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Supplementary material 
 

Table S1: Overview of sites used in this study. Longitude (Lon), Latitude (Lat), long-term mean annual temperature 

(MAT) and precipitation (MAP) are according to the European Fluxes Database cluster (http://www.europe-fluxdata.eu) 

for sites in this database, and provided by site PIs accordingly otherwise. Ecosystem refers to the simplified Four-type 

classification used in this study. Reference years from within the period 2004-2017 were chosen based on data 

availability and, in case of crop rotation sites, the same crop being grown as in 2018. 
 

Site Lon Lat IGBP 
MAT 
(°C) 

MAP 
(mm) 

Elevation 
(m) 

Ecosystem Reference years Reference 

BE-Bra 4.5 51.3 MF 9.8 750 16 forest 2004-2017 [1] 

BE-Lon 4.7 50.6 CRO 10 800 167 crop 2006, 10, 14 [2] 

BE-Vie 6.0 50.3 MF 7.8 1062 493 forest 2004-2017 [3] 

CH-Aws 9.8 46.6 GRA 2.3 918 1978 grass 2011, 16, 17 [4] 

CH-Cha 8.4 47.2 GRA 9.5 1136 400 grass 2006-2017 [5] 

CH-Dav 9.9 46.8 ENF 3.5 1046 1639 forest 2004-2017 [6] 

CH-Fru 8.5 47.1 GRA 7.2 1651 982 grass 2006-2017 [4] 

CH-Lae 8.4 47.5 MF 8.7 1211 689 forest 2005-2017 [6] 

CH-Oe2 7.7 47.3 CRO 9.8 1155 452 crop 2008, 2013 [7] 

CZ-BK1 18.5 49.5 ENF 6.7 1316 875 forest 2015-2017 [8] 

CZ-Lnz 16.9 48.7 MF 9.3 550 150 forest 2016-2017 [9] 

CZ-RAJ 16.7 49.4 ENF 7.1 681 625 forest 2013-2017 [10] 

CZ-Stn 18.0 49.0 DBF 8.7 685 550 forest 2015-2017 [11] 

CZ-wet 14.8 49.0 WET 7.7 604 425 peatland 2007-2017 [12] 

DE-BER 13.3 52.2 URB 9.4 525 61 grass 2016-2017 [13] 

DE-EC2 8.7 48.9 CRO 9.4 889 318 crop 2011, 13, 15, 17 [14] 

DE-EC4 9.8 48.5 CRO 7.5 1064 687 crop 2011, 14, 15 [15] 

DE-Fen 11.1 47.8 GRA 8.4 1081 595 grass 2012-2017 [16] 

DE-Geb 10.9 51.1 CRO 8.5 470 162 crop 2007, 08, 10, 14, 16 [17] 

DE-Gri 13.5 51.0 GRA 7.8 901 385 grass 2005-2017 [18] 

DE-Hai 10.5 51.1 DBF 8.3 720 440 forest 2004-2017 [19] 

DE-HoH 11.2 52.1 DBF 9.1 563 193 forest 2015-2017 [20] 

DE-Hte 12.2 54.2 WET 9.2 645 0 peatland 2016-2017 [21] 

DE-Kli 13.5 50.9 CRO 7.6 842 478 crop 2007, 2012 [18] 

DE-Obe 13.7 50.8 ENF 5.5 996 734 forest 2009-2017 [18] 

DE-RbW 11.0 47.7 GRA 9.0 1160 769 grass 2012-2017 [16] 

DE-RuR 6.3 50.6 GRA 7.7 1033 515 grass 2012-2017 [22] 

DE-RuS 6.4 50.9 CRO 10.2 718 103 crop 2013, 2015 [23] 

DE-RuW 6.3 50.5 ENF 7.5 1250 610 forest 2014-2017 [24] 

DE-SfS 11.3 47.8 WET 8.6 1127 590 peatland 2013-2017 [25] 

DE-Tha 13.6 51.0 ENF 8.2 843 380 forest 2004-2017 [18] 

DE-ZRK 12.9 53.9 WET 8.7 584 1 peatland 2016-2017 [26] 

