

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Cerebral Stroke: Its Prevalence, Risk Factors and Associated Ocular Diseases. The Beijing Eye Study.

Manuscript ID	BMJ Open bmjopen-2018-024646
	bmjopen-2018-024646
Article Type:	
	Research
Date Submitted by the Author:	11-Jun-2018
	wang, yaxing; Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University Wei, Wenbin; Beijing Tongren Eye CenterBeijing Tongren Hospital, Capital Medical University; Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Xu, L; Beijing Institute of Ophthalmology, Jonas, Jost; Institute of Ophthalmology, Ophthalmology;
	EPIDEMIOLOGY, Stroke < NEUROLOGY, NEUROLOGY, Adult neurology < NEUROLOGY, OPHTHALMOLOGY, Medical retina < OPHTHALMOLOGY

SCHOLARONE* Manuscripts

1		
2		
3 4	1	
5	2	
6 7	3	
8 9	4	Cerebral Stroke: Its Prevalence, Risk Factors and Associated Ocular Diseases. The
10 11	5	Beijing Eye Study.
12 13	6	
14 15	7	
16 17	8	Ya Xing Wang, MD(1), Wen Bin Wei, MD (2), Liang Xu , MD(1), Jost B. Jonas, MD(1,3)
18	9	
19 20	10	
21 22	11	(1) Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital,
23 24	12	Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences,
25 26	13	Beijing, China
27 28	14	(2) Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing,
29 30	15	China
31	16	(3) Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University,
32 33	17	Mannheim, Germany
34 35	18	
36 37	19	
38 39	20	Running title: Stroke and Eye Diseases
40 41	21	Keywords: Stroke; Retinal nerve fiber layer; Optic nerve; Glaucoma; Age-related macular
42	22	degeneration; Diabetic retinopathy; Diabetes mellitus; Beijing Eye Study
43 44	23	Corresponding author: Prof. Wen Bin Wei, Beijing Tongren Eye Center, Beijing Tongren
45 46	24	Hospital, Capital Medical University; Beijing Key Laboratory of Intraocular Tumor Diagnosis
47 48	25	and Treatment, Beijing Ophthalmology and Visual Science Key Laboratory, 1 Dong Jiao Min
49 50	26	Xiang, Dong Cheng District, Beijing, China. 100730 (Tel: 86-10-58269516; Fax:
51 52	27	86-10-65125617. Email: tr weiwenbin@163.com; Dr. Ya Xing Wang, Beijing Institute of
53 54	28	Ophthalmology, 17 Hougou Lane, Chong Wen Men, 100005 Beijing, China; E-mail:
55	29	xlbio1@163.com; Phone:+86-10-58265918; Fax: ** +86-10-5612 5617
56 57	30	
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

31	Abstract
32	Objective: To assess the prevalence of cerebral stroke in the general population of Beijing
33	and its association with systemic risk factors and ocular diseases.
34	Setting: The population-based Beijing Eye Study was conducted in a rural and an urban
35	region of Greater Beijing.
36	Participants: With an eligibility criterion of an age of 50+ years and living in the study regions
37	3468 subjects (78.8%) out of 4403 eligible individuals participated.
38	Primary and secondary outcome measures: The study participants underwent a detailed
39	systemic and ophthalmological examination and an interview in which the occurrence of a
40	previous stroke was assessed.
41	Results: A previous stroke was reported by 235 individuals (7.33%;95% confidence interval
42	[CI]:6.43,8.24). The prevalence of previous stroke increased from 2.0% (95%CI:0.9,3.1) in
43	the age group of 50 to <55 years to 21.9% (95%CI:16.4,27.4) in the age group of 80+ years.
44	In multivariate regression analysis, a higher prevalence of previous stroke was correlated
45	(Nagelkerke R ² :0.16) with the systemic parameters of older age (<i>P</i> <0.001; odds ratio
46	[OR]:1.07;95%CI:1.05,1.09), male gender (<i>P</i> =0.006;OR:0.59;95%CI:0.40,0.86), lower qualit
47	of life score (P<0.001;OR:1.44;95%CI:1.24,1.67) and higher prevalence of diabetes mellitus
48	(P=0.04;OR:1.57;95%CI:1.02,2.41) and arterial hypertension
49	(P<0.001;OR:2.22;95%CI:1.43,3.43), and with the ocular parameter of a higher stage of
50	diabetic retinopathy (P<0.0011;OR:1.67;95%CI:1.20,1.33) (or alternatively, presence of
51	diabetic retinopathy (P<0.001;OR: 3.97;95%CI:1.87,8.43). Lower amount of physical activit
52	showed a marginal association with a higher prevalence of previous stroke
53	(<i>P</i> =0.09;OR:0.94;95%CI:0.88,1.01).
54	Conclusions: In this North Chinese population aged 50+ years, the prevalence of a previous
55	stroke was 7.33% (95%CI:6.43,8.24). Besides known systemic risk factors of older age, ma
56	gender and higher prevalence of diabetes and arterial hypertension, presence and stage of
57	diabetic retinopathy were additional risk factors. Previous stroke prevalence increased for
58	each step increase in the stage of diabetic retinopathy by a factor of 1.67 (95%CI:1.20,1.33),
59	and for the presence of diabetic retinopathy by a factor of 3.97 (95%CI:1.87,8.43).
60	

61	
62	Article Summary
63	Strengths and limitations of this study:
64	- In this North Chinese population aged 50+ years, the prevalence of a previous stroke was
65	7.33% (95%Cl:6.43,8.24).
66	- Besides known systemic risk factors of older age, male gender and a higher prevalence of
67	diabetes mellitus and arterial hypertension, the presence and stage of diabetic retinopathy
68	were additional risk factors.
69	- The prevalence of previous stroke increased for each increase in the stage of diabetic
70	retinopathy by a factor of 1.67 (95%CI:1.20,1.33), and for the presence of diabetic retinopathy
71	by a factor of 3.97 (95%CI:1.87,8.43).
72	- Limitations of our study were that the data on the prevalence of a previous self-reported
73	stroke depended on the information provided by the study participants in the face-to-face
74	interviews, and that patients who had died as a sequel of a previous stroke were not included
75	into the study. The results of our study are therefore valid primarily only for stroke survivors.
76	- Another limitation was intracerebral hemorrhage was not differentiated from ischemic stroke.
77	
78	

79	Introduction
80	Cerebral stroke as one of the main contributors of the global burden of disease has caused
81	116 million or 4.8% of all DALYs (Disability-Adjusted Life Years) and 14.5 million or 1.8% of all
82	YLDs (Years Lived with Disability) worldwide in the year 2013. ¹⁻⁴ In particular China has
83	witnessed a marked increase in the importance of stroke in the spectrum of diseases causing
84	YLLs. While in 1990, lower respiratory infections or preterm birth complications were the
85	leading causes of YLLs in almost half of the provinces of China (16 out of 33), cerebrovascular
86	disease were the leading cause in 27 of the 33 provinces in 2013. ^{5,6} Since the eye and the
87	brain share the same arterial blood supply through the inner carotid artery and since the retina
88	and optic nerve as former outgrowth of the anterior end of the embryological neural groove are
89	of neuro-ectodermal origin, a major cerebral disease such as a stroke may be associated with
90	ocular diseases, in particular disorders of the optic nerve and retina. Since comprehensive
91	population-based studies on associations between stroke and eye have been scare so far and
92	have not been conducted for the population of China, we investigated the prevalence of
93	cerebral stroke and its relationships between systemic factors and ocular diseases in a
94	Chinese population.

97 Methods

The Beijing Eye Study 2011 is a population-based study which was conducted in a rural region and an urban region of Greater Beijing. The Medical Ethics Committee of the Beijing Tongren Hospital approved the study design, and all study participants gave an informed consent. The eligibility criteria for inclusion into the study were an age of 50+ years and living in the study regions. Out of 4403 eligible individuals, 3468 subjects (1963 (56.6%) women) participated (response rate: 78.8%). The mean age was 64.6 ± 9.8 years (median 64 years; range: 50–93 years). There were 1633 (47.1%) individuals (943 (57.7%) women) coming from the rural region, with the remaining 1835 (52.9%) study participants (1020 (55.6%) women) living in the urban region. The study design has been described in detail previously.7,8

All study participants underwent a structured interview by trained research technicians.

BMJ Open

The interview included more than 200 standardized questions on demographic parameters, the socioeconomic background, the diet and alcohol consumption, smoking habits, known major systemic diseases and current systemic medical therapies. Using the mini–mental state examination (MMSE) scale, we assessed the cognitive function. Fasting blood samples were collected for measurement of blood lipids, glucose, glycosylated hemoglobin HbA1c and serum creatinine. The blood pressure was measured with the participant sitting for at least 5 min. We also measured body height and weight and the circumference of the waist and hip.

Arterial hypertension was defined as a systolic blood pressure ≥160 mm Hg and/or a diastolic blood pressure ≥95 mm Hg, and/or self-reported current treatment for arterial hypertension with antihypertensive medication. Diabetes mellitus was characterized by a blood glucose concentration \geq 7.0 mmol/L, an HbA1c value \geq 6%, by a self-reported history of physician diagnosis of diabetes mellitus, or by a history of drug treatment for diabetes (insulin or oral hypoglycemic agents). Depressive symptoms were evaluated using a Chinese depression scale adapted from the Zung self-rated depression scale.⁹ The prevalence of previous stroke was examined in the interview by standardized questions on whether a previous cerebral stroke had occurred with typical symptoms such as sudden-onset face weakness, arm drift, abnormal speech, hemiplegia, or numbness for at least 24 hours, when such a stroke had occurred and whether it had been treated.

The ophthalmological examination consisted of automatic refractometry (Auto Refractometer AR-610; Nidek Co., Ltd, Tokyo, Japan), measurement of presenting visual acuity, uncorrected visual acuity and best-corrected visual acuity, tonometry, slit lamp based biomicroscopy of the anterior and posterior segment of the eyes, and photography of the cornea and lens (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan) and of the macula and optic disc (fundus camera; Type CR6-45MM; Canon Inc., Tokyo, Japan) in medical mydriasis. Using the photographs, we measured the dimensions of the optic disc, optic cup and parapapillary alpha, beta and gamma zones. The optic nerve head and macula were additionally examined by spectral-domain optical coherence tomography (OCT) using the enhanced depth imaging modality (Spectralis; Heidelberg Engineering, Heidelberg, Germany). We determined the thickness of the peripapillary retinal nerve fiber layer, of the retina in the foveal region and of the subfoveal choroid. Applying optical low-coherence reflectometry

6 Stroke and Eye Diseases

(Lenstar 900 Optical Biometer; Haag-Streit, Koeniz, Switzerland), we measured ocular biometric parameters such as the anterior corneal curvature, central corneal thickness, anterior chamber depth, lens thickness and axial length. The degree of cataract was determined using the lens photographs. The degree of nuclear opacities was assessed in 6 grades using the grading system of the Age-Related Eye Disease Study.¹⁰ In addition, retro-illuminated photographs of the lens were obtained (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan), and the percentage of the areas with cortical and posterior subcapsular lens opacities was measured using a grid. The standard to diagnose a nuclear cataract was a nuclear cataract grade of 4 or more, the standard to diagnose a posterior subcapsular cataract was an amount of posterior subcapsular opacities of 0.01 or more, and the standard to diagnose a cortical cataract was an amount of cortical opacities of 0.05 or more. The degree of fundus tessellation defined as the visibility of the large choroidal vessels was assessed on the fundus photographs of the macula and of the optic disc as described in detail previously.⁸ It was graded using a scale which ranged from "0" for "no tessellation" to "3" for "marked tessellation". Diabetic retinopathy was assessed on the fundus photographs using the Early Treatment of Diabetic Retinopathy Study (ETDRS) criteria. The minimum criterion for diagnosis of diabetic retinopathy was the presence of at least one microaneurysm. The diagnosis for each individual was based on the grading of the individual's eye with the highest stage of diabetic retinopathy. We differentiated between the mild non-proliferative stage, the moderate non-proliferative stage, the advanced non-proliferative stage, and the proliferative stage of diabetic retinopathy. Glaucomatous optic neuropathy was defined using the criteria of the International Society of Geographic and Epidemiological Ophthalmology ISGEO.¹¹ Pseudoexfoliation was assessed by an experienced ophthalmologist during the slit lamp assisted biomicroscopy of the anterior segment after pupillary dilation. The diagnosis of pseudoexfoliation was definite, if the lens surface showed a central whitish coating with a diameter of little less than the normal pupillary diameter, or if the periphery of the lens surface showed a whitish coating which was anteriorly bordered by a darker ring-like region on the lens surface. The assessment of pseudoexfoliation was performed only in phakic eyes. For the diagnosis of age-related macular degeneration, the International ARM (Age-related Maculopathy Epidemiological Study Group) Grading system was used. The subjective

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

169	symptoms of dry eye were evaluated using a questionnaire composed of three questions: "Do
170	your eyes ever feel dry?"; "Do you ever feel a gritty or sandy sensation in your eyes?"; and "Do
171	your eyes ever have a burning sensation?" Possible answers to the questions were none (0),
172	less than once a month (1), once or twice a week (2), at least once every day (3), all the time
173	(4). The presence of dry eye symptoms was defined as having one or more symptoms at least
174	once every day (3 and 4). A quantitative grading score of subjective dry eye symptoms was
175	obtained by summarizing the answers to the different questions (0–12). ¹²
176	Statistical analysis was performed using a commercially available statistical software
177	package (SPSS for Windows, version 22.0, IBM-SPSS, Chicago, IL, USA). As a first step, we
178	examined the mean value of the main outcome parameter, i.e. the prevalence of stroke
179	(presented as mean and 95% confidence intervals (CI)) and assessed differences between the
180	stroke group and the non-stroke group in age and gender. As second step, we performed a
181	binary regression analysis with the prevalence of stroke as dependent parameter after
182	adjusting for age and gender. As a third step, we conducted an extended multivariate binary
183	analysis which included as independent parameters all those systemic variables which were
184	correlated (P <0.10) with the stroke prevalence in the previous analysis. We then dropped all
185	those parameters which were no longer significantly associated with the stroke prevalence.
186	We first started with the systemic independent parameters, such as age and blood pressure.
187	We calculated the odds ratio (OR) and its 95% Cls. All <i>P</i> -values were two-sided and
188	considered statistically significant, if the values were less than 0.05.
189	Patient and Public Involvement statement: Patients were not involved in this study
190	
191	
192	Results
193	Out of 3468 study participants, 3205 (92.4%) individuals participated in the interview with
194	available information on previous stroke and underwent the systemic and ophthalmologic
195	examination. The participating group as compared to the group of individuals without
196	available information on previous stroke or without systemic and ocular examination was
197	significantly younger (64.4 \pm 9.7 years (median: 63 years; range: 50 – 93 years) versus 67.1 \pm
198	11.1 years; <i>P</i> <0.001) and came significantly more often from the urban region than from the

8 Stroke and Eye Diseases

rural area (rural / urban region of habitation: 1439 / 1766 versus 194 / 69; P<0.001), while the differences in gender (men / women: 1386 / 1819 versus 119 / 144; P=0.56), axial length (23.3 \pm 1.1 mm versus 23.2 \pm 1.9 mm; *P*=0.31) and refractive error (-0.22 \pm 2.12 diopters versus -0.31 ± 2.17 diopters; P=0.59) were not statistically significant. A previous stroke was reported by 235 individuals (235 / 3205 or 7.33% [95%CI: 6.43, 8.24]). Among the 235 patients, 192 individuals were on oral medication for the prophylaxis of a recurrence of the stroke. The stroke had taken place 7.5 ± 5.7 years ago (median: 7 years; range: 1 month to 26 years). In the stroke group as compared with the non-stroke group (control group), age was significantly older (71.1 \pm 9.2 years versus 63.9 \pm 9.5 years; P<0.001) and had a higher proportion of men than women (men / women: 128 / 107 versus 1258 / 1712; P<0.001) (Fig. 1). The prevalence of a previous stroke increased from 2.0% (95%CI: 0.9, 3.1) in the age group of 50 to <55 years, to 6.9% (95%CI: 4.5, 9.2) in the age group of 65 to <70 years and to 21.9% (95%CI: 16.4, 27.4) in the age group of 80+ years (Table 1). Since many systemic and ocular parameters were age-related, we performed in a next step of the statistical examination a binary regression analysis with the prevalence of stroke as the dependent parameter and other systemic and ocular parameters as single independent variables, with adjusting for age and gender (Table 2). In that analysis, a higher prevalence of stroke was associated with the systemic parameters of higher body mass index (P=0.03), lower frequency of alcohol consumption (P=0.001), lower number of days with vigorous physical activities (P=0.05) or moderately intensive physical activities (P=0.01) and higher number of hours spent with sitting per day (P=0.04), lower life quality score (P<0.001), higher depression score (P<0.001), higher blood concentration of glucose (P=0.01) and glycosylated hemoglobin HbA1c (P=0.008), and higher prevalence of diabetes mellitus (P<0.001) and arterial hypertension (P<0.001); and with the ocular parameters of thicker central corneal thickness (P=0.09), lower foveal thickness (P=0.04), higher incidence of localized retinal nerve fiber layer defects (P=0.06), dry eye feeling (P=0.08), and higher prevalence of keratoconus $(\geq 49 \text{ diopters})$ (P=0.02), nuclear cataract (P=0.06) and diabetic retinopathy (P<0.001) (Table 2). In a third step of the statistical analysis, we performed a multivariate analysis with the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

