

Full wwPDB X-ray Structure Validation Report (i)

Apr 6, 2020 – 02:44 PM EDT

PDB ID	:	6WGK
Title	:	A Fab derived from Dupilumab
Deposited on	:	2020-04-05
Resolution	:	1.62 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report.

This report is produced by the wwPDB biocuration pipeline after annotation of the structure.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
/EDS	:	2.10.1
Percentile statistics	:	20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.10.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: *X-RAY DIFFRACTION*

The reported resolution of this entry is 1.62 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	Similar resolution $(\#Entries, resolution range(Å))$
R_{free}	111664	3975 (1.64-1.60)
Clashscore	122126	4258 (1.64-1.60)
Ramachandran outliers	120053	4162 (1.64-1.60)
Sidechain outliers	120020	4161 (1.64-1.60)
RSRZ outliers	108989	3894 (1.64-1.60)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1			2%		
	A	235	89%	•	7%
			3%		
1	C	235	91%	•	8%
		/	3%		
1	E	235	91%	•	7%
		/			
	G	235	89%	•	9%
		/			
2	В	217	96%		••
		/	Continued on new	ct 1	nae

	Chain	Length	Quality of chain
2		215	
2	D	217	96%
2	F	217	96%
		215	%
2	H	217	95%
		/	

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 13743 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms Zero	Occ AltConf Tr	ace
1	Δ	218	Total C N O S		Ο
L	Π	210	$1636 \ 1027 \ 275 \ 327 \ 7 \ 0$	4	0
1	С	917	Total C N O S	3	0
L	U	211	1624 1019 274 324 7 0	5	0
1	F	210	Total C N O S	1	0
L	Ľ	213	1629 1022 275 324 8	L	0
1	C	914	Total C N O S	9	0
	G	214	1535 968 257 303 7 0		0

• Molecule 1 is a protein called Dupilumab Fab heavy chain.

• Molecule 2 is a protein called Dupilumab Fab light chain.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	В	215	Total C N O S 1681 1058 274 342 7	0	10	0
2	D	214	Total C N O S 1648 1039 266 336 7	0	6	0
2	F	214	Total C N O S 1636 1030 266 333 7	0	11	0
2	Н	212	Total C N O S 1563 986 257 313 7	0	2	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	140	Total O 140 140	0	0
3	В	113	Total O 113 113	0	0
3	C	114	Total O 114 114	0	0
3	D	72	Total O 72 72	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Е	89	Total O 89 89	0	0
3	F	94	$\begin{array}{cc} \text{Total} & \text{O} \\ 94 & 94 \end{array}$	0	0
3	G	77	Total O 77 77	0	0
3	Н	92	$\begin{array}{ccc} \text{Total} & \text{O} \\ 92 & 92 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain D:	96%	
D1 L11 L11 R59 R147 R147 R147 C17 C17 PR0		
• Molecule 2: Dupilumab Fab	light chain	
Chain F:	06%/	
	5078	
D1 133 142 143 144 143 143 143 143 143 191 191 191 191 197 197 197 197 197 197		
• Molecule 2: Dupilumab Fab	light chain	
Chain H:	05%	
	5570	/.
D1 L111 P12 R82 8132 8155 81555 81555 81555 81555 81555 81555 81555 81555 81		
,		
Cry I		
\mathbf{G}		
	W O R L D W I D E PROTEIN DATA BANK	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	109.16Å 79.27Å /109.56Å	Deneiter
a, b, c, α , β , γ	90.00° 91.87° 90.00°	Depositor
$\mathbf{P}_{\mathrm{oscolution}}(\mathbf{\hat{A}})$	30.00 - 1.62	Depositor
Resolution (A)	109.50 - 1.62	EDS
% Data completeness	95.2 (30.00-1.62)	Depositor
(in resolution range)	95.2 (109.50-1.62)	EDS
R _{merge}	0.05	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.42 (at 1.62Å)	Xtriage
Refinement program	REFMAC 5.8.0103	Depositor
D D	0.210 , 0.236	Depositor
Π, Π_{free}	0.210 , 0.237	DCC
R_{free} test set	11284 reflections $(5.01%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	24.8	Xtriage
Anisotropy	0.017	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.32, 39.1	EDS
L-test for twinning ²	$< L > = 0.50, < L^2 > = 0.33$	Xtriage
/	0.000 for l,k,-h	
Estimated twinning fraction	0.012 for h,-k,-l	Xtriage
	0,007 for l,-k,h	
F_o, F_c correlation	0.96	EDS
Total number of atoms	13743	wwPDB-VP
Average B, all atoms $(Å^2)$	28.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 34.17 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 7.1219e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