DK-Sor 11.6 55.5 DBF 8.2 660 40 forest 2004-2017 [27] 

ES-Abr -6.8 38.7 SAV 16 400 280 forest 2016-2017 [28] 

ES-LM1 -5.8 39.9 SAV 16 700 265 forest 2016-2017 [29] 

ES-LM2 -5.8 39.9 SAV 16 700 270 forest 2016-2017 [29] 

FI-Hyy 24.3 61.8 ENF 3.8 709 180 forest 2004-2017 [30] 

FI-Let 24.0 60.6 ENF 4.6 627 0 forest 2017 [31] 

FI-Sii 24.2 61.8 WET 3.5 701 160 peatland 2016-2017 [32] 

FI-Var 29.6 67.8 ENF -0.5 601 395 forest 2017-2017 [33] 

FR-Bil -1.0 44.5 ENF 12.8 930 0 forest 2015-2017 [34] 

FR-EM2 3.0 49.9 CRO 10.8 680 84 crop 2015 [35] 

FR-Hes 7.1 48.7 DBF 9.2 820 300 forest 2014-2017 [36] 

IT-BCi 15.0 40.5 CRO 18 600 15 crop 2017 [37] 

IT-Cp2 12.4 41.7 EBF 15.2 805 6 forest 2013-2017 [38] 

IT-Lsn 12.8 45.7 OSH 13.1 1083 1 crop 2017-2017 [39] 

IT-SR2 10.3 43.7 ENF 14.2 920 4 forest 2014-2017 [40] 

IT-Tor 7.6 45.8 GRA 2.9 920 2160 grass 2009-2017 [41] 

NL-Loo 5.7 52.2 ENF 9.8 786 25 forest 2004-2017 [42] 

RU-Fy2 32.9 56.4 ENF 3.9 711 265 forest 2016-2017 [43] 

RU-Fyo 32.9 56.5 ENF 3.9 711 265 forest 2016-2017 [44] 

SE-Deg 19.6 64.2 WET 1.2 523 270 peatland 2015-2017 [45] 

SE-Htm 13.4 56.1 ENF 7.4 707 115 forest 2016-2017 [46] 

SE-Nor 17.5 60.1 ENF 5.5 527 46 forest 2014-2017 [47] 

SE-Ros 19.7 64.2 ENF 1.8 614 160 forest 2015-2017   [48] 

SE-Svb 19.8 64.3 ENF 1.8 614 270 forest 2015-2016   [49] 
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(a) Data processing methods 

 

An overview of sites is given in table S1. Raw data measured at 10 or 20 s-1 were processed towards 

half-hourly fluxes by each single site operator. Data gaps in fluxes and meteorological time series 

were filled, and GPP estimated, according to [50-55]. For sites where raw fluxes were directly 

provided within this study, these steps were performed by the authors, including a neighbour-based 

gap-filling of meteorological data between close sites [54]. For most sites, provided through the 

European Fluxes database cluster (http://www.europe-fluxdata.eu/), processing was performed by the 

Ecosystem Thematic Centre of ICOS RI and the intermediate result published [56]. Due to a slightly 

better performance on longer gaps than the marginal distribution sampling method implemented in 

[55], gaps in λET were filled by regression through the origin against ET0, using an adaptive window 

as described in [53]. Subsequently the remaining available energy according to ET0 was used in the 

same way to fill gaps in H. A site was used if after these steps turbulent fluxes of sensible and latent 

heat and CO2 as well as incoming solar radiation, air temperature, humidity and precipitation were 

available for at least 80% of the period April to September and at least 60% of the full year, both for 