229	prevalence of previous stroke as the dependent variable and as independent variables all
230	those systemic parameters for which the <i>P</i> -value in the previous analysis was <0.10 (Table 2).
231	We then dropped the parameters of the prevalence of keratoconus (P=1.00), foveal thickness
232	(P=0.48), number of days with moderate physical activities (P=0.86), blood concentration of
233	HbA1c (P=0.63), number of hour spent with sitting per day (P=0.61), blood concentration of
234	glucose (P=0.30), central corneal thickness (P=0.40), dry eye (P=0.31), body mass index
235	(P=0.81), alcohol consumption (P=0.23), incidence of localized retinal nerve fiber layer defects
236	(P=0.78), number of days with intensive physical activities (P=0.39), and depression index
237	(P=0.12). In the final model, a higher prevalence of previous stroke was correlated
238	(Nagelkerke R ² : 0.16) with older age (<i>P</i> <0.001), male gender (<i>P</i> =0.006), lower quality of life
239	score (P<0.001), higher prevalence of diabetes mellitus (P=0.04) and arterial hypertension
240	(P<0.001), lower prevalence of nuclear cataract (P=0.01), and higher stage of diabetic
241	retinopathy (P<0.001) (Table 3).
242	If the parameter of staging of diabetic retinopathy was replaced by the presence of
243	diabetic retinopathy, the latter was associated with previous stroke (P<0.001; OR: 3.97; 95%CI:
244	1.87, 8.43). If we added cardiovascular disease to the list of independent parameters, it was
245	significantly (<i>P</i> =0.004; OR: 1.89; 95%CI: 1.23, 2.90), while diabetes mellitus was no longer
246	significantly associated (<i>P</i> =0.17). If we added the parameter of physical activity (number of
247	days with moderate physical activities) to the model, it showed a marginal association with a
248	lower prevalence of previous stroke (<i>P</i> =0.09; OR: 0.94; 95%CI: 0.88, 1.01). When we added
249	other parameters in a step by step manner, body mass index (P =0.45), body height (P =0.30),
250	blood concentration of high-density lipoproteins (P=0.59), low-density lipoproteins (P=0.32),
251	triglycerides (<i>P</i> =0.28), cholesterol (<i>P</i> =0.49), creatinine (<i>P</i> =0.71) and C-reactive protein
252	(P=0.96), prevalence of localized retinal nerve fiber layer defects (P=0.72) or the mean
253	thickness of the retinal nerve fiber layer (P=0.43) were not significantly associated with the
254	prevalence of stroke.
255	
256	
257	Discussion
258	In our population-based study on a population aged 50+ years in Greater Beijing, the

10 Stroke and Eye Diseases

259	prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). Besides the systemic risk
260	factors of older age, male gender, a higher prevalence of arterial hypertension and a higher
261	prevalence of diabetes mellitus or of cardiovascular disease, the presence and a higher stage
262	of diabetic retinopathy were main factors for a higher prevalence of a previous stroke. The
263	prevalence of a previous stroke increased for each increase in the stage of diabetic
264	retinopathy (with altogether 4 stages) by a factor of 1.67 (95%CI: 1.20, 1.33), and for the
265	presence of diabetic retinopathy by a factor of 3.97 (95%CI: 1.87, 8.43). Lower degree of
266	physical activity showed a marginal association with a higher prevalence of previous stroke
267	(<i>P</i> =0.09).
268	The findings obtained in our study agree with the results of previous investigations.

In a review of studies conducted since 1990 in Chinese populations, Tsai and colleagues reported on an age-standardized annual first-ever stroke incidence of 205-584 per 100,000 in Chinese for the age group of 45-74 years.¹³ Li and colleagues performing a population-based stroke surveillance on more than 14,000 residents in Tianjin, China from 1992 to 2012, reported on an increase in the age-standardized incidence for both intracerebral hemorrhage (37.8 per 100,000 person-years in 1992-1998, 46.5 in 1999-2005, and 76.5 in 2006-2012) and for ischemic stroke (83.9 in 1992-1998, 135.3 in 1999-2005, and 238.0 in 2006-2012).¹⁴ The age-standardized incidence of first-ever stroke increased annually by 4.9% for intracerebral hemorrhage and by 7.3% for ischemic stroke. In a similar study, Ning and associates found that the age-standardized incidence of first-ever stroke per 100 000 person-years increased significantly, from 122 in the years 1992 to 1999, to 216 in 2000 to 2007, and to 471.8 in 2008 to 2015.¹⁵ The greatest increases were observed in adults aged 55 to 64 years. In the China National Stroke Screening Survey as reported by Guan and coworkers, the adjusted stroke prevalence in 2014 was 2.06% in adults aged 40 years and older.¹⁶ The incidence of first-ever stroke in adults aged 40-74 years increased from 189/100,000 individuals in 2002 to 379/100,000 in 2013-an overall annual increase of 8.3%.

The systemic factors associated with the prevalence of a previous Stroke in our study population were similar to those reported in previous investigations: older age, male gender and a higher prevalence of diabetes mellitus and arterial hypertension. In the China National Stroke Screening Survey, the largest contributor as risk factor was arterial hypertension

Page 11 of 22

BMJ Open

2	89	(population-attributable risk 53.2%), followed by family history, dyslipidemia, atrial fibrillation,
2	90	diabetes, physical inactivity, smoking, and overweight/obesity. ¹⁶ As in our study, the review
2	91	by Kyu and colleagues revealed that individuals with a higher level of physical activity had a
2	92	lower risk of ischemic stroke. ¹⁷ Interestingly, self-reported alcohol consumption was not
2	93	significantly associated with the prevalence of previous stroke in our study population.
2	94	The interesting finding in our study is that, after adjusting for other systemic risk factors,
2	95	the presence of diabetic of diabetic retinopathy increased the likelihood of a previous stroke by
2	96	a factor of 3.97, and in a parallel manner, that an increase by one step in the stage of diabetic
2	97	retinopathy increased the probability of a previous stroke by a factor of 1.67. In previous
2	98	studies by Cheung et al. and by Petitti and colleagues a similar association was described ^{18,19}
2	99	In a population-based, prospective cohort study of 1617 middle-aged persons with diabetes,
3	800	Cheung found that after a mean follow-up of 7.8 years diabetic retinopathy was associated
3	801	with an increased risk of ischemic stroke (hazard rate ratio, 2.34; 95% CI, 1.13 to 4.86), after
3	802	adjusting for systemic parameters such as age, gender, race, arterial blood pressure, duration
3	803	and therapy of diabetes, blood lipid concentrations and levels and cigarette smoking status. ¹⁸
3	804	In an earlier study, Petitti and associates found in a nested case-control study, that the
3	805	estimated relative risk of stroke in diabetic subjects with retinopathy was 4.0 (95%CI: 1.0 , 14.5)
3	806	after adjustment for systemic risk factors. ¹⁹ The reason for this association may be that
3	807	diabetic retinopathy as a microangiopathy indicates a wide-spread vascular disorder.
3	808	When discussing the results of our study, its limitations have to be taken into account.
3	809	First, the data on the prevalence of a previous self-reported stroke depended on the
3	310	information provided by the study participants in the face-to-face interviews. Second,
3	811	patients who had died as a sequel of a previous stroke were not included into the study. The
3	812	results of our study are therefore valid primarily only for stroke survivors. Third, due to
3	813	regional differences in China, findings obtained in our study may not completely be
3	814	transferable to South China or pother world regions. ²⁰ Fourth, we did not differentiate
3	815	between intracerebral hemorrhage and ischemic stroke. ²¹ Fifth, we did not assess the role of
3	816	atrial fibrillation as risk factor for stroke in our study. Fifth, the study population with an age of
3	817	50+ years had experienced major societal changes and economic developments in China

	12 Stroke and Eye Diseas
318	during their lifetime. This elderly generation may differ from the young generations in Chin
319	and from populations in other countries.
320	In conclusion, in this North Chinese population aged 50+ years, the prevalence of a
321	previous stroke was 7.33% (95%CI:6.43,8.24). Besides known systemic risk factors of old
322	age, male gender and a higher prevalence of diabetes mellitus and arterial hypertension, th
323	presence and stage of diabetic retinopathy were additional risk factors. The prevalence of
324	previous stroke increased for each increase in the stage of diabetic retinopathy by a factor
325	1.67 (95%CI:1.20,1.33), and for the presence of diabetic retinopathy by a factor of 3.97
326	(95%CI:1.87,8.43). Diabetic subjects with retinopathy appear to be a group at particularly
327	high risk of ischemic stroke. Development of preventive interventions may focus on this gro
328	
329	A. contributor ship statement: Design and conception: Ya Xing Wang, Wen Bin Wei, Liang X
330	Jost B. Jonas; Statistical analysis: Ya Xing Wang, Jost B. Jonas; Writing of the manuscript:
331	Jost B. Jonas; Editing and final approval of the manuscript: Ya Xing Wang, Wen Bin Wei, Lia
332	Xu , Jost B. Jonas;
333	B. competing interests: None
334	C. Funding: Supported by State Natural Sciences Fund (81041018) and the Natural Science
335	Fund of Beijing government (7092021; 7112031). The funders had no role in study design
336	data collection and analysis, decision to publish, or preparation of the manuscript.
337	D. Data sharing statement: There are no additional data available.
338	

2		
3 4	340	References
5	341	1. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national
6 7	342	disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy
8 9	343	(HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global
10 11	344	Burden of Disease Study 2016. Lancet. 2017;390:1260-1344.
12 13	345	2. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional,
14 15	346	and national incidence, prevalence, and years lived with disability for 328 diseases and injuries
16	347	for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study
17 18	348	2016. Lancet. 2017;390:1211-1259.
19 20	349	3. Feigin VL, Mensah GA, Norrving B, Murray CJ, Roth GA; GBD 2013 Stroke Panel Experts
21 22	350	Group. Atlas of the Global Burden of Stroke (1990-2013): The GBD 2013 Study.
23 24	351	Neuroepidemiology. 2015;45:230-236.
25 26	352	4. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update
27	353	on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013
28 29	354	Study. Neuroepidemiology. 2015;45:161-176.
30 31	355	5. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, et al. Cause-specific mortality for 240
32 33	356	causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of
34 35	357	Disease Study 2013. Lancet. 2016;387:251-272.
36	358	6. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden
37 38	359	of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the
39 40	360	Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913-924.
41 42	361	7. Xu J, Xu L, Du KF, Shao L, Chen CX, Zhou JQ, et al. Subfoveal choroidal thickness in
43 44	362	diabetes and diabetic retinopathy. Ophthalmology. 2013;120:2023-2028.
45 46	363	8. Yan YN, Wang YX, Xu L, Xu J, Wei WB, Jonas JB. Fundus tessellation: Prevalence and
47	364	associated factors. The Beijing Eye Study 2011. Ophthalmology. 2015;122:1873-1880
48 49	365	9. Zung WW A Self-rating depression scale. Arch Gen Psychiatry. 1965;12:63-70.
50 51	366	10. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study
52 53	367	(AREDS) system for classifying cataracts from photographs: AREDS report no. 4. Am J
54 55	368	Ophthalmol. 2001;131:167-175
56 57	369	11. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of
58		
59		For peer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

14	Stroke a	nd Eye	Diseases
----	----------	--------	----------

-		
3 4	370	glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238-242
5	371	12. Jie Y, Xu L, Wu YY, Jonas JB. Prevalence of dry eye among adult Chinese in the Beijing
6 7	372	Eye Study. Eye. 2009;23:688-693.
8 9	373	13. Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs
10 11	374	white populations: a systematic review. Neurology. 2013;81:264-272.
12	375	14. Li B, Lou Y, Gu H, Long X, Wang T, Wei J, et al. Trends in incidence of stroke and
13 14	376	transition of stroke subtypes in rural Tianjin China: A population-based study from 1992 to
15 16	377	2012. PLoS One. 2015;10:e0139461.
17 18	378	15. Ning X, Sun J, Jiang R, Lu H, Bai L, Shi M, et al. Increased stroke burdens among the
19	379	low-income young and middle aged in rural China. Stroke. 2017;48:77-83.
20 21	380	16. Guan T, Ma J, Li M, Xue T, Lan Z, Guo J, et al. Rapid transitions in the epidemiology of
22 23		
24	381	stroke and its risk factors in China from 2002 to 2013. Neurology. 2017;89:53-61.
25 26	382	17. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, et al. Physical
27	383	activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and
28 29	384	ischemic stroke events: systematic review and dose-response meta-analysis for the Global
30 31	385	Burden of Disease Study 2013. BMJ. 2016;354:i3857.
32 33	386	18. Cheung N, Rogers S, Couper DJ, Klein R, Sharrett AR, Wong TY. Is diabetic retinopathy
34 35	387	an independent risk factor for ischemic stroke? Stroke. 2007;38:398-401.
36	388	19. Petitti DB, Bhatt H. Retinopathy as a risk factor for nonembolic stroke in diabetic subjects.
37 38	389	Stroke. 1995;26:593-596.
39 40	390	20. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke.
41 42	391	2013;44:1775-1783.
43	392	21. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou BF, Zhao LC, et al. Proportion of different
44 45	393	subtypes of stroke in China. Stroke. 2003;34:2091-2096.
46		Subtypes of stoke in China. Stroke. 2003,34.2031-2030.
47 48	394	
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59		

1 2

60

Stroke. 1995;26:593-596.
20. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke.
2013;44:1775-1783.
21. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou BF, Zhao LC, et al. Proportion of different
subtypes of stroke in China. Stroke. 2003;34:2091-2096.

