covariate analysis. Once clearance was normalized to BSA, there was no significant effect of sex (A) on clearance estimates (p = 0.39). Age did not share a significant linear relationship with normalized clearance (B). The line within the box represents the median, the box represents the inter-quartile range, with the whiskers representing the minimum and maximum values. Gray circles depict the estimated clearance values at the given age at the start of treatment. The black line represents a linear regression.

*** corresponds to a p < 0.0001

Model Name	Trevi	10 ^a (18)	Kawaka	atsu ^{ab} (28)	NOPHO ^b - 3CP	
CL	111.9 ^c	ml/min/m ²	12	L/h/70kg	4.4	L/h/1.73m ²
	10.9 ^{de}	L/h/1.73m ²	10.51	L/h/1.73m ²	11	
V(1)	-	-	52	L/70kg	10 E	L/1.73m ²
	-	-	45.54	L/1.73m ²	10.5	
Q(2)	-	-	0.1	L/h/70kg	0 602	L/h/1.73m ²
	-	-	0.087	L/h/1.73m ²	0.002	
V2	-	-	5.6	L/70kg	1 55	L/1.73m ²
	-	-	4.9	L/1.73m ²	4.55	
03	-	-	-	-	0 111	L/h/1.73m ²
Q	-	-	-	-	0.111	
V3	-	-	-	-	13 1	L/1.73m ²
	-	-	-	-		
Vc	9	L/m ²	-	-	-	-
Ke	0.7	hour⁻¹	-	-	-	-
Кср	0.08	hour⁻¹	-	-	-	-
Крс	0.11	hour ⁻¹	-	-	-	-
Rationale	Two-cor model u Jud mtx.st	npartment sed by St. e and jude.org	Two-comp with eGFR m	artment model included in the nodel	No compa using	vel three- rtment model NOPHO PK data

Table S1: Model parameters for evaluation

^a PK parameters were estimated to a normalized 1.73m²

^b Additional population PK model parameters exist for this model

^c Value was pulled from the mtx.stjude.org website

^d Calculated value derived from Ke and Vc

e 11.61 L/h/1.73m² would be the value if derived from mtx.stjude.org

CI: Clearance of methotrexate from the central compartment

V1: Volume of distribution of methotrexate in the central compartment

Q2: Inter-compartmental clearance for vascular peripheral compartment

V2: Volume of distribution of methotrexate in the vascular compartment

Q3: Inter-compartmental clearance for the non-vascular compartment

V3: Volume of distribution of methotrexate in the non-vascular compartment

Vc: Volume of distribution of the centralcompartment

Ke: Elimination rate constant from the central compartment

Kcp: Elimination rate constant from the central compartment to peripheral compartment

Kpc: Elimination rate constant from the peripheral compartment to central compartment

CP: Compartment

NOPHO: Nordic Society of Pediatric Hematology and Oncology

	Popu	lation	Individual		
Model	Bias (%)	Prec (%)	Bias (%)	Prec (%)	
Trevino et al. (18)	-38	87	0.3	20	
Kawakatsu et al. (28)	7	60	0.4	12	
NOPHO (3-CP)	-15	55	-0.2	9	

Table S2: Evaluations of MTX population PK modelsPrec: PrecisionCP: Compartment

Model	Number of: Patients, Concentrations	R ² : IPRED vs Observed	R ² : PRED vs Observed	RMSE
NOPHO	772, 31672	0.99	0.83	0.91
CCHMC: Lymph	50, 343	0.98	0.65	0.78
CCHMC: OS	38, 1336	0.99	0.90	0.99
CCHMC: ALL ⁽²⁹⁾	124, 2365	0.99	0.90	0.77
UCSD – Total ⁽²⁸⁾	331, 5115	0.98	0.82	1.14
UCSD – ALL	173, 2651	0.96	0.80	1.14
UCSD – Lymph	111, 1239	0.97	0.71	1.13
UCSD – Other	26, 449	0.99	0.83	1.41
UCSD – OS	21, 776	0.99	0.95	0.95
UCSD – Age > 18	154, 1951	0.96	0.73	1.22

Table S3: External validation of MTXPK.org toolCCHMC, Lymph: median age, 11.1; median dosage, 3165 mgCCHMC, OS: median age, 16.1; median dosage, 20000 mgCCHMC, ALL: median age, 8.23; median dosage, 4700 mgLymph: LymphomaOS: OsteosarcomaALL: Acute lymphoblastic leukemiaUCSD: University of California San DiegoIPRED: Individual Predictive ConcentrationPRED: Population Predictive Concentration