2018 and at least one year in the period from 2004 to 2017. Data of the available years from this 

period were averaged to serve as a reference, with an additional constraint of omitting years with 

incomparable land use conditions (e.g. different crops in a crop rotation, or the years before wood 

harvesting). Remaining gaps in final variables required as an unbiased annual budget were filled by 

first applying reduced major axis [57] regression between the daily time series of 2018 and the 

reference year and finally, if required, linear regression. Statistics that do not require gapless annual 

budgets, but a list of jointly available variables, such as energy balance closure EBC [58], were 

computed without this step after list-wise deletion of input records with missing data. In Eq. (2.2), 

due to varying data availability between sites, we used site-specific values of d and hm, but a global 

estimate of 1.42 106 J m-3 K-1 for ρscs. Tc was in most cases approximated by Ta; mc A
-1 was either 

known for a site or approximated from canopy height hc via regression on all sites with known hc and 

mc A
-1. Grass reference evapotranspiration according to [59] was computed using the hourly version 

with solar incoming radiation (Rsi). The sum parameter of growing-degree days was computed by 

cumulatively adding all mean daily temperatures above 10°C per year. 

To estimate confidence intervals of changes in fluxes and state variables across groups of sites (i.e. 

affected ecosystems or the group of all affected vs. all other sites), we considered both, the inter-

annual variability between multiple reference years at each site, and the spatial variability between 

sites in the same group. Systematic measurement errors were not included given that they likely 

affect all years similarly, in line with [60], which is explicitly shown for the energy balance closure 

gap in the following section. Random errors in half-hourly measurements [61] strongly decrease in 

relative importance during propagation into annual sums [60]. For those sites and variables where 

estimates on annually aggregated random errors were available [56, 62], these were considerably 

smaller than the measured inter-annual variability, in which they are implicitly included. The mean 

change across a group of sites, for each of which a mean reference year was computed beforehand, is 

equivalent to a weighted average of differences between 2018 and each single reference year, where 

the weights are the inverse of the number of reference years available for the site. The corresponding 

confidence interval is given by 

 

CI = 𝑥 ± 𝑡
(1−

𝛼

2
;𝑁𝑒𝑓𝑓−1)

√
𝑠𝑖𝑎

2̅̅ ̅̅ ̅̅ +𝑠𝑠𝑝
2

𝑁𝑒𝑓𝑓−1
,    (Eq. S1) 

 

where CI is the two-sided confidence interval of the change x at error probability α (0.05 for the 95% 

confidence), t student’s t distribution, 𝑠𝑖𝑎
2 the biased (uncorrected) inter-annual variance among 

reference years at each site, 𝑠𝑠𝑝
2 the biased spatial variance of mean changes between the sites of the 

group, and the overbar denotes averaging. Note that the root term is the standard error and its product 
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with √𝑁𝑒𝑓𝑓  the unbiased standard deviation. 𝑁𝑒𝑓𝑓 is the effective sample size of a weighted variance 

[63], which is in our case exactly equivalent to 

 

𝑁𝑒𝑓𝑓 =
1

(
1

𝑁𝑖𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑁𝑠𝑝.    (Eq. S2) 

 

The first factor is the harmonic mean of the number of reference years available at the sites in the 

group, the second the number of sites. Confidence intervals not including zero indicate a significant 

change. Mean and relative changes, their confidence interval, and number of sites with available 

measurements of the respective variable are given in table S2. The same approach is used in figure 

S2 to estimate confidence intervals from the combined variances between days in a rolling window, 

reference years and sites. In this case, the number of days in the rolling window contributing to 𝑁𝑒𝑓𝑓 

could lead to erroneously narrow confidence intervals due to correlation (dependence) between 

consecutive days. Following autocorrelation analyses of daily flux data, we thus reduced the number 

of days contributing to 𝑁𝑒𝑓𝑓 by a factor of four days to arrive at conservative confidence interval 

estimates. 

 
Table S2: Overview of absolute and relative changes of discussed variables in 2018 vs. reference period. CI is the 95% 

confidence interval of the change (Eq. S1 and S2), both change and CI in units given to the left. Number of sites is Nsp 

entering Eq. S2.  
 