395 Table 1

396 Prevalence (Mean and 95% Confidence Interval) of previous stroke in the Beijing Eye Study

Age Group	Men		Women		Total		
(Years)							
	n	Prevalence	n	Prevalence	n	Prevalence	
50 to <55	250	2.5% (0.5, 4.3)	363	1.7% (0.3, 3.0)	613	2.0% (0.9, 3.1)	
55 to <60	237	3.0% (0.8, 5.1)	366	3.0% (1.3, 4.8)	603	3.0% (1.6, 4.4)	
60 to <65	196	7.7% (3.9, 11.4)	282	6.7% (3.8, 9.7)	478	7.1% (4.8, 9.4)	
65 to <70	168	8.3% (4.1, 12.6)	270	5.9% (3.1, 8.8)	438	6.9% (4.5, 9.2)	
70 to <75	247	10.9% (7.0,	256	8.6% (5.1, 12.1)	503	9.7% (7.1, 12.3)	
		14.9)					
75 to <80	169	16.6 (10.9,	182	8.8% (4.6, 12.9)	351	12.5% (9.1, 16.0)	
		22.2)					
80+	119	18.1, 34.1)	100	17.0% (9.5, 24.5)	219	21.9% (16.4,	
				4.		27.4)	

400 Table 2

401 Associations between the prevalence of cerebral stroke and systemic and ocular parameters

402 after adjusting for age and gender in the Beijing Eye Study 2011

Parameter	<i>P</i> -Value	Odds Ratio	95%
			Confidence
			Interval
Systemic Parameters			
Rural / Urban Region of Habitation	0.11	1.29	0.95, 1.75
Body Mass Index (kg/m ²)	0.03	1.04	1.001, 1.08
Level of Education (1-5)	0.64	1.04	0.92, 1.18
Self-Reported Income	0.73	0.99	0.93, 1.05
Cognitive Score	0.77	1.00	0.96, 1.03
Alcohol Consumption Frequency	0.001	0.85	0.77, 0.94
Smoking Never / Former/ Current	0.19	0.87	0.71, 1.07
Smoking Never / Ever	0.98	1.00	0.72, 1.38
Smoking Package Years	0.38	1.00	1.00, 1.01
Physical Activity		2	
"How Many Days Do you Walk?"	0.51	0.98	0.92, 1.04
"How Many Days Do You Do	0.05	0.81	0.66, 1.00
Vigorously Intensive Sport or			
Activities?"		4	
"How Many Days Do You Do	0.01	0.94	0.89, 0.99
Moderately Intensive Sport or			
Activities?"			
"How Many Hours Do You Sit Per	0.04	1.06	1.004, 1.12
Day?"			
Quality of Life			
Summed Score	<0.001	1.44	1.31, 1.59

<0.001

2.79

2.01, 3.86

1		
2 3		
4	Mobility: I have no / some problems	
5 6	in walking about / I am confined to bed	
7 8	Self-Care: I have I have no / some	
9	problems in washing or dressing	
10 11	myself / I am unable to wash or dress	
12 13	myself	
14 15	Usual Activities (e.g. Work, study,	
16	housework, family or leisure activities):	
17 18	I am able to wash or dress myself / I	
19 20	have some problems with performing	
21 22	my usual activities / I am unable to	
23 24	perform my usual activities	
25	Pain/Discomfort:	
26 27	Anxiety/Depression: I am not /	
28 29	moderately / extremely anxious or	
30 31	depressed	
32	Depression Score	
33 34		
35 36	Blood Concentration of:	
37 38	Glucose (mmol/L)	
39	Glycosylated hemoglobin HbA1c	
40 41	High-Density Lipoproteins (mmol/L)	
42 43	Low-Density Lipoproteins (mmol/L)	
44 45	Triglycerides (mmol/L)	
46	Cholesterol (mmol/L)	
47 48	C-reactive Protein	
49 50	Diabetes Mellitus, Prevalence	
51 52	Systolic Blood Pressure (mmHg)	
53	Diastolic Blood Pressure (mmHg)	
54 55	Mean Blood Pressure (mmHg)	
56 57		
58 59		
60	For peer review only - http://bn	nj

18 Stroke and Eye Diseases

Arterial Hypertension	<0.001	2.42	1.76, 3.34
Estimated Cerebrospinal Fluid	0.17	1.03	0.99, 1.09
Pressure (mm Hg)			
Creatinine (mmol/L)	0.67	1.00	0.99, 1.02
Estimated Glomerular Filtration Rate	0.79	1.00	0.99, 1.01
(GFR) (mL/min / 1·73 m²) (MDRD			
Formula)			
Estimated Glomerular Filtration Rate	0.79	1.00	0.98, 1.01
(mL/min / 1·73 m²) (CKDE Formula)			
Ocular Parameters			
Refractive Error (Diopters)	0.47	0.98	0.92, 1.04
Axial Length (mm)	0.70	0.98	0.86, 1.11
Anterior Corneal Curvature Radius	0.16	0.66	0.37, 1.18
(mm)	1		
Central Corneal Thickness (µm)	0.09	1.004	0.999, 1.008
Anterior Chamber Depth (mm)	0.92	1.01	0.79, 1.29
Lens Thickness (mm)	0.14	1.41	0.89, 2.22
Intraocular Pressure mmHg)	0.66	1.01	0.96, 1.06
Retinal Nerve Fiber Layer Thickness	0.62	1.00	0.99, 1.01
(μm)			
Localized Defects of the Retinal Nerve	0.42	1.18	0.79, 1.77
Fiber Layer, Prevalence		•	
Localized Defects of the Retinal Nerve	0.06	1.83	0.98, 3.42
Fiber Layer, 10-Year Incidence			
Subfoveal Choroidal Thickness (µm)	0.83	1.00	1.00, 1.00
Fundus Tessellation	0.66	1.02	0.92, 1.13
Macular Retinal Thickness (µm)	0.04	0.994	0.989, 1.000
Optic Disc Size (mm ²)	0.69	1.09	0.71, 1.70
Neuroretinal Rim Area (mm ²)	0.52	1.15	0.75, 1.77

	0.00	4.04	0.70.4.00
Dry Eye, Yes or No	0.80	1.04	0.79, 1.36
Dry Eye, Number of Days	0.08	1.04	0.995, 1.10
Keratoconus (Anterior Corneal	0.27	2.04	0.58, 7.18
Curvature refractive Power ≥48			
Diopters)			
Keratoconus (Anterior Corneal	0.02	8.00	1.31, 48.9
Curvature refractive Power ≥49			
Diopters)			
Pseudoexfoliation Syndrome	0.49	0.82	0.47, 1.43
Nuclear Cataract	0.06	0.72	0.51, 1.02
Cortical Cataract	0.87	0.97	0.66, 1.43
Subcapsular Posterior Cataract	0.34	1.29	0.77, 2.16
Glaucoma, Prevalence, Total	0.61	0.87	0.52, 1.47
Open-Angle Glaucoma	0.26	0.63	0.28, 1.40
Primary Angle-Closure Glaucoma	0.36	0.57	0.17, 1.89
Age-Related Macular Degeneration,	0.60	0.92	0.68, 1.25
Prevalence, Total	7),	
Age-Related Macular Degeneration,	0.29	0.75	0.44, 1.28
Early Stage		0	
Age-Related Macular Degeneration,	0.75	0.95	0.67, 1.34
Intermediate Stage			
Age-Related Macular Degeneration,	0.11	2.26	0.84, 6.06
Late Stage			
Diabetic Retinopathy, Prevalence	<0.001	1.63	1.27, 2.08
Diabetic Retinopathy, Score	<0.001	4.75	2.67, 8.46
Retinal Vein Occlusion, Total	0.18	1.55	0.82, 2.93
Branch Retinal Vein Occlusion	0.65	1.25	0.48, 3.29
Myopic Retinopathy	0.77	1.20	0.36, 4.03

406 Table 3

407 Associations (multivariate analysis) between the prevalence of cerebral stroke and systemic

408 and ocular parameters in the Beijing Eye Study 2011

		1	410
Parameter	<i>P</i> -Value	Odds Ratio	95% ₄₁₁
		(OR)	Confidence
			Interval of $\begin{picture}{l} \end{picture}$
Age (Years)	<0.001	1.07	1.05, 1.09 414
Gender (Men / Women)	0.006	0.59	0.40, 0.86 ₁₅
Quality of Life Score	<0.001	1.44	1.24, 1.67 ₁₆
Prevalence of Diabetes	0.04	1.57	1.02, 2.4 ₄ 1 ₇
Mellitus			418
Stage of Diabetic	0.002	1.67	1.20, 2.3 ₃₁₉
Retinopathy		Ŕ.	420
Prevalence of Arterial	<0.001	2.22	1.43, 3.4 <u>321</u>
Hypertension			422
Prevalence of Nuclear	0.01	0.58	0.38, 0.8 <u>9</u> 23
Cataract			424
			O,

1	21 Stroke and Eye Disease
2	
3 428 4	Fig. 1
5 429	Graph showing the distribution of the prevalence of a previous stroke stratified by age and
6 7 430	gender in the Beijing Eye Study
8	
9 431 10	
11	
12 13	
14	
15 16	
17	
18 19	
20	
21 22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37 38	
39	
40 41	
42	
43 44	
45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	
59	For poor rovious only http://bmionon.hmi.com/site/shout/suidelines.stard
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

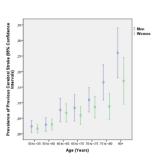


Fig. 1: Graph showing the distribution of the prevalence of a previous stroke stratified by age and gender in the Beijing Eye Study

323x199mm (120 x 120 DPI)

BMJ Open

Prevalence, Risk Factors and Associated Ocular Diseases of Cerebral Stroke: The Population-based Beijing Eye Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024646.R1
Article Type:	Research
Date Submitted by the Author:	15-Jan-2019
Complete List of Authors:	 wang, yaxing; Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University Wei, Wenbin; Beijing Tongren Eye CenterBeijing Tongren Hospital, Capital Medical Univ ersity; Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Xu, L; Beijing Institute of Ophthalmology Jonas, Jost; Institute of Ophthalmology, Ophthalmology;
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Ophthalmology, Neurology
Keywords:	EPIDEMIOLOGY, Stroke < NEUROLOGY, NEUROLOGY, Adult neurology < NEUROLOGY, OPHTHALMOLOGY, Medical retina < OPHTHALMOLOGY

SCHOLARONE[™] Manuscripts

1		
2 3		
4	1	
5	-	
6	2	
7	3	
8 9	-	
10	4	Prevalence, Risk Factors and Associated Ocular Diseases of Cerebral Stroke: The
11	5	Population-based Beijing Eye Study
12	J	ropulation-based beijing Lye Study
13 14	6	
14	_	
16	7	
17	8	Ya Xing Wang, MD(1), Wen Bin Wei, MD (2), Liang Xu , MD(1), Jost B. Jonas, MD(1,3)
18		
19 20	9	
20	10	
22	10	
23	11	(1) Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital,
24 25		
25	12	Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences,
27	13	Beijing, China
28		
29	14	(2) Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing,
30 31	15	China
32	10	
33	16	(3) Department of Ophthalmology, Medical Faculty Mannheim of the
34	17	Ruprecht-Karls-University, Mannheim, Germany
35 36	17	Ruprecht-Rans-Oniversity, Manimenn, Germany
37	18	
38		
39	19	
40 41	20	Running title: Stroke and Eye Diseases
42		
43	21	Keywords: Stroke; Retinal nerve fiber layer; Optic nerve; Glaucoma; Age-related macular
44	22	degeneration; Diabetic retinopathy; Diabetes mellitus; Beijing Eye Study
45 46	22	degeneration, Diabetic reanopatity, Diabetes mentas, beijing Lye olddy
40	23	Corresponding author: Prof. Wen Bin Wei, Beijing Tongren Eye Center, Beijing Tongren
48	24	Leavited Capital Madical University Dailing Key Laboratory of Intrace yest Tymer Discussio
49	24	Hospital, Capital Medical University; Beijing Key Laboratory of Intraocular Tumor Diagnosis
50 51	25	and Treatment, Beijing Ophthalmology and Visual Science Key Laboratory, 1 Dong Jiao Min
51 52		
53	26	Xiang, Dong Cheng District, Beijing, China. 100730 (Tel: 86-10-58269516; Fax:
54	27	86-10-65125617. Email: weiwenbintr@163.com;
55		
56 57	28	
58	29	
59	29	
60		

2 Stroke and Eye Diseases

Abstract **Objective:** To assess the prevalence of cerebral stroke in the general population of Beijing and its association with systemic risk factors and ocular diseases. **Setting:** The population-based Beijing Eye Study was conducted in a rural and an urban region of Greater Beijing. Participants: With an eligibility criterion of an age of 50+ years and living in the study regions, 3468 subjects (78.8%) out of 4403 eligible individuals participated. Primary and secondary outcome measures: The study participants underwent a detailed systemic and ophthalmological examination and an interview in which the occurrence of a previous stroke was assessed. Results: A previous stroke was reported by 235 individuals (7.33%;95% confidence interval [CI]:6.43,8.24). The prevalence of previous stroke increased from 2.0% (95%CI:0.9,3.1) in the age group of 50 to <55 years to 21.9% (95%CI:16.4,27.4) in the age group of 80+ years. In multivariable regression analysis, a higher prevalence of previous stroke was correlated (Nagelkerke R^2 :0.20) with the systemic parameters of older age (P<0.001; odds ratio [OR]:1.06;95%CI:1.04,1.08), male gender (P<0.001;OR:0.54:95%CI:0.40,0.74), lower guality of life score (P<0.001;OR:1.39;95%CI:1.25,1.55), higher prevalence of arterial hypertension (P<0.001;OR:2.86;95%CI:2.05,3.98), and cardiovascular disease (P<0.001;OR:1.8554;95%CI:1.34,2.56), and with the ocular parameter of a higher prevalence of diabetic retinopathy (P<0.001;OR:4.41;95%CI:2.38,8.18) (or alternatively, with a higher stage of diabetic retinopathy (P<0.001;OR:1.64;95%CI:1.26,2.14). **Conclusions:** In this North Chinese population aged 50+ years, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for systemic risk factors of older age, male gender and higher prevalence of arterial hypertension and cardiovascular disease, higher prevalence of previous stroke was significantly correlated with a higher prevalence presence and stage of diabetic retinopathy. Previous stroke prevalence increased for each step increase in the stage of diabetic retinopathy by an odds ratio of 1.64 (95%CI:1.26,2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI:2.38,8.18).

61 Article Summary

- 62 Strengths and limitations of this study:
- 63 Limitation: Data on the prevalence of a previous stroke depended on self-reported
- 64 information; patients who had died as a sequel of a previous stroke were not included into the
- 65 study; the results of our study are therefore valid primarily only for stroke survivors.
 - 66 Limitation: Intracerebral hemorrhage was not differentiated from ischemic stroke.
 - 67 Limitation: Cross-sectional analysis
 - 68 Strength: Population-based study design
 - 69 Strength: Large number of parameters including ophthalmological variables assessed

4 Stroke and Eye Diseases

1 2

71 Introduction

72 Cerebral stroke as one of the main contributors of the global burden of disease has caused 116 million or 4.8% of all DALYs (Disability-Adjusted Life Years) and 14.5 million or 1.8% of all 73 74 YLDs (Years Lived with Disability) worldwide in the year 2013.^{1.4} In particular China has 75 witnessed a marked increase in the importance of stroke in the spectrum of diseases causing 76 DALYS and years of life lost (YLLs). While in 1990, lower respiratory infections or preterm 77 birth complications were the leading causes of YLLs in almost half of the provinces of China 78 (16 out of 33), cerebrovascular disease were the leading cause in 27 of the 33 provinces in 79 2013.^{5,6} Since the eye and brain share the same arterial blood supply through the inner 80 carotid artery and since the retina and optic nerve as former outgrowth of the anterior end of 81 the embryological neural groove are of neuro-ectodermal origin, a major cerebral disease such 82 as stroke may be associated with ocular diseases, in particular disorders of the optic nerve and 83 retina. Since comprehensive population-based studies on associations between stroke and 84 ocular parameters have been scare so far and have not been conducted for the population of 85 China, we investigated the prevalence of cerebral stroke and its potential associations with 86 ocular diseases, after adjusting for systemic factors, in a population-based study performed in 87 China.

88

89

90 Methods

91 The Beijing Eye Study 2011 is a population-based study which was conducted in a rural region 92 and an urban area of Greater Beijing. The Medical Ethics Committee of the Beijing Tongren 93 Hospital approved the study design, and all study participants gave an informed consent. 94 The eligibility criteria for inclusion into the study were an age of 50+ years and living in the 95 Out of 4403 eligible individuals, 3468 subjects (1963 (56.6%) women) study regions. 96 participated (response rate: 78.8%). The mean age was 64.6 ± 9.8 years (median 64 years; 97 range: 50–93 years). There were 1633 (47.1%) individuals (943 (57.7%) women) coming 98 from the rural region, with the remaining 1835 (52.9%) study participants (1020 (55.6%) 99 women) living in the urban region. The study design has been described in detail 100 previously.7,8

BMJ Open

5 Stroke and Eye Diseases

All study participants underwent a structured interview by trained research technicians. The interview included more than 200 standardized questions on demographic parameters, socioeconomic background, diet and alcohol consumption, smoking habits, known major systemic diseases and current systemic medical therapies. Using the mini-mental state examination (MMSE) scale, we assessed the cognitive function. Fasting blood samples were collected for measurement of blood lipids, glucose, glycosylated hemoglobin HbA1c and serum creatinine. The blood pressure was measured with the participant sitting for at least 5 min. We also measured body height and weight and the circumference of the waist and hip.

