Supporting Information

Selective Peptidomimetic Inhibitors of NTMT1/2: Rational design, synthesis, characterization, and crystallographic studies

Brianna D. Mackie,[†] Dongxing Chen,[‡] Guangping Dong,[‡] Cheng Dong,[¶] Haley Parker,[#] Christine E. Schaner Tooley,[#] Nicholas Noinaj,[§] Jinrong Min,[¶] and Rong Huang^{*,†,‡}

[†]Department of Medicinal Chemistry, Institute of Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States

^{*}Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States

[¶] Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario, Canada.

[#]Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States

[§]Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, United States

* To whom correspondence should be addressed. E-mail: <u>huang-r@purdue.edu</u>

Table of Contents

- A. Supporting Figure S1. MALDI-MS and HPLC analysis of compounds 1-24, DC431 and DC432
- B. Supporting Figure S2. IC₅₀ curves of compounds **5**
- C. Supporting Figure S3. IC₅₀ curves of compounds **6 (BM30)**
- D. Supporting Figure S4. Cell permeability evaluation
- E. Supporting Table S1. Selectivity study **BM30** and **22** against G9a and PRMT1
- F. Supporting Table S2. Selectivity study of **BM30** against a panel of 41 MTases (Reaction Biology)
- G. Supporting Table S3. Crystallography data and refinement statistics
- H. Supporting Table S4. IC₅₀ values and binding affinities of BM30 and its cell-permeable analogs

Figure S1. MALDI-MS and HPLC analysis of compounds 1-24, DC431 and DC432

S8

Figure S2. IC_{50} curves of compounds 5. IC_{50} values were determined in triplicates (n = 3) and presented as mean \pm SD

Figure S3. IC_{50} curve of BM30 (6). IC_{50} values were determined in triplicates (n = 3) and presented as mean \pm SD

Figure S4. Cell permeability evaluation

10 µM DC432

Last wash of cells incubated with 10 μM DC432

Last wash of cells incubated with 1 μM DC432

Last wash of cells incubated with 10 μM DC431

Last wash of cells incubated with 1 μ M DC431

Compoun	d Structure		IC ₅₀ (μΜ)	
		NTMT1	G9a	PRMT1
BM30	НО	0.32 <u>+</u> 0.06	>100	>100
22	HO-PKR(d)	4.2 <u>+</u> 1.2	13 <u>+</u> 4.1	>100

Table S1. Selectivity study of BM30 and 22

Enzyme	Activity (mean, %)	SD (%)	n
ASH1L	92	4.6	2
DNMT1	100	0.4	2
DNMT3a	100	3.4	2
DNMT3b	103	2.2	2
DNMT3b/3L	118	0.6	2
DOT1L	92	1.9	2
EZH1 Complex	112	0.9	2
EZH2 Complex	104	2.1	2
EZH2 (Y641F)	100	1.0	2
G9a	101	0.1	2
GLP	97	6.8	2
METTL21A-GST	95	10.6	2
MLL1 Complex	75	0.9	2
MLL2 Complex	85	1.0	2
MLL3 Complex	96	0.4	2
MLL4 Complex	84	2.4	2
NTMT1	11	0.1	2
NTMT2	12	0.1	2
NSD1	95	0.4	2
NSD2	102	0.7	2
NSD2 (E1099K)	98	2.7	2
NSD2 (T1150A)	97	5.4	2
NSD3	91	1.2	2
PRDM9	100	0.3	2
PRMT1	112	0.3	2
PRMT3	98	2.4	2
PRMT4	104	3.7	2
PRMT5	106	7.6	2
PRMT5/MEP50 Complex	106	2.3	2
PRMT6	98	8.0	2
PRMT7	104	7.6	2
PRMT8	100	10.8	2
SET1b Complex	94	5.5	2
SET7/9	90	4.2	2
SET8	96	5.1	2
SETD2	100	3.2	2
SMYD1	97	0.7	2
SMYD2	96	0.6	2
SUV39H1	99	6.1	2
SUV39H2	93	1.8	2
SUV420H1TV2	99	3.4	2

Table S2. Selectivity study of compound BM30 against a panel of 41 MTases (Reaction Biology)^{*a*}

^a Selectivity of **BM30** was determined at concentration of 100 µM for duplicate (n=2).

Data Collection	NTMT1-BM30	
λ (Å)	1.0332	
Space group	P6522	
a, b, c (Å)	106.9, 106.9, 205.4	
α, β, γ (°)	90, 90, 120	
Resolution (Å)*	30 - 1.73 (1.76 - 1.73)	
Completeness (%)*	99.9 (98.1)	
Redundancy*	19.4 (18.7)	
$ m R_{sym}$ †*	0.21 (4.5)	
I / σ (I)*	12.8 (0.7)	
CC _{1/2}	1.0 (0.36)	
Refinement		
Resolution (Å)	30 - 1.73	
No. reflections	72,828	
$\mathrm{R}^{\$}/\mathrm{R}_{\mathrm{free}}^{\P}$	0.18/0.20	
r.m.s. deviations		
Bonds (Å)	0.008	
Angles (°)	0.879	
No. Protein atoms	7088	
No. Ligand atoms	246	
No. Waters	564	
B-factors (Å ²)		
Wilson B	26.81	
Protein	32.53	
Ligands	41.43	
Waters	40.42	
Ramachandran		
Analysis[¥]		
Favored (%)	98.9	
Allowed (%)	1.1	
Outliers (%)	0	
PDB code	6WH8	

Table S3. Crystallography data and refinement statistics

[†] $R_{sym} = \sum_{hkl,j} (|I_{hkl}-\langle I_{hkl}\rangle|) / \sum_{hkl,j} I_{hkl}$, where $\langle I_{hkl}\rangle$ is the average intensity for a set of j symmetry related reflections and I_{hkl} is the value of the intensity for a single reflection within a set of symmetry-related reflections.

R factor = Σ_{hkl} (||F_o| - |F_c|) / Σ_{hkl} F_o| where F_o is the observed structure factor amplitude and F_c is the calculated structure factor amplitude.

 $R_{\text{free}} = \sum_{hkl,T} (||F_o| - |F_c||) / \sum_{hkl,T} |F_o|$, where a test set, T (5% of the data), is omitted from the refinement.

[¥] Performed using Molprobity within PHENIX.

* Indicates statistics for last resolution shell shown in parenthesis.

Compound	Structure	IC ₅₀ (μM) for NTMT1	K _d (μM) for NTMT1	K _d (μM) for NTMT2
BM30	но-	0.89 <u>+</u> 0.10	3, 2.8	3.7
DC431	HO PKR-Tat	0.23± 0.03	0.6, 0.8	3.4
DC432		0.054± 0.004	0.3, 0.4	1

Table S4. IC₅₀ values and binding affinities of BM30 and its cell-permeable analogs^a

^{*a*} IC₅₀ = mean \pm SD (n=3)