  

affected 

 

affected 

crop 

affected 

forest 

affected 

grass 

affected 

peat 

other 

 

P (mm) 

change -180 -125 -207 -169 -140 +100 

CI ±28 ±74 ±39 ±68 ±58 ±83 

relative -22.9% -15.8% -27.3% -16.9% -21.4% 13.6% 

sites 46 7 26 7 6 10 

ET0 (mm) 

change +105 +91 +109 +103 +107 -48 

CI ±8 ±26 ±12 ±15 ±20 ±42 

relative 16.0% 12.6% 17.1% 14.4% 17.8% -4.5% 

sites 46 7 26 7 6 10 

Tair (°C) 

change +0.82 +0.92 +0.80 +0.93 +0.66 +0.05 

CI ±0.13 ±0.43 ±0.17 ±0.17 ±0.55 ±0.32 

sites 46 7 26 7 6 10 

Rg (MJ m-2 yr-1) 

change +360 +307 +357 +353 +442 -147 

CI ±32 ±84 ±45 ±51 ±96 ±95 

relative 9.2% 7.4% 9.5% 8.3% 11.9% -2.7% 

sites 46 7 26 7 6 10 

SWout (MJ m-2 yr-1) 

change +69 +32 +49 +103 +148 -29 

CI ±21 ±62 ±15 ±63 ±123 ±67 

relative 11.5% 4.0% 11.8% 10.5% 25.3% -2.6% 

sites 35 5 20 5 5 7 

albedo 

change +0.004 -0.007 +0.002 +0.003 +0.020 +0.001 

CI ±0.005 ±0.014 ±0.004 ±0.015 ±0.026 ±0.014 

relative 2.3% -3.4% 2.0% 1.2% 12.1% 0.2% 

sites 35 5 20 5 5 7 

LWin (MJ m-2 yr-1) 

change +24 +87 +32 -29 -17 +155 

CI ±30 ±77 ±37 ±52 ±148 ±73 

relative 0.2% 0.9% 0.3% -0.3% -0.2% 1.6% 

sites 44 6 26 7 5 10 

LWout (MJ m-2 yr-1) 

change +148 +227 +153 +169 +33 -6 

CI ±29 ±85 ±25 ±48 ±204 ±106 

relative 1.3% 2.0% 1.4% 1.5% 0.3% 0.0% 

sites 35 5 20 5 5 6 

Rn (MJ m-2 yr-1) 

change +123 +141 +98 +140 +177 +16 

CI ±60 ±87 ±100 ±80 ±126 ±53 

relative 6.3% 7.8% 4.7% 7.9% 9.6% 0.6% 

sites 36 5 20 5 6 7 
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Table S2 continued 

  

affected 

 

affected 

crop 

affected 

forest 

affected 

grass 

affected 

peat 

other 

 

EBC (filled) 

change +0.02 -0.02 +0.04 +0.00 +0.04 +0.04 

CI ±0.02 ±0.05 ±0.03 ±0.03 ±0.07 ±0.13 

relative 3.0% -2.7% 4.9% -0.6% 5.2% 4.9% 

sites 45 7 25 7 6 9 

H (MJ m-2 yr-1) 

change +169 +135 +235 +79 +30 -34 

CI ±36 ±97 ±52 ±33 ±58 ±120 

relative 32.3% 43.5% 34.2% 28.9% 8.2% -3.2% 

sites 46 7 26 7 6 10 

λET (MJ m-2 yr-1) 

change 0 -122 -29 +54 +205 -9 

CI ±39 ±118 ±49 ±68 ±94 ±123 

relative 0.0% -10.2% -2.8% 4.4% 20.8% -0.7% 

sites 46 7 26 7 6 10 

λET (H+λET)-1 

change -0.07 -0.10 -0.09 -0.05 +0.03 +0.03 

CI ±0.02 ±0.08 ±0.03 ±0.04 ±0.05 ±0.04 

relative -10.5% -12.4% -14.5% -5.8% 3.3% 5.3% 

sites 44 7 26 6 5 10 

Sl (MJ m-2 yr-1) 

change +9.3 +33.4 +4.8 +17.0 -7.8 -6.8 

CI ±4.6 ±26.1 ±2.6 ±9.6 ±13.5 ±17.3 

relative 299.2% 1384.2% 256.8% 110.4% -156.9% -63.8% 

sites 46 7 26 7 6 10 

Ec (MJ m-2 yr-1) 