Arterial hypertension was defined by a systolic blood pressure ≥160 mm Hg and/or a diastolic blood pressure ≥95 mm Hg, and/or self-reported current treatment for arterial hypertension with antihypertensive medication. Diabetes mellitus was characterized by a blood glucose concentration \geq 7.0 mmol/L, an HbA1c value \geq 6%, by a self-reported history of physician diagnosis of diabetes mellitus, or by a history of drug treatment for diabetes (insulin or oral hypoglycemic agents). Depressive symptoms were evaluated using a Chinese depression scale adapted from the Zung self-rated depression scale.⁹ The prevalence of previous stroke was examined in the interview by standardized questions on whether a previous cerebral stroke had occurred with typical symptoms such as sudden-onset face weakness, arm drift, abnormal speech hemiplegia, or numbness for at least 24 hours, when such a stroke had occurred, and whether it had been treated.

The ophthalmological examination consisted of automatic refractometry (Auto Refractometer AR-610; Nidek Co., Ltd, Tokyo, Japan), measurement of presenting visual acuity, uncorrected visual acuity and best-corrected visual acuity, tonometry, slit lamp based biomicroscopy of the anterior and posterior segment of the eyes, and photography of the cornea and lens (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan) and of the macula and optic disc (fundus camera; Type CR6-45MM; Canon Inc., Tokyo, Japan) in medical mydriasis. Using the photographs, we measured the dimensions of the optic disc, optic cup and parapapillary alpha, beta and gamma zones. The optic nerve head and macula were additionally examined by spectral-domain optical coherence tomography (OCT) using the enhanced depth imaging modality (Spectralis; Heidelberg Engineering, Heidelberg, Germany).

 6 Stroke and Eye Diseases

We determined the thickness of the peripapillary retinal nerve fiber layer, of the retina in the foveal region and of the subfoveal choroid. Applying optical low-coherence reflectometry (Lenstar 900 Optical Biometer; Haag-Streit, Koeniz, Switzerland), we measured ocular biometric parameters such as the anterior corneal curvature, central corneal thickness, anterior chamber depth, lens thickness and axial length. The degree of cataract was determined using the lens photographs. The degree of nuclear opacities was assessed in 6 grades using the grading system of the Age-Related Eye Disease Study.¹⁰ In addition, retro-illuminated photographs of the lens were obtained (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan), and the percentage of the areas with cortical and posterior subcapsular lens opacities was measured using a grid. The standard to diagnose a nuclear cataract was a nuclear cataract grade of 4 or more, the standard to diagnose a posterior subcapsular cataract was an amount of posterior subcapsular opacities of 0.01 or more, and the standard to diagnose a cortical cataract was an amount of cortical opacities of 0.05 or more. The degree of fundus tessellation defined as the visibility of the large choroidal vessels was assessed on the fundus photographs of the macula and of the optic disc as described in detail previously.⁸ It was graded using a scale which ranged from "0" for "no tessellation" to "3" for "marked tessellation". Diabetic retinopathy was assessed on the fundus photographs using the Early Treatment of Diabetic Retinopathy Study (ETDRS) criteria. The minimum criterion for diagnosis of diabetic retinopathy was the presence of at least one microaneurysm. The diagnosis for each individual was based on the grading of the individual's eye with the highest stage of diabetic retinopathy. We differentiated between the mild non-proliferative stage, the moderate non-proliferative stage, the advanced non-proliferative stage, and the proliferative stage of diabetic retinopathy. Glaucomatous optic neuropathy was defined using the criteria of the International Society of Geographic and Epidemiological Ophthalmology ISGEO.¹¹ Pseudoexfoliation was assessed by an experienced ophthalmologist during the slit lamp assisted biomicroscopy of the anterior segment after pupillary dilation. The diagnosis of pseudoexfoliation was definite, if the lens surface showed a central whitish coating with a diameter of little less than the normal pupillary diameter, or if the periphery of the lens surface showed a whitish coating which was anteriorly bordered by a darker ring-like region on the lens surface. The assessment of

BMJ Open

pseudoexfoliation was performed only in phakic eyes. For the diagnosis of age-related macular degeneration, the International ARM (Age-related Maculopathy Epidemiological Study Group) Grading system was used. The subjective symptoms of dry eye were evaluated using a questionnaire composed of three questions: "Do your eyes ever feel dry?"; "Do you ever feel a gritty or sandy sensation in your eyes?"; and "Do your eyes ever have a burning sensation?" Possible answers to the questions were none (0), less than once a month (1), once or twice a week (2), at least once every day (3), all the time (4). The presence of dry eye symptoms was defined as having one or more symptoms at least once every day (3 and 4). A guantitative grading score of subjective dry eye symptoms was obtained by summarizing the answers to the different questions (0-12).¹²

The statistical analysis was performed using a commercially available statistical software package (SPSS for Windows, version 25.0, IBM-SPSS, Chicago, IL, USA). As a first step, we assessed the prevalence of previous stroke (expressed as binary parameter as a proportion and the 95% confidence interval (CI)) and calculated the mean values of linear parameters such as ocular axial length (expressed mean ± standard deviation). We then assessed differences between the stroke group and the non-stroke group in age and gender. As second step, we performed a binary regression analysis with the prevalence of stroke as dependent parameter and with other measured parameters as independent variables, after adjusting for age and gender. As a third step, we conducted an extended multivariable binary analysis which included as independent parameters all those variables which were correlated (P<0.10) with stroke prevalence in the previous analysis. We then dropped step-by-step all those parameters which either showed a collinearity with one of the other independent variables or which were no longer statistically significantly correlated with the prevalence of previous stroke. We first started with the systemic independent parameters, such as age and blood pressure. We calculated the odds ratio (OR) and its 95% CIs. All P-values were two-sided and considered statistically significant, if the values were less than 0.05. Patient and Public Involvement statement: Patients were not involved in this study

2	
4 5	
6 7	
8 9	
10	
11 12	
13 14	
15 16	
17 18	
19 20	
21	
22 23	
24 25	
26 27	
28 29	
30	
31 32	
33 34	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	
59 60	

191 Out of 3468 study participants, 3205 (92.4%) individuals participated in the interview with 192 available information on previous stroke and underwent the systemic and ophthalmologic 193 examination. The participating group as compared to the group of individuals without 194 available information on previous stroke or without systemic and ocular examination was 195 significantly younger (64.4 ± 9.7 years (median: 63 years; range: 50 – 93 years) versus 67.1 ± 196 11.1 years; P<0.001) and came significantly more often from the urban region than from the 197 rural area (rural / urban region of habitation: 1439 / 1766 versus 194 / 69; P<0.001), while the 198 differences in gender (men / women: 1386 / 1819 versus 119 / 144; P=0.56), axial length (23.3 199 \pm 1.1 mm versus 23.2 \pm 1.9 mm; *P*=0.31) and refractive error (-0.22 \pm 2.12 diopters versus 200 -0.31 ± 2.17 diopters; P=0.59) were not statistically significant.

A previous stroke was reported by 235 individuals (235 / 3205 or 7.33% [95%CI: 6.43, 8.24]). Among the 235 patients, 192 individuals were on oral medication for the prophylaxis of a recurrence of the stroke. The stroke had taken place 7.5 ± 5.7 years ago (median: 7 years; range: 1 month to 26 years).

In the stroke group as compared with the non-stroke group (control group), age was significantly older (71.1 \pm 9.2 years versus 63.9 \pm 9.5 years; *P*<0.001) and had a higher proportion of men than women (men / women: 128 / 107 versus 1258 / 1712; *P*<0.001) (Fig. 1). The prevalence of a previous stroke increased from 2.0% (95%CI: 0.9, 3.1) in the age group of 50 to <55 years, to 6.9% (95%CI: 4.5, 9.2) in the age group of 65 to <70 years and to 21.9% (95%CI: 16.4, 27.4) in the age group of 80+ years (Table 1).

211 Since many systemic and ocular parameters were age-related, we performed in a next 212 step of the statistical examination a binary regression analysis with the prevalence of stroke as 213 the dependent parameter and other systemic and ocular parameters as single independent 214 variables, with adjusting for age and gender (Table 2). In that analysis, a higher prevalence 215 of stroke was associated with the systemic parameters of higher body mass index (P=0.03), lower frequency of alcohol consumption (P=0.001), lower number of days with vigorous 216 217 physical activities (P=0.05) or moderately intensive physical activities (P=0.01) and higher 218 number of hours spent with sitting per day (P=0.04), lower life quality score (P<0.001), higher 219 depression score (P<0.001), higher blood concentration of glucose (P=0.01) and glycosylated 220 hemoglobin HbA1c (P=0.008), and higher prevalence of diabetes mellitus (P<0.001) and

Page 9 of 25

1 2 BMJ Open

9 Stroke and Eye Diseases

3 4	221	arterial hypertension (P<0.001); and with the ocular parameters of thicker central corneal
5 6	222	thickness (P=0.09), lower foveal thickness (P=0.04), higher incidence of localized retinal nerve
7 8	223	fiber layer defects (<i>P</i> =0.06), dry eye feeling (<i>P</i> =0.08), and higher prevalence of keratoconus
9 10	224	(\geq 49 diopters) (<i>P</i> =0.02), nuclear cataract (<i>P</i> =0.06) and presence and stage diabetic
11 12	225	retinopathy (<i>P</i> <0.001) (Table 2) (Fig. 2).
13 14	226	The multivariable analysis included the prevalence of previous stroke as dependent
15 16	227	variable and as independent variables all those systemic parameters for which the <i>P</i> -value in
17 18	228	the previous analysis was <0.10 (Table 2). We then dropped in step-by-step manner all
19 20	229	independent parameters which either showed a collinearity with one of the other independent
20 21 22	230	variables or which were no longer statistically significantly correlated with the prevalence of a
22 23 24	231	previous stroke. In the final model, a higher prevalence of previous stroke was correlated
25	232	(Nagelkerke R ² : 0.20) with older age (<i>P</i> <0.001), male gender (<i>P</i> <0.001), lower quality of life
26 27	233	score (P<0.001), higher prevalence of arterial hypertension (P<0.001) and cardiovascular
28 29	234	disease (P<0.001), and higher prevalence of diabetic retinopathy (P<0.001) (Table 3). If the
30 31	235	parameter of prevalence of diabetic retinopathy was replaced by the diabetic retinopathy
32 33	236	stage, the latter was associated with previous stroke (<i>P</i> <0.001; OR: 1.64; 95%CI: 1.26, 2.14).
34 35	237	
35 36 37	237 238	
35 36		Discussion
35 36 37 38	238	
35 36 37 38 39 40	238 239	Discussion
35 36 37 38 39 40 41 42	238 239 240	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the
35 36 37 38 39 40 41 42 43 44	238 239 240 241	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the
35 36 37 38 39 40 41 42 43 44 45 46	238 239 240 241 242	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	238 239 240 241 242 243	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	238 239 240 241 242 243 244	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2).
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	238 239 240 241 242 243 244 245	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	238 239 240 241 242 243 244 245 246	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	238 239 240 241 242 243 244 245 246 247	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18).
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	238 239 240 241 242 243 244 245 246 247 248	Discussion In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18). The findings obtained in our study agree with the results of previous investigations.

 10 Stroke and Eye Diseases

Chinese for the age group of 45-74 years.¹³ Li and colleagues performing a population-based stroke surveillance on more than 14,000 residents in Tianjin, China from 1992 to 2012, reported on an increase in the age-standardized incidence for both intracerebral hemorrhage (37.8 per 100,000 person-years in 1992-1998, 46.5 in 1999-2005, and 76.5 in 2006-2012) and for ischemic stroke (83.9 in 1992-1998, 135.3 in 1999-2005, and 238.0 in 2006-2012).¹⁴ The age-standardized incidence of first-ever stroke increased annually by 4.9% for intracerebral hemorrhage and by 7.3% for ischemic stroke. In a similar study, Ning and associates found that the age-standardized incidence of first-ever stroke per 100 000 person-years increased significantly, from 122 in the years 1992 to 1999, to 216 in 2000 to 2007, and to 471.8 in 2008 to 2015.¹⁵ The greatest increases were observed in adults aged 55 to 64 years. In the China National Stroke Screening Survey as reported by Guan and coworkers, the adjusted stroke prevalence in 2014 was 2.06% in adults aged 40 years and older.¹⁶ The incidence of first-ever stroke in adults aged 40-74 years increased from 189/100,000 individuals in 2002 to 379/100,000 in 2013-an overall annual increase of 8.3%. The systemic factors associated with the prevalence of a previous Stroke in our study population were similar to those reported in previous investigations: older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease. In the China National Stroke Screening Survey, the largest contributor as risk factor was arterial hypertension (population-attributable risk 53.2%), followed by family history, dyslipidemia, atrial fibrillation, diabetes, physical inactivity, smoking, and overweight/obesity.¹⁶ The interesting finding in our study is that, after adjusting for other systemic risk factors, the presence of diabetic of diabetic retinopathy increased the likelihood of a previous stroke by an odds ratio of 4.41, and in a parallel manner, that an increase by one step in the stage of diabetic retinopathy increased the probability of a previous stroke by an odds ratio of 1.64. In previous studies by Cheung et al. and by Petitti and colleagues a similar association was described..^{17,18} In a population-based, prospective cohort study of 1617 middle-aged persons with diabetes, Cheung found that after a mean follow-up of 7.8 years diabetic retinopathy was associated with an increased risk of ischemic stroke (hazard rate ratio, 2.34; 95% CI, 1.13 to 4.86), after adjusting for systemic parameters such as age, gender, race, arterial blood pressure, duration and therapy of diabetes, blood lipid concentrations and levels and cigarette

 BMJ Open

Stroke and Eye Diseases

smoking status.¹⁷ In an earlier study, Petitti and associates found in a nested case-control study, that the estimated relative risk of stroke in diabetic subjects with retinopathy was 4.0 (95%CI: 1.0, 14.5) after adjustment for systemic risk factors.¹⁸ The reason for this association may be that diabetic retinopathy as a microangiopathy indicates a wide-spread vascular disorder. When discussing the results of our study, its limitations have to be taken into account. First, the data on the prevalence of a previous self-reported stroke depended on the information provided by the study participants in the face-to-face interviews. Since stroke is a dramatic event, it is unlikely to be under-reported. Transient ischemic attacks might occur unnoticed by the individuals so that transient ischemic attacks might be under-reported in an interview of previous cerebral strokes. Our study was based however primarily on previous cerebral strokes which were defined as an occurrence of typical neurological symptoms for at least 24 hours. It may make it unlikely that unnoticed previous transient ischemic attacks might have markedly influenced the results of our study. Second, patients who had died as a sequel of a previous stroke were not included into the study. The results of our study are therefore valid primarily only for stroke survivors. Third, due to regional differences in China, findings obtained in our study may not completely be transferable to South China or pother world regions.¹⁹ Fourth, we did not differentiate between intracerebral hemorrhage and ischemic stroke.²⁰ Fifth, we did not assess the role of atrial fibrillation as risk factor for stroke in our study. Fifth, the study population with an age of 50+ years had experienced major societal changes and economic developments in China during their lifetime. This elderly generation may differ from the young generations in China and from populations in other countries. Sixth, our investigation was a cross-sectional observational study, so that a reverse causality may have existed in the sense that diabetic retinopathy might have been the sequel of stroke. In conclusion, in this North Chinese population aged 50+ years, the prevalence of a

previous stroke was 7.33% (95%CI:6.43,8.24). The presence and stage of diabetic retinopathy were ocular risk factors for a higher prevalence of a previous stroke, after adjusting for the systemic risk factors of older age, male gender and a higher prevalence of diabetes mellitus and cardiovascular disease. The prevalence of previous stroke increased for each

1		12 Stroke and Eye Diseases
2		
3 4	311	increase in the stage of diabetic retinopathy by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and
5 6	312	for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18).
7 8	313	Individuals with diabetic retinopathy appear to be a group at particularly high risk of cerebral
9 10	314	stroke.
11 12	315	
13 14	316	
15 16	317	A. contributor ship statement: Design and conception: Ya Xing Wang, Wen Bin Wei, Liang Xu ,
17 18	318	Jost B. Jonas; Statistical analysis: Ya Xing Wang, Jost B. Jonas; Writing of the manuscript:
19 20	319	Jost B. Jonas; Editing and final approval of the manuscript: Ya Xing Wang, Wen Bin Wei,
21 22	320	Liang Xu , Jost B. Jonas;
23 24	321	B. competing interests: None
25 26	322	C. Funding: Supported by State Natural Sciences Fund (81041018) and the Natural Sciences
20 27 28	323	Fund of Beijing government (7092021; 7112031). The funders had no role in study design,
28 29 30	324	data collection and analysis, decision to publish, or preparation of the manuscript.
31	325	D. Data sharing statement: The datafile will be available on request.
32 33		
34 35		
36 37		
38		
39		
40		
41 42		
42 43		
43		
45		
46		
47		
48		
49		
49 50		
50 51		
52		
53		
55		
55		