¹Intensities estimated from amplitudes.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond	angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.30	0/1684	0.63	0/2293
1	С	0.29	0/1669	0.62	0/2273
1	Е	0.29	0/1668	0.61	0/2273
1	G	0.30	0/1575	0.62	0/2152
2	В	0.29	0/1743	0.62	0/2370
2	D	0.28	0/1701	0.61	0/2316
2	F	0.29	0/1698	0.61	0/2316
2	Н	0.28	0/1604	0,61	0/2190
All	All	0.29	0/13342	0.62	0/18183

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	С	0	1
2	В	0	3
2	D	0	2
All	All		7

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (7) planarity outliers are listed below:

/		/	/	
Mol	Chain	Res	Type	Group
1	A	30	ARG	Sidechain
2	В	147[A]	ARG	Sidechain
2	В	24	ARG	Sidechain
		(a	7	

niin

Continued from previous page							
Mol	Chain	Res	Type	Gr			
2	B	59	ARG	Side			

10101	Cham	Ites	LJPC	Group
2	В	59	ARG	Sidechain
1	С	108	ARG	Sidechain
2	D	147	ARG	Sidechain
2	D	59	ARG	Sidechain

Too-close contacts (i) 5.2

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists/symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1636	0	1589	4	0
1	С	1624	0	1570	1	0
1	Е	1629	0	1576	1	0
1	G	1535	0 /	1435	3	0
2	В	1681	0	1635	5	0
2	D	1648	0 /	1593	1/	0
2	F	1636	0	1545	3	0
2	Н	1563	0	1447	2	0
3	А	140	0	0	0	0
3	В	113	0	0	0	0
3	С	114	0	0	0	0
3	D	72	0	0	0	0
3	Ε	89	0	Ø	0	0
3	F	94	0	0	0	0
3	G	/77	0	0	0	0
3	Н	92	0	0	0	0
All	All /	13743	0	12390	$\overline{20}$	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (20) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:B:147[B]:ARG:HD2	2:B:147[B]:ARG:O	1.66	0.93
2:B:147[B]:ARG:HD2	2:B:147[B]:ARG:C	2.02	0.75
2:D:88:VAL:HG21	2:D:171:GLN:HB3	1.89	0.54

6WGF	ζ
------	---

Continuea from previous page						
Atom 1	Atom 2	Interatomic	Clash			
Atom-1	Atom-2	distance (Å)	overlap (Å)			
2:H:12:PRO:HB2	2:H:112:LYS:HE3	1.91	0.53			
1:G:135:PRO:HD3	1:G:221:LYS:HE2	1.93	0.49			
2:F:42:LEU:HD21	2:F:44:LYS:HE3	1.95	0.47			
1:A:2:VAL:HG13	1:A:27:PHE:CD1	2.52	0.45			
1:A:11:LEU:HB2	1:A:159:PRO:HG3	1.99	0.44			
1:A:34:MET:HB3	1:A:79:LEU:HD22	2.00	0.44			
2:B:171:GLN:HG3	2:B:178:TYR:CZ	2.54	0.43			
1:C:154:VAL:HG11	1:C:162:VAL:HG11	2.00	0.42			
2:H:191:TYR:HA	2:H:197:TYR:OH	2.20	0.42			
2:F:191:TYR:HA	2:F:197:TYR:OH	2.20	0.41			
2:B:88[B]:VAL:HG21	2:B:171:GLN:HB2	2.01	0.41			
2:B:88[A]:VAL:HG21	2:B:171:GLN:HB2	2.02	0.41			
1:E:2:VAL:HG13	1:E:27:PHE:CD1	2.56	0.41			
2:F:42:LEU:HB2	2:F:52:LEU:HD11	2.03	0.41			
1:G:34:MET:HB3	1:G:79:LEU:HD22	2.04	0.40			
1:A:2:VAL:HG12	1:A:114:VAL:HG11	2.04	0.40			
1:G:2:VAL:HG13	1:G:27:PHE;CD1	2.57	0.40			

There are no symmetry-related clashes.