change -1.6 -2.1 -1.0 -2.9 -2.1 +0.4 

CI ±1.1 ±5.2 ±1.4 ±1.9 ±2.9 ±3.1 

relative -17.8% -32.4% -8.3% -44.0% -74.9% 7.5% 

sites 46 7 26 7 6 10 

IWUE* (gC hPa kg-1 H2O) 

change +3.1 +2.8 +3.8 +2.5 +1.0 +0.1 

CI ±0.5 ±1.0 ±0.7 ±0.9 ±0.7 ±1.5 

relative 31.4% 32.6% 35.3% 20.7% 21.2% 0.4% 

sites 45 6 26 7 6 10 

WUEeco 

change -0.0011 -0.0015 -0.0002 -0.0027 -0.0023 +0.0004 

CI ±0.0009 ±0.0043 ±0.0012 ±0.0013 ±0.0026 ±0.0021 

relative -13.8% -27.7% -2.3% -48.7% -88.5% 9.0% 

sites 46 7 26 7 6 10 

swc (cm3 cm-3) 

change -0.051 -0.057 -0.044 -0.073 -0.038 +0.032 

CI ±0.010 ±0.049 ±0.014 ±0.011 ±0.034 ±0.028 

relative -16.2% -19.8% -17.0% -18.6% -5.5% 15.5% 

sites 33 5 20 6 2 9 

 

 

 

 

(b) Energy balance closure 

 

Eddy-Covariance measurements are known for a gap in the energy balance closure (EBC): the sum of 

H and λET is frequently about 15 to 30% smaller than Rn - Sl - Ec [58, 64]. Current theory suggests a 

number of different reasons including underestimation of the turbulent heat fluxes due to surface 

heterogeneity or incomplete correction of spectral losses, or unaccounted energy storage [64-68]. 

However, there is no consensus yet on the application of a correction, its distribution between H and 

λET and its implications for Ec [69, 70]. However, relative changes in turbulent fluxes between years 

remain unaffected as long as EBC does not change systematically between respective years. Figure 

S1 demonstrates there was little average change in EBC, with a closure gap around 20% both in the 

reference period and in 2018. EBC slightly improved during the drought, although both increase and 

decrease were found for individual sites. 
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Figure S1: Energy balance closure (EBC), i.e., annual cumulative (H+λET)(Rn-Sl-Ec)-1, compared between 2018 and the 

reference period for each site. Large symbols indicate sites where measurements of these variables were jointly available 

during both periods, small symbols indicate sites where Rn-Sl was estimated from gap-filled short-wave incoming 

radiation according to [59]. Mean EBC across sites changed from 0.77 (reference) to 0.81 (2018) for the high-quality and 

from 0.77 to 0.80 for the filled records. 
 

 

 

(c) Intra-annual temporal dynamics of ET 

 

On average, grassland sites showed higher evapotranspiration losses compared to the reference 

period in the early stages of the drought, and lower ones later presumably caused by soil water 

depletion. As a result, sensible heat fluxes were particularly high compared to the reference period 

during late stages of the drought (figure S2). Forests showed less extreme relative changes, in 

accordance with [71]. However, it should also be noted that on average forests showed higher 

sensible heat fluxes than grasslands both during the reference period and 2018, partly because of 

having a lower albedo. Any mitigation strategy by land use change would need to carefully consider 

this drawback effect. Cropland sites showed an even stronger tendency of evapotranspiration to 

decline during later stages of the drought. Inspection of a single cropland site demonstrates that this 

effect is at least partly due to earlier maturity and harvest, and strongly reduced evaporation from the 

dry topsoil after harvest (figure S2). 
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Figure S2: Annual course of sensible (H, left column) and latent heat flux (λET, right column, W m-2) averaged across 

groups of ecosystems as a 30-day rolling average during 2018 (red) and the reference period (blue). Shaded areas indicate 

the 95% confidence interval estimated from variability within the 30-day rolling window, between reference years and 

between sites (see supplementary material (a)). Harvest of winter wheat at DE-RuS took place at Day of Year 197 in 

2018, while in the two reference years it took place at Day 223 and 215, respectively.  
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