		15 Stroke and Lye Diseases
3	327	References
3	328	1. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national
3	329	disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy
3	30	(HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global
3	331	Burden of Disease Study 2016. Lancet. 2017;390:1260-1344.
3	332	2. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional,
3	333	and national incidence, prevalence, and years lived with disability for 328 diseases and injuries
3	334	for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study
3	335	2016. Lancet. 2017;390:1211-1259.
3	336	3. Feigin VL, Mensah GA, Norrving B, Murray CJ, Roth GA; GBD 2013 Stroke Panel Experts
3	337	Group. Atlas of the Global Burden of Stroke (1990-2013): The GBD 2013 Study.
3	338	Neuroepidemiology. 2015;45:230-236.
3	339	4. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update
3	840	on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013
3	841	Study. Neuroepidemiology. 2015;45:161-176.
3	342	5. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, et al. Cause-specific mortality for 240
3	343	causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of
3	344	Disease Study 2013. Lancet. 2016;387:251-272.
3	845	6. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden
3	846	of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the
3	847	Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913-924.
3	848	7. Xu J, Xu L, Du KF, Shao L, Chen CX, Zhou JQ, et al. Subfoveal choroidal thickness in
3	849	diabetes and diabetic retinopathy. Ophthalmology. 2013;120:2023-2028.
3	350	8. Yan YN, Wang YX, Xu L, Xu J, Wei WB, Jonas JB. Fundus tessellation: Prevalence and
3	851	associated factors. The Beijing Eye Study 2011. Ophthalmology. 2015;122:1873-1880
3	852	9. Zung WW A Self-rating depression scale. Arch Gen Psychiatry. 1965;12:63-70.
3	853	10. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study
3	854	(AREDS) system for classifying cataracts from photographs: AREDS report no. 4. Am J
3	855	Ophthalmol. 2001;131:167-175
3	856	11. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of

3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17 18	
10	
19	
20	
20 21	
∠ı 22	
22	
23 24	
24 25	
26 27	
27	
28 29	
29 30	
31 32	
32 33	
34 25	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

- 358 12. Jie Y, Xu L, Wu YY, Jonas JB. Prevalence of dry eye among adult Chinese in the Beijing
 359 Eye Study. Eye. 2009;23:688-693.
- 360 13. Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs
- 361 white populations: a systematic review. Neurology. 2013;81:264-272.
- 362 14. Li B, Lou Y, Gu H, Long X, Wang T, Wei J, et al. Trends in incidence of stroke and
- 363 transition of stroke subtypes in rural Tianjin China: A population-based study from 1992 to
- 364 2012. PLoS One. 2015;10:e0139461.
- 365 15. Ning X, Sun J, Jiang R, Lu H, Bai L, Shi M, et al. Increased stroke burdens among the
 366 low-income young and middle aged in rural China. Stroke. 2017;48:77-83.
- 367 16. Guan T, Ma J, Li M, Xue T, Lan Z, Guo J, et al. Rapid transitions in the epidemiology of
- 368 stroke and its risk factors in China from 2002 to 2013. Neurology. 2017;89:53-61.
- 369 17. Cheung N, Rogers S, Couper DJ, Klein R, Sharrett AR, Wong TY. Is diabetic retinopathy
- an independent risk factor for ischemic stroke? Stroke. 2007;38:398-401.
- 18. Petitti DB, Bhatt H. Retinopathy as a risk factor for nonembolic stroke in diabetic subjects.
- 372 Stroke. 1995;26:593-596.
- 373 19. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke.
- 374 2013;44:1775-1783.
- 375 20. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou BF, Zhao LC, et al. Proportion of different
 - 376 subtypes of stroke in China. Stroke. 2003;34:2091-2096.

378 Table 1

379 Prevalence (Mean and 95% Confidence Interval) of previous stroke in the Beijing Eye Study

Age Group		Men		Women		Total	
(Years)							
	n	Prevalence	n	Prevalence	n	Prevalence	
50 to <55	250	2.5% (0.5, 4.3)	363	1.7% (0.3, 3.0)	613	2.0% (0.9, 3.1)	
55 to <60	237	3.0% (0.8, 5.1)	366	3.0% (1.3, 4.8)	603	3.0% (1.6, 4.4)	
60 to <65	196	7.7% (3.9, 11.4)	282	6.7% (3.8, 9.7)	478	7.1% (4.8, 9.4)	
65 to <70	168	8.3% (4.1, 12.6)	270	5.9% (3.1, 8.8)	438	6.9% (4.5, 9.2)	
70 to <75	247	10.9% (7.0,	256	8.6% (5.1, 12.1)	503	9.7% (7.1, 12.3)	
		14.9)					
75 to <80	169	16.6 (10.9,	182	8.8% (4.6, 12.9)	351	12.5% (9.1, 16.0)	
		22.2)		b			
80+	119	18.1, 34.1)	100	17.0% (9.5, 24.5)	219	21.9% (16.4,	
				4.		27.4)	

383 Table 2

384 Associations between the prevalence of cerebral stroke and systemic and ocular parameters

after adjusting for age and gender in the Beijing Eye Study 2011

Parameter	<i>P</i> -Value	Odds Ratio	95%
			Confidence
			Interval
Systemic Parameters			
Rural / Urban Region of Habitation	0.11	1.29	0.95, 1.75
Body Mass Index (kg/m ²)	0.03	1.04	1.001, 1.08
Level of Education (1-5)	0.64	1.04	0.92, 1.18
Self-Reported Income	0.73	0.99	0.93, 1.05
Cognitive Score	0.77	1.00	0.96, 1.03
Alcohol Consumption Frequency	0.001	0.85	0.77, 0.94
Smoking Never / Former/ Current	0.19	0.87	0.71, 1.07
Smoking Never / Ever	0.98	1.00	0.72, 1.38
Smoking Package Years	0.38	1.00	1.00, 1.01
Physical Activity	6	2	
"How Many Days Do you Walk?"	0.51	0.98	0.92, 1.04
"How Many Days Do You Do	0.05	0.81	0.66, 1.00
Vigorously Intensive Sport or			
Activities?"			
"How Many Days Do You Do	0.01	0.94	0.89, 0.99
Moderately Intensive Sport or			
Activities?"			
"How Many Hours Do You Sit Per	0.04	1.06	1.004, 1.12
Day?"			
Quality of Life			
Summed Score	<0.001	1.44	1.31, 1.59

Mobility: I have no / some problems	<0.001	2.79	2.01, 3.86
in walking about / I am confined to bed			
Self-Care: I have I have no / some	<0.001	3.33	2.33, 4.75
problems in washing or dressing			
myself / I am unable to wash or dress			
myself			
Usual Activities (e.g. Work, study,	<0.001	3.27	2.36, 4.53
housework, family or leisure activities):			
I am able to wash or dress myself / I			
have some problems with performing			
my usual activities / I am unable to			
perform my usual activities			
Pain/Discomfort:	0.001	1.62	1.22, 2.14
Anxiety/Depression: I am not /	<0.001	2.07	1.45, 2.95
moderately / extremely anxious or			
depressed	4.		
Depression Score	<0.001	1.06	1.04, 1.08
Blood Concentration of:		2	
Glucose (mmol/L)	0.01	1.11	1.02, 1.21
Glycosylated hemoglobin HbA1c	0.008	1.18	1.04, 1.33
High-Density Lipoproteins (mmol/L)	0.11	0.70	0.45, 1.09
Low-Density Lipoproteins (mmol/L)	0.28	0.90	0.74, 1.09
Triglycerides (mmol/L)	0.95	1.01	0.86, 1.17
Cholesterol (mmol/L)	0.18	0.88	0.74, 1.06
C-reactive Protein	0.47	1.01	0.98, 1.04
Diabetes Mellitus, Prevalence	<0.001	1.86	1.32, 2.61
Diabetes Mellitus, Duration (Years)	0.08	1.02	1.00, 1.04
Systolic Blood Pressure (mmHg)	0.14	1.01	1.00,1.02
Diastolic Blood Pressure (mmHg)	0.82	1.00	0.99, 1.01

18 Stroke and Eye Diseases

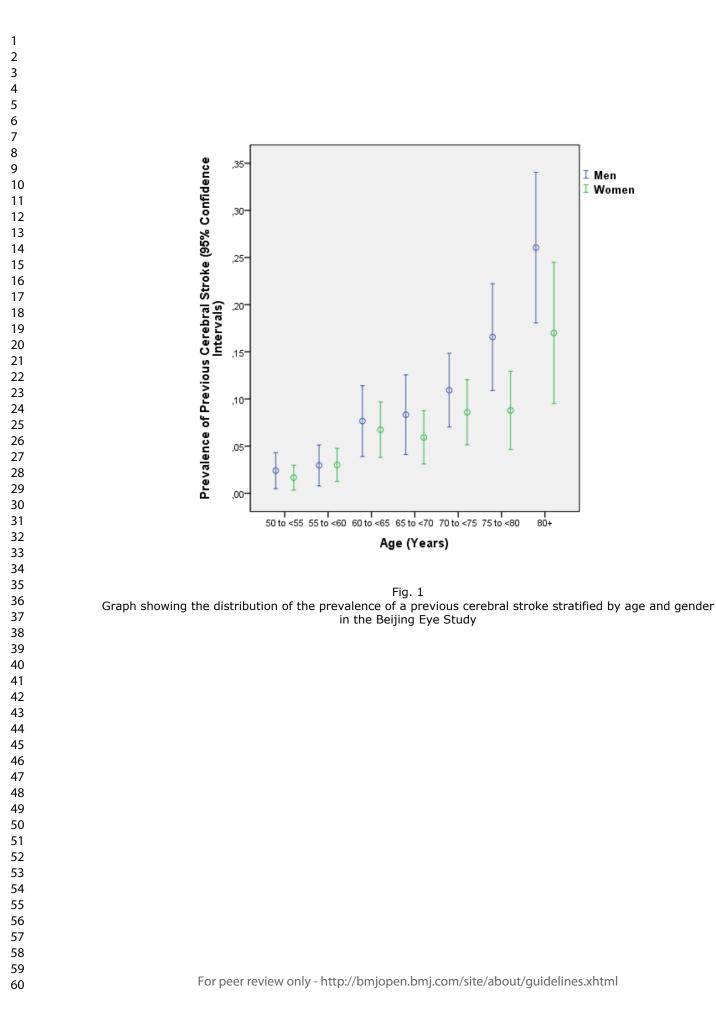
Mean Blood Pressure (mmHg)	0.40	1.00	0.99, 1.01
Arterial Hypertension	<0.001	2.42	1.76, 3.34
Estimated Cerebrospinal Fluid	0.17	1.03	0.99, 1.09
Pressure (mm Hg)			
Creatinine (mmol/L)	0.67	1.00	0.99, 1.02
Estimated Glomerular Filtration Rate	0.79	1.00	0.99, 1.01
(GFR) (mL/min / 1·73 m²) (MDRD			
Formula)			
Estimated Glomerular Filtration Rate	0.79	1.00	0.98, 1.01
(mL/min / 1·73 m²) (CKDE Formula)			
Ocular Parameters			
Refractive Error (Diopters)	0.47	0.98	0.92, 1.04
Axial Length (mm)	0.70	0.98	0.86, 1.11
Anterior Corneal Curvature Radius	0.16	0.66	0.37, 1.18
(mm)			
Central Corneal Thickness (µm)	0.09	1.004	0.999, 1.008
Anterior Chamber Depth (mm)	0.92	1.01	0.79, 1.29
Lens Thickness (mm)	0.14	1.41	0.89, 2.22
Intraocular Pressure mmHg)	0.66	1.01	0.96, 1.06
Retinal Nerve Fiber Layer Thickness	0.62	1.00	0.99, 1.01
(μm)			
Localized Defects of the Retinal Nerve	0.42	1.18	0.79, 1.77
Fiber Layer, Prevalence			
Localized Defects of the Retinal Nerve	0.06	1.83	0.98, 3.42
Fiber Layer, 10-Year Incidence			
Subfoveal Choroidal Thickness (µm)	0.83	1.00	1.00, 1.00
Fundus Tessellation	0.66	1.02	0.92, 1.13
Macular Retinal Thickness (µm)	0.04	0.994	0.989, 1.000
Optic Disc Size (mm ²)	0.69	1.09	0.71, 1.70

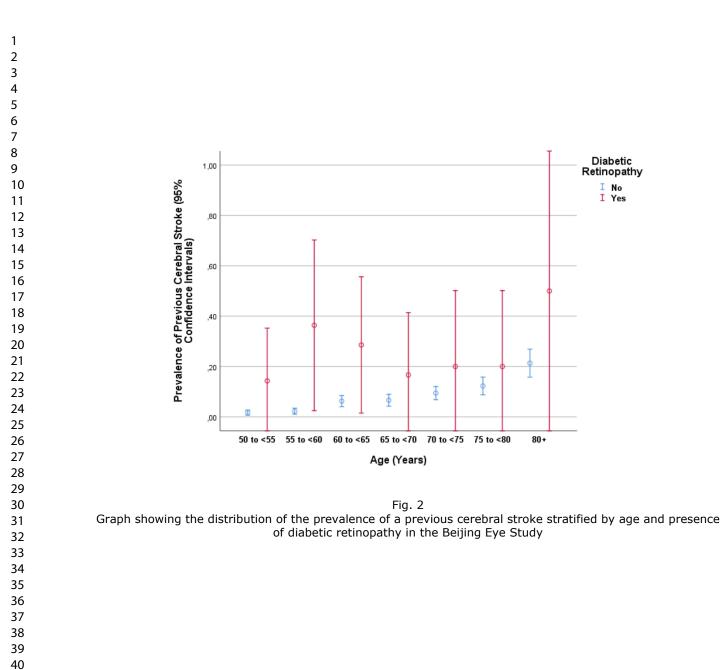
Page 19 of 25

Neuroretinal Rim Area (mm ²)	0.52	1.15	0.75, 1.77
Dry Eye, Yes or No	0.80	1.04	0.79, 1.36
Dry Eye, Number of Days	0.08	1.04	0.995, 1.10
Keratoconus (Anterior Corneal	0.27	2.04	0.58, 7.18
Curvature refractive Power ≥48			
Diopters)			
Keratoconus (Anterior Corneal	0.02	8.00	1.31, 48.9
Curvature refractive Power ≥49			
Diopters)			
Pseudoexfoliation Syndrome	0.49	0.82	0.47, 1.43
Nuclear Cataract	0.06	0.72	0.51, 1.02
Cortical Cataract	0.87	0.97	0.66, 1.43
Subcapsular Posterior Cataract	0.34	1.29	0.77, 2.16
Glaucoma, Prevalence, Total	0.61	0.87	0.52, 1.47
Open-Angle Glaucoma	0.26	0.63	0.28, 1.40
Primary Angle-Closure Glaucoma	0.36	0.57	0.17, 1.89
Age-Related Macular Degeneration,	0.60	0.92	0.68, 1.25
Prevalence, Total	6	2	
Age-Related Macular Degeneration,	0.29	0.75	0.44, 1.28
Early Stage		5	
Age-Related Macular Degeneration,	0.75	0.95	0.67, 1.34
Intermediate Stage			
Age-Related Macular Degeneration,	0.11	2.26	0.84, 6.06
Late Stage			
Diabetic Retinopathy, Prevalence	<0.001	1.63	1.27, 2.08
Diabetic Retinopathy, Score	<0.001	4.75	2.67, 8.46
Retinal Vein Occlusion, Total	0.18	1.55	0.82, 2.93
Branch Retinal Vein Occlusion	0.65	1.25	0.48, 3.29
Myopic Retinopathy	0.77	1.20	0.36, 4.03