5.3Torsion angles (i)

Protein backbone (i) 5.3.1

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	218/235 (93%)	215~(99%)	3 (1%)	0	100	100
1	С	216/235~(92%)	209~(97%)	7 (3%)	0	100	100
1	Е	216/235~(92%)	213~(99%)	3 (1%)	0	100	100
1	G	210/235~(89%)	206~(98%)	4 (2%)	0	100	100
2	В	$223/217 \ (103\%)$	218~(98%)	5 (2%)	0	100	100
2	D	$218/217\ (100\%)$	214 (98%)	4 (2%)	0	100	100
2	F	223/217 (103%)	217 (97%)	6 (3%)	0	100	100

a 1	c		
(Continued	trom	nromonie	naae
Continucu	110116	preduous	puyc
		1	1 0

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentile	es
2	Н	212/217~(98%)	208~(98%)	4 (2%)	0	100 🗧 100	, ^
All	All	1736/1808~(96%)	1700 (98%)	36~(2%)	0	100 100	,

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	183/198~(92%)	182 (100%)	1(0%)	90 82
1	\mathbf{C}	180/198~(91%)	180 (100%)	0	100 100
1	Ε	181/198 (91%)	179 (99%)	2 (1%)	76 58
1	G	160/198~(81%)	160 (100%)	0	100 100
2	В	194/191~(102%)	194~(100%)	0	100 100
2	D	189/191~(99%)	187 (99%)	2(1%)	76 58
2	F	182/191~(95%)	181 (100%)	1 (0%)	90 82
2	Н	165/191 (86%)	164 (99%)	1 (1%)	87 78
All	All	1434/1556 (92%)	1427 (100%)	7 (0%)	90 82

All (7) residues with a non-rotameric sidechain are listed below:

	/		
Mol	Chain	Res	Type
1	A	204	LYS
2	D	11	LEU
2 /	D	110	GLU
1/	Е	221	LYS
/1	Е	222	ARG
2	F	174	LYS
2	H	11	LEU

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains i

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ > 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>	>2	$OWAB(A^2)$	Q<0.9
1	А	218/235~(92%)	-0.08	4 (1%) 68	67	15, 21, 44, 65	0
1	С	217/235~(92%)	-0.05	7 (3%) 47	44	16, 26, 47, 66	0
1	Ε	219/235~(93%)	0.01	7 (3%) 47	44	19, 29, 44, 65	0
1	G	214/235~(91%)	-0.05	1 (0%) 90	90	20, 29, 47, 66	0
2	В	215/217~(99%)	-0.15	1 (0%) 90	90	16, 24, 40, 57	0
2	D	214/217~(98%)	-0.13	0 100 1	00	19, 30, 45, 58	0
2	F	214/217~(98%)	-0.02	2 (0%) 84	84	16, 26, 56, 70	0
2	Η	212/217 (97%)	-0.13	2 (0%) 84	84	18, 27, 53, 69	0
All	All	1723/1808 (95%)	-0.07	24 (1%) 75	75	15, 27, 48, 70	0

All (24) RSRZ outliers are listed below:

			/		
Mol	Chain	Res	Type	RSRZ	
2	В	215	GLY	5.4	
1	А	145	GLU	3.8	
1	А	/103	ILE	3.7	
1	C /	138	PRO	3.2	
1	E	104	THR	3.1	
1	Ø	203	THR	3.0	
1	/C	103	ILE	3.0	
1	C		GLU	2.9	
1 /	Е	203	THR	2.9	
2	F	130	LEÚ	2.8	
/1	G	103	μE	2.6	
1	A	146	SER	2.6	
1	C	200	SER	2.5	
2 –	F	33	ILE	2.4	
1	Е	105	ILE	2.4	
1	С	/146	SER	2.4	
Continued on next page					

Continueu from previous puye					
Mol	Chain	Res	Type	RSRZ	
1	С	105	ILE	2.3	
1	Е	110	TYR	2.3	
1	Ε	103	ILE	2.2	
2	Н	132	SER	2.2	
1	А	203	THR	2.2	
1	Ε	202	GLY	2.1	
2	Н	82	ARG	2.1	
1	Ε	139	CYS	2.1	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA/residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