Table 3

Associations (multivariable analysis) between the prevalence of cerebral stroke and systemic


and ocular parameters in the Beijing Eye Study 2011


392				
393	Parameter	<i>P</i> -Value	Odds Ratio	95%
394			(OR)	Confidence
395				Interval of OR
396	Age (Years)	<0.001	1.06	1.04, 1.08
397	Gender (Men / Women)	<0.001	0.54	0.40, 0.74
398	Inverse Quality of Life Score	<0.001	1.39	1.25, 1.55
399	Prevalence of Arterial	<0.001	2.86	2.05, 3.98
400	Hypertension) O		
401	Cardiovascular Disease	<0.001	1.85	1.34, 2.56
402	Prevalence of Diabetic	<0.001	4.41	2.38, 8.18
403	Retinopathy		· Z .	
404	(Alternatively: Stage of	<i>P</i> <0.001	1.64	1.26, 2.14
405	Diabetic Retinopathy)		2	7

1	21 Stroke and Eye Diseases
2	
3 4 41	D Fig. 1
5 6 41	Graph showing the distribution of the prevalence of a previous cerebral stroke stratified by age
7 8 41	2 and gender in the Beijing Eye Study
9 10 41	3
11 12 41	4 Fig. 2
13 41 14	Graph showing the distribution of the prevalence of a previous cerebral stroke stratified by age
15 41 16	and presence of diabetic retinopathy in the Beijing Eye Study
17 41 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1	and presence of diabetic retinopathy in the Beijing Eye Study

I Men

I Women

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be included in	n reports of <i>cross-sectional studies</i>

	Item No	Recommendation	Page: Line
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1:4
		(b) Provide in the abstract an informative and balanced summary of	2: 52-58
		what was done and what was found	2.52.50
Introduction		what was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation	4: 72-86
Buerground/futionale		being reported	1. 72 00
Objectives	3	State specific objectives, including any prespecified hypotheses	4: 72-86
Methods			
Study design	4	Present key elements of study design early in the paper	4: 91-100
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4: 91-100
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	4: 91-100
		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5: 101-168
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	5: 101-168
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5: 101-168
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7: 169-184
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7: 169-184
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	7: 169-184
		(c) Explain how missing data were addressed	
		( <i>d</i> ) If applicable, describe analytical methods taking account of	7: 169-184
		sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7: 189-198
		potentially eligible, examined for eligibility, confirmed eligible,	
		included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7: 189-198
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	7: 189-202
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable	7: 189-202
		of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8: 205-234
Main results	16	( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted	8: 205-234
		estimates and their precision (eg, 95% confidence interval). Make clear	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		which confounders were adjusted for and why they were included	
		( <i>b</i> ) Report category boundaries when continuous variables were categorized	8: 205-234
		( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	8: 205-234
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9: 238-246
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	11: 284-303
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9:246-283
Generalisability	21	Discuss the generalisability (external validity) of the study results	9:246-283
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	12: 320

*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

# **BMJ Open**

## Prevalence, Risk Factors and Associated Ocular Diseases of Cerebral Stroke: The Population-based Beijing Eye Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024646.R2
Article Type:	Research
Date Submitted by the Author:	28-Feb-2019
Complete List of Authors:	<ul> <li>wang, yaxing; Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology &amp; Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University</li> <li>Wei, Wenbin;</li> <li>Beijing Tongren Eye CenterBeijing Tongren Hospital, Capital Medical Univ ersity;</li> <li>Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Xu, L; Beijing Institute of Ophthalmology</li> <li>Jonas, Jost; Institute of Ophthalmology, Ophthalmology;</li> </ul>
<b>Primary Subject Heading</b> :	Epidemiology
Secondary Subject Heading:	Ophthalmology, Neurology
Keywords:	EPIDEMIOLOGY, Stroke < NEUROLOGY, NEUROLOGY, Adult neurology < NEUROLOGY, OPHTHALMOLOGY, Medical retina < OPHTHALMOLOGY

SCHOLARONE[™] Manuscripts

2		
3 4	1	
5	2	
6 7		Brougloppo, Bick Factors and Accordiated Ocular Disasson of Carebral Stroke: The
8 9	3	Prevalence, Risk Factors and Associated Ocular Diseases of Cerebral Stroke: The
9 10	4	Population-based Beijing Eye Study
11 12	5	
13	6	
14 15		
16	7	
17 18	8	Ya Xing Wang, MD(1), Wen Bin Wei, MD (2), Liang Xu , MD(1), Jost B. Jonas, MD(1,3)
19	9	
20 21	10	
22	10	
23 24	11	
25	12	(1) Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital,
26 27	13	Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences,
28		
29 30	14	Beijing, China
31	15	(2) Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing,
32 33	16	China
34	17	(3) Department of Ophthalmology, Medical Faculty Mannheim of the
35 36	17	(3) Department of Ophthalmology, Medical Pacity Manmellin of the
37	18	Ruprecht-Karls-University, Mannheim, Germany
38 39	19	
40 41	20	
42		
43 44	21	
45	22	Running title: Stroke and Eye Diseases
46 47	23	Keywords: Stroke; Retinal nerve fiber layer; Optic nerve; Glaucoma; Age-related macular
48 49	24	degeneration; Diabetic retinopathy; Diabetes mellitus; Beijing Eye Study
50 51	25	Corresponding author: Prof. Wen Bin Wei, Beijing Tongren Eye Center, Beijing Tongren
52 53	26	Hospital, Capital Medical University; Beijing Key Laboratory of Intraocular Tumor Diagnosis
54 55	27	and Treatment, Beijing Ophthalmology and Visual Science Key Laboratory, 1 Dong Jiao Min
56 57	28	Xiang, Dong Cheng District, Beijing, China. 100730 (Tel: 86-10-58269516; Fax:
58 59	29	86-10-65125617. Email: weiwenbintr@163.com;
60		

2 Stroke and Eye Diseases

2 3	
4 5	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16 17	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 22	
20	
21 22	
23	
24 25	
26 27	
27	
<ol> <li>18</li> <li>19</li> <li>20</li> <li>21</li> <li>22</li> <li>23</li> <li>24</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>30</li> </ol>	
31	
32 33	
34 35	
32 33 34 35 36 37 38	
37 38	
39	
40 41	
42 43	
44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55	
56 57	
58 59	
60	

60

31	Abstract
32	<b>Objective:</b> To assess the prevalence of cerebral stroke in the general population of Beijing
33	and its association with systemic risk factors and ocular diseases.
34	Setting: The population-based Beijing Eye Study was conducted in a rural and urban region
35	of Beijing.
36	Participants: With an eligibility criterion of an age of 50+ years and living in the study
37	regions, 3468 subjects (78.8%) out of 4403 eligible individuals participated.
38	Primary and secondary outcome measures: The study participants underwent a detailed
39	systemic and ophthalmological examination and an interview in which the occurrence of a
40	previous stroke was assessed.
41	Results: A previous stroke was reported by 235 individuals (7.33%;95% confidence interval
42	[CI]:6.43,8.24). The prevalence of previous stroke increased from 2.0% (95%CI:0.9,3.1) in
43	the age group of 50 to <55 years to 21.9% (95%CI:16.4,27.4) in the age group of 80+ years.
44	In multivariable regression analysis, a higher prevalence of previous stroke was correlated
45	(Nagelkerke R ² :0.20) with the systemic parameters of older age ( <i>P</i> <0.001;odds ratio
46	[OR ]:1.06;95%CI:1.04,1.08), male gender ( <i>P</i> <0.001;OR:0.54;95%CI:0.40,0.74), lower quality
47	of life score ( <i>P</i> <0.001;OR:1.39;95%CI:1.25,1.55), higher prevalence of arterial hypertension
48	(P<0.001;OR:2.86;95%CI:2.05,3.98), and cardiovascular disease
49	(P<0.001;OR:1.8554;95%CI:1.34,2.56), and with the ocular parameter of higher prevalence of
50	diabetic retinopathy (P<0.001;OR:4.41;95%CI:2.38,8.18) (or alternatively, with higher stage of
51	diabetic retinopathy ( <i>P</i> <0.001;OR:1.64;95%CI:1.26,2.14).
52	<b>Conclusions:</b> In this North Chinese population aged 50+ years, the prevalence of a previous
53	stroke was 7.33% (95%CI:6.43,8.24). After adjusting for systemic risk factors of older age,
54	male gender and higher prevalence of arterial hypertension and cardiovascular disease, a
55	higher prevalence of a previous stroke was significantly correlated with a higher prevalence
56	and stage of diabetic retinopathy. The prevalence of a previous stroke increased for each
57	step of an increase in the stage of diabetic retinopathy with an odds ratio of 1.64
58	(95%CI:1.26,2.14), and it increased by the presence of diabetic retinopathy with an odds ratio
59	of 4.41 (95%CI:2.38,8.18).

2		
3 4	61	
5 6	62	Article Summary
7 8	63	Strengths and limitations of this study:
9 10	64	- Limitation: Data on the prevalence of a previous stroke depended on self-reported
11 12	65	information; patients who had died as a sequel of a previous stroke were not included into the
13 14	66	study; the results of our study are therefore valid primarily only for stroke survivors.
15 16	67	- Limitation: Intracerebral hemorrhage was not differentiated from ischemic stroke.
17 18	68	- Limitation: Cross-sectional analysis
19 20	69	- Strength: Population-based study design
21	70	- Strength: Large number of parameters including ophthalmological variables assessed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		- Strength: Large number of parameters including ophthalmological variables assessed

4 Stroke and Eye Diseases

3	
4 5	
6 7	
7 8	
9	
10	
11 12	
13	
14 15	
16 17	
17 18	
19	
20 21	
22	
23 24	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
58 59	
60	

1 2

#### 72 Introduction

Cerebral stroke as one of the main contributors of the global burden of disease has caused 73 116 million or 4.8% of all DALYs (Disability-Adjusted Life Years) and 14.5 million or 1.8% of all 74 YLDs (Years Lived with Disability) worldwide in the year 2013.^{1.4} In particular China has 75 76 witnessed a marked increase in the importance of stroke in the spectrum of diseases causing 77 DALYS and years of life lost (YLLs). While in 1990, lower respiratory infections or preterm 78 birth complications were the leading causes of YLLs in almost half of the provinces of China 79 (16 out of 33), cerebrovascular disease were the leading cause in 27 of the 33 provinces in 80 2013.^{5,6} Since the eye and brain share the same arterial blood supply through the inner 81 carotid artery and since the retina and optic nerve as former outgrowth of the anterior end of 82 the embryological neural groove are of neuro-ectodermal origin, a major cerebral disease such 83 as stroke may be associated with ocular diseases, in particular disorders of the optic nerve and 84 retina. Since comprehensive population-based studies on associations between stroke and 85 ocular parameters have been scare so far and have not been conducted for the population of 86 China, we investigated the prevalence of cerebral stroke and its potential associations with 87 ocular diseases, after adjusting for systemic factors, in a population-based study performed in 88 China.

89

90

#### 91 Methods

92 The Beijing Eye Study 2011 is a population-based study which was conducted in a rural region 93 and an urban area of Greater Beijing. The Medical Ethics Committee of the Beijing Tongren 94 Hospital approved the study design, and all study participants gave an informed consent. 95 The eligibility criteria for inclusion into the study were an age of 50+ years and living in the 96 Out of 4403 eligible individuals, 3468 subjects (1963 (56.6%) women) study regions. 97 participated (response rate: 78.8%). The mean age was 64.6 ± 9.8 years (median 64 years; 98 range: 50–93 years). There were 1633 (47.1%) individuals (943 (57.7%) women) coming 99 from the rural region, with the remaining 1835 (52.9%) study participants (1020 (55.6%) 100 women) living in the urban region. The study design has been described in detail 101 previously.7,8

**BMJ** Open

All study participants underwent a structured interview by trained research technicians. The interview included more than 200 standardized questions on demographic parameters, socioeconomic background, diet and alcohol consumption, smoking habits, known major systemic diseases and current systemic medical therapies. Using the mini-mental state examination (MMSE) scale, we assessed the cognitive function. Fasting blood samples were collected for measurement of blood lipids, glucose, glycosylated hemoglobin HbA1c and serum creatinine. The blood pressure was measured with the participant sitting for at least 5 min. We also measured body height and weight and the circumference of the waist and hip.

Arterial hypertension was defined by a systolic blood pressure ≥160 mm Hg and/or a diastolic blood pressure ≥95 mm Hg, and/or self-reported current treatment for arterial hypertension with antihypertensive medication. Diabetes mellitus was characterized by a blood glucose concentration  $\geq$ 7.0 mmol/L, an HbA1c value  $\geq$ 6%, by a self-reported history of physician diagnosis of diabetes mellitus, or by a history of drug treatment for diabetes (insulin or oral hypoglycemic agents). Depressive symptoms were evaluated using a Chinese depression scale adapted from the Zung self-rated depression scale.⁹ The prevalence of previous stroke was examined in the interview by standardized questions on whether a previous cerebral stroke had occurred with typical symptoms such as sudden-onset face weakness, arm drift, abnormal speech hemiplegia, or numbness for at least 24 hours, when such a stroke had occurred, and whether it had been treated.

The ophthalmological examination consisted of automatic refractometry (Auto Refractometer AR-610; Nidek Co., Ltd, Tokyo, Japan), measurement of presenting visual acuity, uncorrected visual acuity and best-corrected visual acuity, tonometry, slit lamp based biomicroscopy of the anterior and posterior segment of the eyes, and photography of the cornea and lens (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan) and of the macula and optic disc (fundus camera; Type CR6-45MM; Canon Inc., Tokyo, Japan) in medical mydriasis. Using the photographs, we measured the dimensions of the optic disc, optic cup and parapapillary alpha, beta and gamma zones. The optic nerve head and macula were additionally examined by spectral-domain optical coherence tomography (OCT) using the enhanced depth imaging modality (Spectralis; Heidelberg Engineering, Heidelberg, Germany).

 6 Stroke and Eye Diseases

We determined the thickness of the peripapillary retinal nerve fiber layer, of the retina in the foveal region and of the subfoveal choroid. Applying optical low-coherence reflectometry (Lenstar 900 Optical Biometer; Haag-Streit, Koeniz, Switzerland), we measured ocular biometric parameters such as the anterior corneal curvature, central corneal thickness, anterior chamber depth, lens thickness and axial length. The degree of cataract was determined using the lens photographs. The degree of nuclear opacities was assessed in 6 grades using the grading system of the Age-Related Eye Disease Study.¹⁰ In addition, retro-illuminated photographs of the lens were obtained (Neitz CT-R camera; Neitz Instruments Co., Tokyo, Japan), and the percentage of the areas with cortical and posterior subcapsular lens opacities was measured using a grid. The standard to diagnose a nuclear cataract was a nuclear cataract grade of 4 or more, the standard to diagnose a posterior subcapsular cataract was an amount of posterior subcapsular opacities of 0.01 or more, and the standard to diagnose a cortical cataract was an amount of cortical opacities of 0.05 or more. The degree of fundus tessellation defined as the visibility of the large choroidal vessels was assessed on the fundus photographs of the macula and of the optic disc as described in detail previously.⁸ It was graded using a scale which ranged from "0" for "no tessellation" to "3" for "marked tessellation". Diabetic retinopathy was assessed on the fundus photographs using the Early Treatment of Diabetic Retinopathy Study (ETDRS) criteria. The minimum criterion for diagnosis of diabetic retinopathy was the presence of at least one microaneurysm. The diagnosis for each individual was based on the grading of the individual's eye with the highest stage of diabetic retinopathy. We differentiated between the mild non-proliferative stage, the moderate non-proliferative stage, the advanced non-proliferative stage, and the proliferative stage of diabetic retinopathy. Glaucomatous optic neuropathy was defined using the criteria of the International Society of Geographic and Epidemiological Ophthalmology ISGEO.¹¹ Pseudoexfoliation was assessed by an experienced ophthalmologist during the slit lamp assisted biomicroscopy of the anterior segment after pupillary dilation. The diagnosis of pseudoexfoliation was definite, if the lens surface showed a central whitish coating with a diameter of little less than the normal pupillary diameter, or if the periphery of the lens surface showed a whitish coating which was anteriorly bordered by a darker ring-like region on the lens surface. The assessment of

2		
3 4	162	pseudoexfoliation was performed only in phakic eyes. For the diagnosis of age-related
5 6	163	macular degeneration, the International ARM (Age-related Maculopathy Epidemiological Study
7 8	164	Group) Grading system was used. The subjective symptoms of dry eye were evaluated using
9 10	165	a questionnaire composed of three questions: "Do your eyes ever feel dry?"; "Do you ever feel
11 12	166	a gritty or sandy sensation in your eyes?"; and "Do your eyes ever have a burning sensation?"
13 14	167	Possible answers to the questions were none (0), less than once a month (1), once or twice a
15 16	168	week (2), at least once every day (3), all the time (4). The presence of dry eye symptoms was
17 18	169	defined as having one or more symptoms at least once every day (3 and 4). A quantitative
19 20	170	grading score of subjective dry eye symptoms was obtained by summarizing the answers to
21 22	171	the different questions $(0-12)$ . ¹²
23 24	172	The statistical analysis was performed using a commercially available statistical
25 26	173	software package (SPSS for Windows, version 25.0, IBM-SPSS, Chicago, IL, USA). Date
27 28	174	were shown as mean (standard deviation), frequency (%, 95% confidence interval [CI]), or
29 30	175	median (interquartile range) where appropriate. The differences in parameters such as age
31 32	176	and sex between participants with stroke and participants without stroke were assessed by the
33	177	student t-test for unpaired samples or by the chi-square test. We tested associations
34 35 26	178	between baseline characteristics and stroke with logistic regression adjusting for age and sex.
36 37	179	Significant covariates from the step above ( $P < 0.10$ ) were included in multivariable models.
38 39	180	We reduced the full model by successively removing non-significant covariates until all
40 41	181	remaining predictors remained statistically significant ( $P < 0.05$ ). We calculated the odds ratio
42 43	182	(OR). All P-values were two-sided and considered statistically significant, if the values were
44 45	183	less than 0.05.
46 47	184	Patient and Public Involvement statement: Patients were not involved in this study
48 49	185	
50 51	186	
52 53	187	Results
54 55	188	Out of 3468 study participants, 3205 (92.4%) individuals participated in the interview with
56 57	189	available information on previous stroke and underwent the systemic and ophthalmologic
58 59	190	examination. The participating group as compared to the group of individuals without
60	191	available information on previous stroke or without systemic and ocular examination was

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8 Stroke and Eye Diseases significantly younger ( $64.4 \pm 9.7$  years (median: 63 years; range: 50 - 93 years) versus  $67.1 \pm 100$ 11.1 years; P<0.001) and came significantly more often from the urban region than from the rural area (rural / urban region of habitation: 1439 / 1766 versus 194 / 69; P<0.001), while the differences in gender (men / women: 1386 / 1819 versus 119 / 144; P=0.56), axial length (23.3  $\pm$  1.1 mm versus 23.2  $\pm$  1.9 mm; *P*=0.31) and refractive error (-0.22  $\pm$  2.12 diopters versus -0.31 ± 2.17 diopters; P=0.59) were not statistically significant. A previous stroke was reported by 235 individuals (235 / 3205 or 7.33% [95%CI: 6.43, 8.24]). Among the 235 patients, 192 individuals were on oral medication for the prophylaxis of a recurrence of the stroke. The stroke had taken place  $7.5 \pm 5.7$  years ago (median: 7 years; range: 1 month to 26 years). In the stroke group as compared with the non-stroke group (control group), age was significantly older (71.1 ± 9.2 years versus 63.9 ± 9.5 years; P<0.001) and had a higher proportion of men than women (men / women: 128 / 107 versus 1258 / 1712; P<0.001) (Fig. 1). The prevalence of a previous stroke increased from 2.0% (95%CI: 0.9, 3.1) in the age group of 50 to <55 years, to 6.9% (95%CI: 4.5, 9.2) in the age group of 65 to <70 years and to 21.9% (95%CI: 16.4, 27.4) in the age group of 80+ years (Table 1). Since many systemic and ocular parameters were age-related, we performed in a next step of the statistical examination a binary regression analysis with the prevalence of stroke as the dependent parameter and other systemic and ocular parameters as single independent variables, with adjusting for age and gender (Table 2). In that analysis, a higher prevalence of stroke was associated with the systemic parameters of higher body mass index (P=0.03), lower frequency of alcohol consumption (P=0.001), lower number of days with vigorous

physical activities (P=0.05) or moderately intensive physical activities (P=0.01) and higher number of hours spent with sitting per day (P=0.04), lower life quality score (P<0.001), higher depression score (P<0.001), higher blood concentration of glucose (P=0.01) and glycosylated hemoglobin HbA1c (P=0.008), and higher prevalence of diabetes mellitus (P<0.001) and arterial hypertension (P<0.001); and with the ocular parameters of thicker central corneal thickness (P=0.09), lower foveal thickness (P=0.04), higher incidence of localized retinal nerve fiber layer defects (P=0.06), dry eye feeling (P=0.08), and higher prevalence of keratoconus

221 ( $\geq$ 49 diopters) (*P*=0.02), nuclear cataract (*P*=0.06) and presence and stage diabetic

2 3 4	222	retinopathy ( <i>P</i> <0.001) (Table 2) (Fig. 2).
5 6	223	The multivariable analysis included the prevalence of previous stroke as dependent
7 8	224	variable and as independent variables all those systemic parameters for which the P-value in
9 10	225	the previous analysis was <0.10 (Table 2). We then dropped in step-by-step manner all
11 12	226	independent parameters (such as the prevalence of diabetes mellitus) which either showed a
13 14	227	collinearity with one of the other independent variables or which were no longer statistically
15 16	228	significantly correlated with the prevalence of a previous stroke. In the final model, a higher
17 18	229	prevalence of previous stroke was correlated (Nagelkerke R ² : 0.20) with older age ( <i>P</i> <0.001),
19 20	230	male gender ( <i>P</i> <0.001), lower quality of life score ( <i>P</i> <0.001), higher prevalence of arterial
20 21 22	231	hypertension (P<0.001) and cardiovascular disease (P<0.001), and higher prevalence of
23	232	diabetic retinopathy ( <i>P</i> <0.001) (Table 3). If the parameter of prevalence of diabetic
24 25 26	233	retinopathy was replaced by the diabetic retinopathy stage, the latter was associated with
26 27	234	previous stroke ( <i>P</i> <0.001; OR: 1.64; 95%CI: 1.26, 2.14).
28 29	235	
30 31	236	
32 33	237	Discussion
32 33 34 35		<b>Discussion</b> In our population-based study on a population aged 50+ years in Greater Beijing, the
32 33 34 35 36 37	237	
32 33 34 35 36 37 38 39	237 238	In our population-based study on a population aged 50+ years in Greater Beijing, the
32 33 34 35 36 37 38 39 40 41	237 238 239	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the
32 33 34 35 36 37 38 39 40	237 238 239 240	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial
32 33 34 35 36 37 38 39 40 41 42	237 238 239 240 241	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was
32 33 34 35 36 37 38 39 40 41 42 43 44	237 238 239 240 241 242	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2).
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	237 238 239 240 241 242 243	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	237 238 239 240 241 242 243 244	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	237 238 239 240 241 242 243 244 245	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18).
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	237 238 239 240 241 242 243 244 245 246	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18). The findings obtained in our study agree with the results of previous investigations.
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	237 238 239 240 241 242 243 244 245 246 247	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%CI:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%CI: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%CI: 2.38, 8.18). The findings obtained in our study agree with the results of previous investigations. In a review of studies conducted since 1990 in Chinese populations, Tsai and colleagues
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	237 238 239 240 241 242 243 244 245 246 247 248	In our population-based study on a population aged 50+ years in Greater Beijing, the prevalence of a previous stroke was 7.33% (95%Cl:6.43,8.24). After adjusting for the systemic risk factors of older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease, a higher prevalence of a previous stroke was significantly correlated with the presence and a higher stage of diabetic retinopathy (Fig. 2). The prevalence of a previous stroke increased for each increase in the stage of diabetic retinopathy (with altogether 4 stages) by an odds ratio of 1.64 (95%Cl: 1.26, 2.14), and for the presence of diabetic retinopathy by an odds ratio of 4.41 (95%Cl: 2.38, 8.18). The findings obtained in our study agree with the results of previous investigations. In a review of studies conducted since 1990 in Chinese populations, Tsai and colleagues reported on an age-standardized annual first-ever stroke incidence of 205-584 per 100,000 in

 10 Stroke and Eye Diseases

(37.8 per 100,000 person-years in 1992-1998, 46.5 in 1999-2005, and 76.5 in 2006-2012) and for ischemic stroke (83.9 in 1992-1998, 135.3 in 1999-2005, and 238.0 in 2006-2012).¹⁴ The age-standardized incidence of first-ever stroke increased annually by 4.9% for intracerebral hemorrhage and by 7.3% for ischemic stroke. In a similar study, Ning and associates found that the age-standardized incidence of first-ever stroke per 100 000 person-years increased significantly, from 122 in the years 1992 to 1999, to 216 in 2000 to 2007, and to 471.8 in 2008 to 2015.¹⁵ The greatest increases were observed in adults aged 55 to 64 years. In the China National Stroke Screening Survey as reported by Guan and coworkers, the adjusted stroke prevalence in 2014 was 2.06% in adults aged 40 years and older.¹⁶ The incidence of first-ever stroke in adults aged 40-74 years increased from 189/100,000 individuals in 2002 to 379/100,000 in 2013-an overall annual increase of 8.3%. The systemic factors associated with the prevalence of a previous Stroke in our study population were similar to those reported in previous investigations: older age, male gender and a higher prevalence of arterial hypertension and cardiovascular disease. In the China National Stroke Screening Survey, the largest contributor as risk factor was arterial hypertension (population-attributable risk 53.2%), followed by family history, dyslipidemia, atrial fibrillation, diabetes, physical inactivity, smoking, and overweight/obesity.¹⁶ The interesting finding in our study is that, after adjusting for other systemic risk factors, the presence of diabetic of diabetic retinopathy increased the likelihood of a previous stroke by an odds ratio of 4.41, and in a parallel manner, that an increase by one step in the stage of diabetic retinopathy increased the probability of a previous stroke by an odds ratio of 1.64. In previous studies by Cheung et al. and by Petitti and colleagues a similar association was described.^{17,18} In a population-based, prospective cohort study of 1617 middle-aged persons with diabetes, Cheung found that after a mean follow-up of 7.8 years diabetic retinopathy was associated with an increased risk of ischemic stroke (hazard rate ratio, 2.34; 95% CI, 1.13 to 4.86), after adjusting for systemic parameters such as age, gender, race, arterial blood 

pressure, duration and therapy of diabetes, blood lipid concentrations and levels and cigarette
 smoking status.¹⁷ In an earlier study, Petitti and associates found in a nested case-control

study, that the estimated relative risk of stroke in diabetic subjects with retinopathy was 4.0

281 (95%CI: 1.0, 14.5) after adjustment for systemic risk factors.¹⁸ The reason for this

**BMJ** Open

association may be that diabetic retinopathy as a microangiopathy indicates a wide-spreadvascular disorder.

When discussing the results of our study, its limitations have to be taken into account. First, the data on the prevalence of a previous self-reported stroke depended on the information provided by the study participants in the face-to-face interviews. Since stroke is a dramatic event, it is unlikely to be under-reported. Transient ischemic attacks might occur unnoticed by the individuals so that transient ischemic attacks might be under-reported in an interview of previous cerebral strokes. Our study was based however primarily on previous cerebral strokes which were defined as an occurrence of typical neurological symptoms for at least 24 hours. It may make it unlikely that unnoticed previous transient ischemic attacks might have markedly influenced the results of our study. Second, patients who had died as a sequel of a previous stroke were not included into the study. The results of our study are therefore valid primarily only for stroke survivors. Third, due to regional differences in China, findings obtained in our study may not completely be transferable to South China or pother world regions.¹⁹ Fourth, we did not differentiate between intracerebral hemorrhage and ischemic stroke.²⁰ Fifth, we did not assess the role of atrial fibrillation as risk factor for stroke in our study. Fifth, the study population with an age of 50+ years had experienced major societal changes and economic developments in China during their lifetime. This elderly generation may differ from the young generations in China and from populations in other countries. Sixth, our investigation was a cross-sectional observational study, so that a reverse causality may have existed in the sense that diabetic retinopathy might have been the sequel of stroke.

In conclusion, in this North Chinese population aged 50+ years, the prevalence of a
previous stroke was 7.33% (95%CI:6.43,8.24). The presence and stage of diabetic
retinopathy were ocular risk factors for a higher prevalence of a previous stroke, after adjusting
for the systemic risk factors of older age, male gender and a higher prevalence of diabetes
mellitus and cardiovascular disease. The prevalence of a previous stroke increased for each
step of an increase in the stage of diabetic retinopathy with an odds ratio of 1.64
(95%CI:1.26,2.14), and it increased by the presence of diabetic retinopathy with an odds ratio

2		
3 4	311	of 4.41 (95%CI:2.38,8.18). Individuals with diabetic retinopathy appear to be a group at
5 6	312	particularly high risk of cerebral stroke.
7 8	313	
9 10	314	
11 12	315	A. contributor ship statement: Design and conception: Ya Xing Wang, Wen Bin Wei, Liang Xu,
13 14	316	Jost B. Jonas; Statistical analysis: Ya Xing Wang, Jost B. Jonas; Writing of the manuscript:
15 16	317	Jost B. Jonas; Editing and final approval of the manuscript: Ya Xing Wang, Wen Bin Wei,
17 18	318	Liang Xu , Jost B. Jonas;
19 20	319	B. competing interests: None
21 22	320	C. Funding: Supported by State Natural Sciences Fund (81041018) and the Natural Sciences
23 24	321	Fund of Beijing government (7092021; 7112031). The funders had no role in study design,
25 26	322	data collection and analysis, decision to publish, or preparation of the manuscript.
27 28	323	D. Data sharing statement: The datafile will be available on request.
29		
30 21		
31 32		
33		
34		
35 36		
30 37		
38		
39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		13 Slible and Lye Diseases
33	25	References
33	26	1. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national
3	27	disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy
3	28	(HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global
3	29	Burden of Disease Study 2016. Lancet. 2017;390:1260-1344.
3	30	2. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional,
3	31	and national incidence, prevalence, and years lived with disability for 328 diseases and injuries
3	32	for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study
3	33	2016. Lancet. 2017;390:1211-1259.
3	34	3. Feigin VL, Mensah GA, Norrving B, Murray CJ, Roth GA; GBD 2013 Stroke Panel Experts
3	35	Group. Atlas of the Global Burden of Stroke (1990-2013): The GBD 2013 Study.
3	36	Neuroepidemiology. 2015;45:230-236.
3	37	4. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update
3	38	on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013
3	39	Study. Neuroepidemiology. 2015;45:161-176.
34	40	5. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, et al. Cause-specific mortality for 240
34	41	causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of
34	42	Disease Study 2013. Lancet. 2016;387:251-272.
34	43	6. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden
34	44	of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the
34	45	Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913-924.
34	46	7. Xu J, Xu L, Du KF, Shao L, Chen CX, Zhou JQ, et al. Subfoveal choroidal thickness in
34	47	diabetes and diabetic retinopathy. Ophthalmology. 2013;120:2023-2028.
34	48	8. Yan YN, Wang YX, Xu L, Xu J, Wei WB, Jonas JB. Fundus tessellation: Prevalence and
34	49	associated factors. The Beijing Eye Study 2011. Ophthalmology. 2015;122:1873-1880
3	50	9. Zung WW A Self-rating depression scale. Arch Gen Psychiatry. 1965;12:63-70.
3	51	10. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study
3	52	(AREDS) system for classifying cataracts from photographs: AREDS report no. 4. Am J
3	53	Ophthalmol. 2001;131:167-175
3	54	11. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of

1		14 Stroke and Eye Diseases
2 3		
4	355	glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238-242
5 6	356	12. Jie Y, Xu L, Wu YY, Jonas JB. Prevalence of dry eye among adult Chinese in the Beijing
7 8	357	Eye Study. Eye. 2009;23:688-693.
9 10	358	13. Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs
11 12	359	white populations: a systematic review. Neurology. 2013;81:264-272.
13 14	360	14. Li B, Lou Y, Gu H, Long X, Wang T, Wei J, et al. Trends in incidence of stroke and
15 16	361	transition of stroke subtypes in rural Tianjin China: A population-based study from 1992 to
17 18	362	2012. PLoS One. 2015;10:e0139461.
19 20	363	15. Ning X, Sun J, Jiang R, Lu H, Bai L, Shi M, et al. Increased stroke burdens among the
21 22	364	low-income young and middle aged in rural China. Stroke. 2017;48:77-83.
23 24	365	16. Guan T, Ma J, Li M, Xue T, Lan Z, Guo J, et al. Rapid transitions in the epidemiology of
25 26	366	stroke and its risk factors in China from 2002 to 2013. Neurology. 2017;89:53-61.
27 28	367	17. Cheung N, Rogers S, Couper DJ, Klein R, Sharrett AR, Wong TY. Is diabetic retinopathy
29 30	368	an independent risk factor for ischemic stroke? Stroke. 2007;38:398-401.
31 32	369	18. Petitti DB, Bhatt H. Retinopathy as a risk factor for nonembolic stroke in diabetic subjects.
33	370	Stroke. 1995;26:593-596.
34 35	371	19. Xu G, Ma M, Liu X, Hankey GJ. Is there a stroke belt in China and why? Stroke.
36 37	372	2013;44:1775-1783.
38 39	373	20. Zhang LF, Yang J, Hong Z, Yuan GG, Zhou BF, Zhao LC, et al. Proportion of different
40 41	374	subtypes of stroke in China. Stroke. 2003;34:2091-2096.
42 43		
44		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55		
56		
57 58		
58 59		
60		

#### 376 Table 1

377 Prevalence (Mean and 95% Confidence Interval) of previous stroke in the Beijing Eye Study

Age Group	Men		Women		Total		
(Years)							
	n	Prevalence	n	Prevalence	n	Prevalence	
50 to <55	250	2.5% (0.5, 4.3)	363	1.7% (0.3, 3.0)	613	2.0% (0.9, 3.1)	
55 to <60	237	3.0% (0.8, 5.1)	366	3.0% (1.3, 4.8)	603	3.0% (1.6, 4.4)	
60 to <65	196	7.7% (3.9, 11.4)	282	6.7% (3.8, 9.7)	478	7.1% (4.8, 9.4)	
65 to <70	168	8.3% (4.1, 12.6)	270	5.9% (3.1, 8.8)	438	6.9% (4.5, 9.2)	
70 to <75	247	10.9% (7.0,	256	8.6% (5.1, 12.1)	503	9.7% (7.1, 12.3)	
		14.9)					
75 to <80	169	16.6 (10.9,	182	8.8% (4.6, 12.9)	351	12.5% (9.1, 16.0)	
		22.2)					
80+	119	18.1, 34.1)	100	17.0% (9.5, 24.5)	219	21.9% (16.4,	
				4.		27.4)	
				0			

# 381 Table 2

382 Associations between the prevalence of cerebral stroke and systemic and ocular parameters

383 after adjusting for age and gender in the Beijing Eye Study 2011

## 

			0.50/
Parameter	<i>P</i> -Value	Odds Ratio	95%
			Confidence
			Interval
Systemic Parameters			
Rural / Urban Region of Habitation	0.11	1.29	0.95, 1.75
Body Mass Index (kg/m ² )	0.03	1.04	1.001, 1.08
Level of Education (1-5)	0.64	1.04	0.92, 1.18
Self-Reported Income	0.73	0.99	0.93, 1.05
Cognitive Score	0.77	1.00	0.96, 1.03
Alcohol Consumption Frequency	0.001	0.85	0.77, 0.94
Smoking Never / Former/ Current	0.19	0.87	0.71, 1.07
Smoking Never / Ever	0.98	1.00	0.72, 1.38
Smoking Package Years	0.38	1.00	1.00, 1.01
Physical Activity	6	2	
"How Many Days Do you Walk?"	0.51	0.98	0.92, 1.04
"How Many Days Do You Do	0.05	0.81	0.66, 1.00
Vigorously Intensive Sport or			
Activities?"			
"How Many Days Do You Do	0.01	0.94	0.89, 0.99
Moderately Intensive Sport or			
Activities?"			
"How Many Hours Do You Sit Per	0.04	1.06	1.004, 1.12
Day?"			
Quality of Life			
Summed Score	<0.001	1.44	1.31, 1.59

Mobility: I have no / some problems	<0.001	2.79	2.01, 3.86
in walking about / I am confined to bed			
Self-Care: I have I have no / some	<0.001	3.33	2.33, 4.75
problems in washing or dressing			
myself / I am unable to wash or dress			
myself			
Usual Activities (e.g. Work, study,	<0.001	3.27	2.36, 4.53
housework, family or leisure activities):			
I am able to wash or dress myself / I			
have some problems with performing			
my usual activities / I am unable to			
perform my usual activities			
Pain/Discomfort:	0.001	1.62	1.22, 2.14
Anxiety/Depression: I am not /	<0.001	2.07	1.45, 2.95
moderately / extremely anxious or			
depressed	4.		
Depression Score	<0.001	1.06	1.04, 1.08
Blood Concentration of:		2	
Glucose (mmol/L)	0.01	1.11	1.02, 1.21
Glycosylated hemoglobin HbA1c	0.008	1.18	1.04, 1.33
High-Density Lipoproteins (mmol/L)	0.11	0.70	0.45, 1.09
Low-Density Lipoproteins (mmol/L)	0.28	0.90	0.74, 1.09
Triglycerides (mmol/L)	0.95	1.01	0.86, 1.17
Cholesterol (mmol/L)	0.18	0.88	0.74, 1.06
C-reactive Protein	0.47	1.01	0.98, 1.04
Diabetes Mellitus, Prevalence	<0.001	1.86	1.32, 2.61
Diabetes Mellitus, Duration (Years)	0.08	1.02	1.00, 1.04
Systolic Blood Pressure (mmHg)	0.14	1.01	1.00,1.02
Diastolic Blood Pressure (mmHg)	0.82	1.00	0.99, 1.01

18 Stroke and Eye Diseases

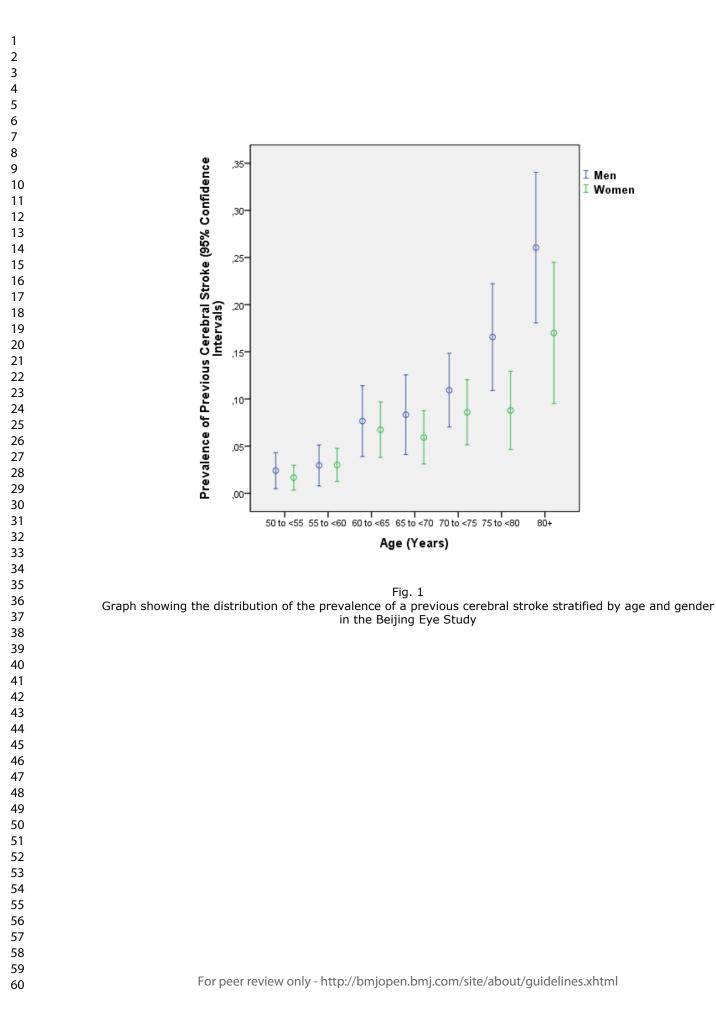
Mean Blood Pressure (mmHg)	0.40	1.00	0.99, 1.01
Arterial Hypertension	<0.001	2.42	1.76, 3.34
Estimated Cerebrospinal Fluid	0.17	1.03	0.99, 1.09
Pressure (mm Hg)			
Creatinine (mmol/L)	0.67	1.00	0.99, 1.02
Estimated Glomerular Filtration Rate	0.79	1.00	0.99, 1.01
(GFR) (mL/min / 1·73 m²) (MDRD			
Formula)			
Estimated Glomerular Filtration Rate	0.79	1.00	0.98, 1.01
(mL/min / 1·73 m²) (CKDE Formula)			
Ocular Parameters			
Refractive Error (Diopters)	0.47	0.98	0.92, 1.04
Axial Length (mm)	0.70	0.98	0.86, 1.11
Anterior Corneal Curvature Radius	0.16	0.66	0.37, 1.18
(mm)			
Central Corneal Thickness (µm)	0.09	1.004	0.999, 1.008
Anterior Chamber Depth (mm)	0.92	1.01	0.79, 1.29
Lens Thickness (mm)	0.14	1.41	0.89, 2.22
Intraocular Pressure mmHg)	0.66	1.01	0.96, 1.06
Retinal Nerve Fiber Layer Thickness	0.62	1.00	0.99, 1.01
(μm)			
Localized Defects of the Retinal Nerve	0.42	1.18	0.79, 1.77
Fiber Layer, Prevalence			
Localized Defects of the Retinal Nerve	0.06	1.83	0.98, 3.42
Fiber Layer, 10-Year Incidence			
Subfoveal Choroidal Thickness (µm)	0.83	1.00	1.00, 1.00
Fundus Tessellation	0.66	1.02	0.92, 1.13
Macular Retinal Thickness (µm)	0.04	0.994	0.989, 1.000
Optic Disc Size (mm ² )	0.69	1.09	0.71, 1.70

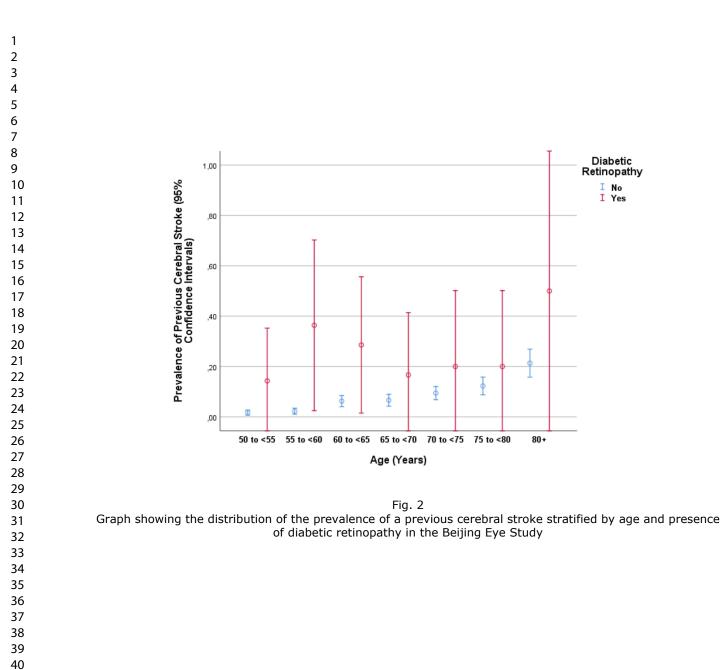
#### Page 19 of 25

Neuroretinal Rim Area (mm ² )	0.52	1.15	0.75, 1.77
Dry Eye, Yes or No	0.80	1.04	0.79, 1.36
Dry Eye, Number of Days	0.08	1.04	0.995, 1.10
Keratoconus (Anterior Corneal	0.27	2.04	0.58, 7.18
Curvature refractive Power ≥48			
Diopters)			
Keratoconus (Anterior Corneal	0.02	8.00	1.31, 48.9
Curvature refractive Power ≥49			
Diopters)			
Pseudoexfoliation Syndrome	0.49	0.82	0.47, 1.43
Nuclear Cataract	0.06	0.72	0.51, 1.02
Cortical Cataract	0.87	0.97	0.66, 1.43
Subcapsular Posterior Cataract	0.34	1.29	0.77, 2.16
Glaucoma, Prevalence, Total	0.61	0.87	0.52, 1.47
Open-Angle Glaucoma	0.26	0.63	0.28, 1.40
Primary Angle-Closure Glaucoma	0.36	0.57	0.17, 1.89
Age-Related Macular Degeneration,	0.60	0.92	0.68, 1.25
Prevalence, Total	6	2	
Age-Related Macular Degeneration,	0.29	0.75	0.44, 1.28
Early Stage		5	
Age-Related Macular Degeneration,	0.75	0.95	0.67, 1.34
Intermediate Stage			
Age-Related Macular Degeneration,	0.11	2.26	0.84, 6.06
Late Stage			
Diabetic Retinopathy, Prevalence	<0.001	1.63	1.27, 2.08
Diabetic Retinopathy, Score	<0.001	4.75	2.67, 8.46
Retinal Vein Occlusion, Total	0.18	1.55	0.82, 2.93
Branch Retinal Vein Occlusion	0.65	1.25	0.48, 3.29
Myopic Retinopathy	0.77	1.20	0.36, 4.03

386 Table 3

 387 Associations (multivariable analysis) between the prevalence of cerebral stroke and systemic


388 and ocular parameters in the Beijing Eye Study 2011


390				
391	Parameter	<i>P</i> -Value	Odds Ratio	95%
392			(OR)	Confidence
393				Interval of OR
394	Age (Years)	<0.001	1.06	1.04, 1.08
395	Gender (Men / Women)	<0.001	0.54	0.40, 0.74
396	Inverse Quality of Life Score	<0.001	1.39	1.25, 1.55
397	Prevalence of Arterial	<0.001	2.86	2.05, 3.98
398	Hypertension	) ()		
399	Cardiovascular Disease	<0.001	1.85	1.34, 2.56
400	Prevalence of Diabetic	<0.001	4.41	2.38, 8.18
401	Retinopathy		1.	
402	(Alternatively: Stage of	<i>P</i> <0.001	1.64	1.26, 2.14
403	Diabetic Retinopathy)		2	7

1		21 Stroke and Eye Diseases
2		
3 4	408	Fig. 1
5 6	409	Graph showing the distribution of the prevalence of a previous cerebral stroke stratified by age
7 8	410	and gender in the Beijing Eye Study
9 10	411	
11 12	412	Fig. 2
13 14	413	Graph showing the distribution of the prevalence of a previous cerebral stroke stratified by age
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 50 51 52 53 45 56 57 58	414	and presence of diabetic retinopathy in the Beijing Eye Study
59 60		

I Men

I Women





For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—Checklist of items that should be	be included in reports of <i>cross-sectional studies</i>

	Item No	Recommendation	Page: Line
Title and abstract	1	( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract	1:4
		(b) Provide in the abstract an informative and balanced summary of	2: 52-58
		what was done and what was found	2.52.50
Introduction		what was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation	4: 72-86
Buengroundrunonare		being reported	1. 72 00
Objectives	3	State specific objectives, including any prespecified hypotheses	4: 72-86
Methods			
Study design	4	Present key elements of study design early in the paper	4: 91-100
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4: 91-100
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of	4: 91-100
-		selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	5: 101-168
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	5: 101-168
measurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	5: 101-168
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7: 169-184
		applicable, describe which groupings were chosen and why	
Statistical methods	12	( <i>a</i> ) Describe all statistical methods, including those used to control for confounding	7: 169-184
		(b) Describe any methods used to examine subgroups and interactions	7: 169-184
		(c) Explain how missing data were addressed	1.109 101
		(d) If applicable, describe analytical methods taking account of	7: 169-184
		sampling strategy	
		( <u>e</u> ) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7: 189-198
1		potentially eligible, examined for eligibility, confirmed eligible,	
		included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	7: 189-198
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	7: 189-202
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable	7: 189-202
		of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	8: 205-234
Main results	16	( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted	8: 205-234
		estimates and their precision (eg, 95% confidence interval). Make clear	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		which confounders were adjusted for and why they were included	
		( <i>b</i> ) Report category boundaries when continuous variables were categorized	8: 205-234
		( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	8: 205-234
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	9: 238-246
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	11: 284-303
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9:246-283
Generalisability	21	Discuss the generalisability (external validity) of the study results	9:246-283
Other information		6	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	12: 320

*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.